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Abstract

Glaive is a state-space planner based on Hoffmann and
Nebel’s Fast-Forward (2011) which solves the narrative
planning problem defined by Riedl and Young (2010)—
to construct a plan which achieves the author’s goals
out of steps which are clearly motivated and goal-
oriented toward individual character goals. Glaive rea-
sons about how characters cooperate and conflict based
on causal structures and possible worlds. By leverag-
ing the unique constraints of narrative planning, Glaive
reduces its branching factor and calculates a more ac-
curate heuristic. We evaluate it on 8 narrative planning
problems and demonstrate that it can solve certain non-
trivial problems in under 1 second.

Introduction
AI planning has proven a popular paradigm for developing
computational models of narrative and interactive narrative
systems (Young 1999; Young et al. 2014). Plan-based mod-
els are attractive because they can be generated and adapted
by planning algorithms; however, most planning-based nar-
rative systems have focused either on a rich knowledge rep-
resentation or on the use of fast planning algorithms, often
at the expense of the other.

For example, numerous narrative phenomena have been
modeled by extending the Partial Order Causal Link
(POCL) planning paradigm: character intentionality (Riedl
and Young 2010), suspense (Bae and Young 2008), and con-
flict (Ware and Young 2011), to name a few. POCL plans are
rich data structures with explicit representations of causal
and temporal structure that facilitate reasoning about other
aspects of narrative. Unfortunately, POCL algorithms are of-
ten too slow to be used in an interactive context, even for
small problems, and these extensions to the plan representa-
tion slow the process even further.

Alternatively, fast planning algorithms have been used at
run time to create interactive stories, including experiences
based on the TV show Friends (Cavazza, Charles, and Mead
2002), Flaubert’s novel Madame Bovary (Pizzi and Cavazza
2007), and Shakespeare’s play The Merchant of Venice (Por-
teous, Cavazza, and Charles 2010), to name a few. These
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systems tend not to modify the plan representation or plan-
ning algorithm, but instead encode narrative constraints di-
rectly into the story domain or as control knowledge on a
per-story basis. This is reasonable given that each story do-
main has its own structure, but some narrative phenomena—
like intentionality and conflict—are universal enough to be
reasoned about directly by the planner. This has the potential
to reduce the knowledge engineering burden and increase
the efficiency of the planner by avoiding non-narrative plans
in the search space.

Glaive is a state-space heuristic search planning algo-
rithm which reasons directly about character intentionality
and represents alternate worlds to facilitate reasoning about
phenomena like conflict. This paper describes the Glaive al-
gorithm, its heuristic, and the evaluation of Glaive on a set
of benchmark problems.

Related Work
Glaive solves the intentional planning problem described by
Riedl and Young (2010): A valid plan is one which achieves
the author’s goals but is only composed of steps that are ex-
plained in terms of the individual goals of the characters who
take them. This problem was extended by Ware and Young
(2011) to include solutions in which the plans of some char-
acters fail. Narratologists have described conflict in terms
of the thwarted plans of intentional agents (Herman, Jahn,
and Ryan 2005), so failed plans are an important aspect of
both static and interactive narratives. These models of in-
tentionality and conflict are described in terms of the causal
structure of the story, which human audiences reason about
when experiencing a narrative (Trabasso and Van Den Broek
1985).

Narrative generating systems are often divided into the
strong story or strong autonomy camps (Riedl and Bulitko
2013). The former ensures a unified plot defined by the au-
thor, whereas the later ensures an accurate simulation of
each character. Intentional planning is a compromise be-
tween the two—it ensures the author’s desired outcome
while generating believable character behavior. The frame-
work can represent cooperation between agents (steps which
contribute to more than one character’s goals) and accidents
(steps which contribute to no character’s goals). This kind
of coordination is difficult when each character is controlled
by a separate planning process, which is usually the case in
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strong autonomy systems, but can be accomplished (Teuten-
berg and Porteous 2013). Using a single planner makes coor-
dination easier but is hampered by the intractability of plan-
ning (Helmert 2006b).

In summary, the problem Glaive solves is a multi-agent
coordination problem in which characters sometimes coop-
erate and sometimes conflict as they are guided by an invisi-
ble puppet master toward the author’s goal. This framework
lends itself nicely to narrative domains.

The IPOCL (Riedl and Young 2010) and CPOCL (Ware
and Young 2011) planners solve the narrative planning prob-
lem, but the speed of these plan-space search algorithms has
prevented their use at run time in interactive experiences.
Forward-chaining state-space heuristic search planners have
emerged as the dominant technology in the biannual Inter-
national Planning Competition due to their speed (Coles
et al. 2011). Glaive is based on Hoffmann and Nebel’s
Fast-Forward planner (Hoffmann and Nebel 2011), but like
the IPOCL and CPOCL algorithms, Glaive also tracks the
causal history of each proposition. Glaive is a hybrid of
these two planner families; it attempts to combine the speed
of Fast-Forward with the causal reasoning capabilities of
IPOCL and CPOCL.

Narrative Planning
An intentional planning domain defines parametrized ac-
tions that can occur as events in a story. An action has pre-
conditions which must be true before it occurs, effects which
become true after it occurs, and a (possibly empty) set of
characters who must consent to take that action.

An intentional planning problem defines the initial state
of the story world and a set of author goals which must be
true by the time the story has finished. The solution to such
a problem is a plan, which is a sequence of fully ground
actions called steps.

In addition to the author’s goals, Glaive tracks individual
goals for each character which may be adopted and aban-
doned at various times during the story. The c intends g
modality is used to indicate that character c has adopted goal
g and may now take actions to make g true.

Figure 1 gives an example domain and problem which
models a highly simplified version of the film Indiana Jones
and the Raiders of the Lost Ark. There are 4 types of actions:

1. dig: A character discovers and excavates a buried item.
2. open: A character opens the Ark and dies from it.
3. give: One character gives an item to another.
4. take: One character takes an item from another. Either the

other is dead or the thief takes the item at gunpoint.
Initially, all three characters are alive. The Ark is buried but
Indiana Jones knows where to find it. Both Indiana and the
US Army intend that the army should have the Ark. The
Nazis are armed, and they intend to open the Ark (but they
don’t know where to find it). The author’s goals for the end
of the story are that the US Army should have the Ark and
the Nazis should be dead.

Figure 2 gives the solution: First Indiana excavates the
Ark. He intends to give it to the US Army, but before he

can do that the Nazis take it from his at gunpoint. The Nazis
then open the Ark and die. Finally, the US Army takes the
Ark from the dead antagonists.

Intentional Paths
A Glaive plan explicitly tracks how earlier steps satisfy the
preconditions of later steps.

Definition 1. A causal link s
p−→ t exists from step s to step

t for proposition p if and only if step s has effect p, step t has
precondition p, and none of the steps that occur between s
and t have effect ¬p. We say s is the causal parent of t, and
that a step’s causal ancestors are the steps in the transitive
closure of this relationship.

A plan represents the entire story, but it contains subse-
quences of steps which correspond to the plans of each in-
dividual character. These character plans are described in
terms of character goals and causal structures.

Definition 2. A intentional path for some character c and
some goal g is an alternating sequence of n steps and n
propositions 〈s1, p1, s2, p2, ...sn, g〉 such that:

1. Character c must consent to all steps.
2. c intends g is true before s1 and true until step sn.
3. Step sn has effect g.

4. For i from 1 to n−1, there exists a causal link si
pi−→ si+1.

5. No proposition appears twice.
6. The path never contains a proposition and its negation.

An intentional path describes a sequence of steps taken
by a character in service of a goal. Consider this intentional
path:

〈dig(J,R), J has R, give(J,R,U), U has R〉

Indiana excavated the Ark so he could posses the Ark so he
could give it to the US Army, which achieves his goal that
the army have the Ark.

Note that there can be 0, 1, or many intentional paths for
each character goal. These paths may overlap. Glaive rea-
sons about intentional paths when calculating its heuristic.
Intentional paths also allow us to define which plans are so-
lutions to the narrative planning problem.

Definition 3. A step s is explained if and only if:

1. ∀ consenting character c, s is on an intentional path for c.
2. All other steps on that intentional path are explained.

In other words, every character who takes s has a reason to
take s, and the other steps used to explain s are also reason-
able steps with explanations of their own.

Definition 4. A valid intentional plan is a sequence of steps
such that:

1. Each step’s preconditions are satisfied immediately before
the step is taken.

2. After all steps are taken, the author’s goals are satisfied.
3. Every step is explained in some possible world.
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Figure 1: A highly simplified example of the plot for Indiana Jones and the Raiders of the Lost Ark.
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Algorithm 1 GLAIVE(Π, σ,G, U)

1: Let Π be the plan, σ the current state, G the set of char-
acter goals, and X the set of unexplained steps.

2: Nondetirministically choose a potentially motivated
step s whose preconditions are satisfied in σ.

3: Add step s to Π.
4: Apply the effects of s to σ.
5: for each effect of s like c intends g do
6: Add a new character goal 〈c, g〉 to G.
7: end for
8: if any characters consent to s then
9: Add s to X .

10: end if
11: for each character goal g = 〈c, g〉 ∈ G do
12: for each intentional path p for c ending in g do
13: Remove g from G.
14: for each step t ∈ p do
15: if t is explained then
16: Remove t from X for all nodes*.
17: end if
18: end for
19: end for
20: end for
21: if any node* satisfies the author’s goals and X = ∅ then
22: return Π for that node.
23: else
24: GLAIVE(Π, σ, G, X)
25: end if

This idea of a step being explained in some possible world
means that the step is part of some character’s plan even
if that plan fails. This will be discussed in more detail be-
low, but that discussion first requires an explanation of how
Glaive performs its search.

The Glaive Algorithm
Glaive is a state-space planner, meaning that it begins at the
initial state of the problem and takes steps which change that
state until it finds a state in which the author’s goals are true.
Its search space can be envisioned as a directed tree (see
Figure 2). A node in the tree represents a state; an edge n1

s−→
n2 represents applying the effects of step s to the state of
node n1 to produce the new node n2 with a different state.
In practice, a node also represents a plan made of the steps
taken on the path from the root to that node. The root of the
tree is the initial state of the problem and an empty plan.

Algorithm 1 describes how Glaive performs its search. In
addition to the current plan and current state, Glaive tracks
two additional things: a set of character goals G and a set of
unexplained steps X .

Definition 5. A character goal is a 2-tuple 〈c, g〉 which rep-
resents that character c intends goal g in the current state.

When Glaive takes a step which has an effect like c in-
tends g, it adds a new character goal to G (line 6). Once an
intentional path is found for character c that ends in g, that
goal is removed (line 13).

Figure 2: A search space and solution for the example prob-
lem in Figure 1. The step in gray indicates a step that Indiana
intended to take but did not take due to a conflict.

An unexplained step implies a commitment to explain
why the characters took that step. When a step s with one
or more consenting characters is taken, it gets added to X
(line 9). When an intentional path is found that contains step
s, we check to see if s is explained, and if so remove it from
X (line 16).

Glaive returns a solution if it finds a node where the au-
thor’s goals are satisfied and no steps remain unexplained.
The plan to reach such a node will be a valid plan.

Possible Worlds and Conflict
A character’s plans may fail during a narrative; indeed, this
is a key element of conflict (Herman, Jahn, and Ryan 2005).
Glaive reasons about failed plans by treating a state space
not just as a data structure for performing its search but also
as a representation of many possible worlds.

Consider line 13 in Algorithm 1 (marked with an *).
When a step becomes explained, it is removed from X not
only for the current node but also for every node in the search
space where that instance of that step is unexplained.

The search space in Figure 2 provides an example. It be-
gins in the initial state with Plan 0 as an empty plan. The first
step taken is dig(J,R), which produces Plan 1. This step is
unexplained because it does not directly satisfy any of Indi-
ana’s goals, so it is in the set X . When the right branch of
the space is expanded by taking give(J,R,U) as the second
step and creating Plan 3, this intentional path is formed:

〈dig(J,R), J has R, give(J,R,U), U has R〉

It provides an explanation for both of the steps on that path.
The step give(J,R,U) is removed from X in Plan 3. The
step dig(J,R,U) is removed from X in Plan 3 and also
in Plan 1 and all of its descendents. This is because there
exists a possible world in which it makes sense for Indiana
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to excavate the Ark of the Covenant—that world is Plan 3.
However, Plan 3 does not satisfy the author’s goal that the
Nazis be dead, so it is not a solution.

Now consider the left branch of the search space. Plan 5
satisfies all of the author’s goals, but the very first step in
Plan 5, dig(J,R), is not on any intentional path in Plan 5.
However, that step is not unexplained. It was explained by
Plan 3, even though Plan 3 is not an ancestor of Plan 5.

In other words, once a character plan is formed in some
possible world (such as Indiana’s 2 step plan to get the Ark
to the US army), any prefix of that plan can appear in other
possible worlds and still be explained.

Note that Plan 5 does not become a solution until Plan 3
is discovered. This is why line 21 (marked with an *) states
that any node can be returned as a solution even if it is not
the current node. Even if Plan 5 is discovered before Plan
3, Plan 5 is still returned as a solution once all of its steps
become explained—that is, once Plan 3 is discovered.

Representing possible worlds allows Glaive to reason
about how a character’s plans fail. Before returning a so-
lution, Glaive can combine multiple nodes into a single so-
lution to explain each character’s actions. The example so-
lution given in Figure 2 is a combination of Plan 5 and
Plan 3. The step which appears in Plan 3 but not in Plan 5
is shown in gray to indicate that it is a non-executed step.
In other words, it does not actually happen in the story,
but it tells us what Indiana was planning and why he ex-
cavated the Ark. This use of non-executed steps to repre-
sent thwarted plans mirrors Ware and Young’s threatened
causal link representation of narrative conflict (2011), and
it has been demonstrated that human audiences recognize
these kinds of thwarted plans when reading stories (Ware
and Young 2012).

The Glaive Heuristic
Like other state-space planners, the Glaive heuristic is re-
sponsible for the planner’s speed. A heuristic is a function
h(n) which, given some node n in the search space, esti-
mates how many more steps need to be taken before a solu-
tion is discovered.

The Glaive heuristic is calculated as the maximum of two
numbers: an estimate derived by reasoning backward from
each character goal and an estimate derived by reasoning
forward from the current state to the author’s goals. Glaive
uses two kinds of graphs to calculate these numbers: goal
graphs and plan graphs respectively.

Goal Graphs
Definition 6. A goal graph is a directed, layered graph com-
posed of steps. It is constructed for some character c and
some goal g. A step s exists at layer 0 iff c consents to s
and s has g as an effect. A step s exists at layer i ≥ 0 iff c
consents to s, s does not exist at any earlier layer, and there
exists a proposition p such that s has effect p and some step
at layer i − 1 has precondition p. An edge s1

p−→ s2 exists
from s1 to s2 iff s1 exists at layer i and has effect p, and s2
exists at layer i− 1 and has precondition p.

An example goal graph is given in Figure 1. It contains
all the steps which Indiana might possibly consent to while

pursuing his goal that the US Army have the Ark. Only the
step give(J,R,U) directly achieves this goal, so only it ap-
pears at Layer 0. All the steps that require his consent and
which can satisfy some precondition of that step appear at
Layer 1, and so on. Note that give(J,R,U) does not appear
at Layer 2 because it already exists at Layer 0 and cannot
be repeated. Also note that goal graphs do not change based
on the current state, so they only need to be computed once
during the search process.

Goal graphs allow Glaive to reduce the branching fac-
tor of its search space. When choosing a next step (line 2),
Glaive only considers those steps whose preconditions are
satisfied and which might eventually be explained.
Definition 7. A step s which requires the consent of char-
acter c is potentially motivated for c iff there exists some
goal g such that c intends g is true in the current state and
s appears somewhere in the goal graph for c intends g. A
step is potentially motivated (in general) if it is potentially
motivated for all its consenting characters.

A step which is not potentially motivated can never be
explained in the future, so there is no reason to consider it as
a next step during the search.

A goal graph represents all the possible intentional paths
that might exist for character c to achieve goal g. When some
step is unexplained, Glaive uses the layer at which that step
appears in a goal graph to estimate how difficult it will be to
explain it. Consider the cost of explaining dig(J,R) in Plan
1. It is potentially motivated by the goal J intendsU hasR
because it appears in the goal graph for that goal. Because
it appears at layer 1, we know that at least 1 more step is
required before that explanation can be used.

It is possible that multiple unexplained steps will eventu-
ally be explained by a single step—that is, their intentional
paths will overlap. To avoid overestimating, Glaive consid-
ers this.
Definition 8. A step s in a goal graph is dominated by a step
t iff there exists a goal graph for some current character goal
containing s and t which has an edge s→ t.

Now we can define how Glaive estimates the number of
additional steps needed to explain an unexplained step. Let
x be some unexplained step. Let C be the set of characters
which must consent to s. Let Γ(x, c) be all the goal graphs
for c in which x appears and for which there exists a goal
〈c, g〉 ∈ G. Let the function layer(x, γ) denote the layer at
which x appears in goal graph γ.

cost(x) =
∑
c∈C

 min
γ∈Γ(x,c)

0 if x is dominated in γ

layer(x, γ) otherwise


This cost is calculated for every unexplained step and the

total is used as part of Glaive’s heuristic. For some node n
in the search space, let cost(n) be the sum of the cost of all
unexplained steps x ∈ X .

Plan Graphs Glaive’s plan graphs are an extension of
those used by Hoffmann and Nebel’s Fast-Forward (2011).
Plan graphs have layers which contain propositions and
steps. The first layer has those propositions which are true
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Table 1: Performances for the Fast-Forward and Glaive
heuristics on 8 benchmark narrative planning problems.

Problem Planner Sol? Time Visited Expanded

Space FF Yes 0.00 3 15
Glaive Yes 0.00 3 9

Fantasy FF Yes 2.76 35,407 212,046
Glaive Yes 0.03 14 107

Raiders FF Yes 0.23 1,334 4,073
Glaive Yes 0.03 35 142

Aladdin FF No 288.49 67,758 2,063,927
Glaive Yes 0.06 12 189

BLP-Win FF Yes 27.38 32,262 196,576
Glaive Yes 0.31 109 586

Western FF No 440.55 166,110 3,079,097
Glaive Yes 28.41 18,855 296,150

BLP-Die FF No 195.93 106,750 731,948
Glaive No 236.97 91,887 720,024

Heist FF No 367.92 84,854 1,654,916
Glaive No 351.38 115,782 1,544,048

in the current state, and the propositions and steps at each
layer increase monotonically. A plan graph represents a re-
laxed version of a planning problem where the delete lists
of the steps are ignored. An example plan graph is given in
Figure 1. The plan graph is extended until all of the author’s
goals appear on the same layer, and then a solution to this
relaxed problem is extracted. The length of that relaxed so-
lution is how Fast-Forward estimates the number of steps
remaining before the goal is achieved. Let that estimate be
denoted as FF(n) for some node n in the search space.

Due to space constraints, formal definitions cannot be pro-
vided here. The only change made to Glaive’s plan graphs is
that a step may not appear at a layer until it is potentially
motivated in the previous layer. Similarly, when a step gets
included in a relaxed solution, one of its motivations must
also be included. See Hoffmann and Nebel’s article (2011)
for details on this process.

Glaive’s heuristic considers estimates derived from the
goal graphs and plan graph. Let n be some node in the search
space:

h(n) = max(FF(n), cost(n))

The maximum of these two estimates is used (rather than
the sum) because they are likely to consider some of the
same steps and Glaive attempts to avoid overestimating.
Glaive’s heuristic could be improved if double counting
could be efficiently avoided.

Evaluation
Given the complexity of planning and the scope of most
planning problems, a planner is usually evaluated on a suite
of benchmark problems. We compiled 8 narrative planning
problems to evaluate Glaive. Below is a brief explanation of
where each problem came from and its size, given as # of
literals / # of steps / # of axioms / length of shortest solution.
These sizes are reported after the problems had been algo-
rithmically simplified by Glaive as a pre-processing step.

1. Space (46 / 23 / 0 / 2), from Ware and Young (2012).

2. Fantasy (80 / 46 / 0 / 6), from Ware and Young (2012).
3. Raiders (46 / 68 / 6 / 8), a longer version of Figure 1.
4. Aladdin (294 / 213 / 165 / 11), from Riedl and Young

(2010).
5. BLP-Win (215 / 705 / 632 / 10), simplest way to win the

interactive narrative game The Best Laid Plans (Ware et
al. 2014).

6. Western (67 / 632 / 0 / 7), from Ware and Young (2012).
7. BLP-Win (215 / 705 / 632 / 11), fastest way to die in The

Best Laid Plans (Ware et al. 2014).
8. Heist (323 / 1844 / 0 / 31), from Niehaus (2009).
Table 1 gives Glaive’s performance on these problems. The
planner uses complete A* search and was given 6 Gb of
memory on a computer with a 3.5 GHz Intel Core I7 pro-
cessor. As a basis for comparison, we also show how Glaive
performs when using only the Fast-Forward heuristic instead
of Glaive’s heuristic. Time is given in seconds as the average
of 10 runs.

In all cases Glaive performs comparably or better when
using its heuristic, often significantly better. Riedl and
Young (2010) report that the original IPOCL planner took
over 12 hours to solve Aladdin, visited 673,079 nodes and
expanded 1,857,373 while using a domain-specific heuris-
tic. By contrast, Glaive uses a domain independent heuristic,
takes only 64 milliseconds, visits 12 nodes and expands 189.
Given that Glaive’s solution is only 11 steps long, Glaive vis-
its only 1 node that is not on the direct path to the solution.

Software
Glaive has been implemented in Java 7. The planner, along
with the benchmark problems tested above, can be down-
loaded from:

http://stephengware.com/projects/glaive/

Glaive takes as input domains and problems in the Planning
Domain Definition Language, a standard in the AI planning
community. It supports a number of helpful planning fea-
tures including typed constants, equality, disjunctive goals,
universal and existential quantifiers, conditional effects, do-
main axioms, and the ability for one character to delegate its
goals to others.

Future Work
Glaive was built on top of Fast-Forward due to its sim-
plicity, speed, and use of data structures needed by Glaive.
However, the Fast-Downward planner (Helmert 2006a) has
proven itself faster, more accurate, and more memory ef-
ficient. More importantly, the Fast-Downward heuristic de-
composes problems into causal sequences, which should fa-
cilitate reasoning about intentional paths. Glaive leverages
the constraints of narrative problems to reduce its branching
factor and increase the accuracy of the Fast-Forward heuris-
tic. We believe that another order of magnitude speedup can
be achieved by doing the same with Fast-Downward.

We are also excited to explore what other narrative
phenomena besides conflict can be reasoned about using
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Glaive’s possible worlds representation. Narratologists have
analyzed stories in terms of possible worlds (Ryan 1991),
and there are established logical formalisms for possible
worlds (e.g. Kripke (1963)) which can be used to develop
computational models of narrative.

Conclusion
Glaive is a state-space narrative planner. It constructs sto-
ries which achieve the author’s goals out of steps which are
clearly motivated and goal-oriented for the characters who
take them. It reasons about how characters cooperate when a
step has multiple consenting characters. It also reasons about
failed plans and conflict by treating its search space as a set
of possible worlds. By leveraging the constraints of narrative
planning, Glaive can reduce its branching factor and calcu-
late a more accurate heuristic. Glaive is fast enough solve
certain non-trivial problems fast enough for use at run time
in interactive experiences such as the forthcoming narrative
adventure game The Best Laid Plans (Ware et al. 2014).
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