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Abstract

A narrative planner decides the actions for all characters in
a story while justifying each action according to the acting
characters’ own individual goals. However, an action that
contributes to a goal may still seem irrational when con-
sidered alongside other actions the character may take; for
instance, it may sacrifice a more important goal, or expose
the character to unnecessary risks. We redefine the narrative
planning character model to use a multiobjective framework
where character actions are chosen from a Pareto front of best
and safest options. We discuss how this framework can be
applied to generate a policy for how the non-player charac-
ters should behave in any given state of an interactive nar-
rative, and how we applied such a policy in the Traffic Stop
de-escalation training simulation.

1 Introduction
Narrative planning (Riedl and Young 2010) is a central-
ized approach to story generation that adopts some of
the strengths of multiagent-system-based generation. Story
characters have goals, but they are not autonomous agents.
Instead, the planner manipulates the characters; however, the
planner may choose only from actions that the characters
themselves would want to take, according to some model of
character decision-making.

One ongoing area of narrative planning research is defin-
ing the character model. Existing narrative planners (see
Section 2) are effective at deciding whether a character ac-
tion makes sense in a vacuum, namely, whether the action
individually could be part of a plan to achieve the charac-
ter’s goals. However, there has been less work on consider-
ing the action in the context of the character’s other options.
A character’s plan to pursue one goal may become less ra-
tional when there is an equally viable way to pursue a more
important goal, or when the plan would achieve the goal but
result in severe negative consequences for the character.

This paper proposes a narrative planning model that im-
proves on previous versions by evaluating character actions
in the context of other available actions. Characters reason
about possible futures in a manner inspired by game tree
search. They recursively anticipate others’ actions and try to
get closer to outcomes good for them and to eliminate the
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possibility of outcomes bad for them. There is sometimes a
tradeoff between getting closer to a better outcome and pre-
venting a worse outcome; for instance, guaranteeing safety
from a threat may require that a character abandon their most
valued goals. We treat pursuing rewards and avoiding risks
as separate objectives of a multiobjective problem, and we
use the notion of a Pareto front over these two objectives to
determine which actions a character considers.

We also discuss the application of our model to Traffic
Stop, an interactive narrative application introduced in our
previous work (Fisher, Siler, and Ware 2022). As a simu-
lation of a police de-escalation situation, it features NPCs
who require multi-layered reasoning about threats and op-
portunities from each other and from the player; our model
has helped to define a space of NPC behaviors appropriate
to the system’s pedagogical goals.

2 Related Work
Alhussain and Azmi (2021) provide a broad survey of story
generation methods. Here we focus on the specific thread of
narrative planning research that has been defining the space
of valid stories by broadening and narrowing the require-
ments that an individual character’s plans must meet.

Young (1999) proposed the use of planning algorithms
for story generation because they offer a formal, generative
model of a series of temporally- and causally-linked events.
Although planning has been present since the beginnings of
story generation research (Meehan 1975; Lebowitz 1985),
Young noted that early systems largely used ad hoc models
of plans; Young instead adopted STRIPS-style (Fikes and
Nilsson 1972) classical planners as a new focal area. It soon
became clear that the space of all valid plans (region C in
Figure 1) was not precise enough as a definition of accept-
able stories.

Riedl and Young’s IPOCL planner (2010) narrowed the
definition to include only stories where characters act inten-
tionally. While there is still a goal for the narrative itself—
what we call the author’s goal—each character has its own
goals, and every action a character takes must contribute to
a plan to achieve one of those goals.

Ware and Young’s Glaive planner (2014) broadened the
definition of intentionality (I ∩ C in Figure 1). Instead of
requiring that every action in a story contribute to a character
goal, it is enough that an action could have contributed. In



Figure 1: Character plan spaces as described by Shirvani and
Ware (2020b).

other words, if there exists a version of the story where the
action contributed to the characters’ goals, then the action
is explained, even if parts of the hypothetical story do not
occur in the actual story. Teutenberg and Porteous (2013)
propose a similar definition for their IMPRACTical planner.

Shirvani, Farrell, and Ware (2018) modified the space of
valid character plans to reason about beliefs (B in Figure 1).
A character’s plan is only valid if it contributes to their goals,
if they believe it is possible, and if they believe the other
characters the plan depends on will act in the expected way
(I∩B in Figure 1). The Sabre planner (Ware and Siler 2021)
uses this model, and others have reasoned similarly about
beliefs (Teutenberg and Porteous 2015; Sanghrajka, Young,
and Thorne 2022).

Shirvani, Ware, and Baker (2023) further broadened the
definition to state that character actions make sense any time
they contribute to feeling a positive emotion (E ∩B in Fig-
ure 1), which include both achieving things characters want
(joy, or an increase in utility) and preventing things charac-
ters want to avoid (relief, or preventing a decrease in utility).
Marsella and Gratch’s EMA (2009) uses a similar definition.

In this paper, we narrow Shirvani, Ware, and Baker’s def-
inition of a valid character plan to include only optimal pos-
itive emotions. In other words, when characters have two
available plans that are good, but one is better, we assume
they will only act according to the better plan. Our approach
borrows concepts from multiobjective optimization (Jahan,
Edwards, and Bahraminasab 2016); treating risks and re-
wards as separate objectives is sometimes used in an eco-
nomic context for portfolio optimization (Unni, Ongsakul,
and Nimal 2020). Our approach also borrows from game tree
search (Marsland 1986), which has been applied in a narra-
tive generation context before by Kartal, Koenig, and Guy
(2014) and Magnenat et al. (2022); they use Monte Carlo
Tree Search to compute fast approximations of optimal char-
acter decisions, while our approach focuses on exact deter-
mination of actions known to meet our optimality definition.

3 Application Background: Traffic Stop
We developed this model of rational character behavior for
the Traffic Stop virtual reality de-escalation training simu-
lation. Police officers play the simulation, get feedback on
what went well or poorly, and then replay to improve the
ending. We will use the simulation’s scenario as a running

example throughout Section 4.
The player is a police officer who has pulled over a car

for erratic driving and must either deliver a citation or let
the driver off with a warning. There is a passenger in the
car as well. If the player checks the driver’s ID in the police
database, they will notice if the driver has a protective order
(sometimes called a restraining order) on file.

The experience manager can choose several elements of
the state. The driver may have a protective order or not. The
passenger may be the person named on the order or not. The
passenger may be armed or unarmed. The player’s goal is
to determine whether the driver is safe, to issue a citation or
warning if so, to arrest the passenger if not, and to respond
to any threats that arise.

4 Character Behavior Model
Narrative planners reason on multiple levels: Plans from a
character’s perspective are generated to determine which ac-
tions would be rational for the character to take. The final
story is a plan from an authorial perspective consisting only
of character-rational actions. The model introduced in this
section operates on a character level; after it has been used to
determine which actions are character-rational, an authorial-
level model such as the experience manager in Section 5 can
select from among those actions to execute.

We will first define a series of concepts to relate plans to
character preferences, and then we will introduce an algo-
rithm for choosing the final set of available actions.

Planning Definitions
A narrative planning domain defines variables that describe
the story world, such as the location and status of all objects.
It also defines a set C of characters, special objects which
can have beliefs and intentions.

A story graph (Riedl and Young 2005) is a directed graph
representing possible plan trajectories for the narrative plan-
ning domain. A node s in a story graph is a world state,
which is any function that can determine whether a Boolean
logical proposition is true or false. States track the value
currently assigned to each variable as well as each charac-
ters’ beliefs. In the Traffic Stop domain, a state can answer
whether the passenger is armed, whether the officer believes
that the passenger is armed, whether the passenger believes
that the officer believes that the passenger is armed, etc.
When the world is in state s, we use β(c, s) to denote the
state character c believes the world to be in. The details of
how beliefs are handled is not directly relevant to this paper,
so we refer readers to Shirvani, Ware, and Farrell (2017).

A narrative planning domain defines actions that can
change the world state. Actions are based on the Action
Definition Language (Pednault 1994) with some additions.
Every action a defines PRE(a), a logical proposition which
must be true in the state before it occurs, and EFF(a), a log-
ical proposition that must be true in the state after it oc-
curs. For narrative planning, every action also defines a set
CON(a) of characters ∈ C who must have a reason to take
the action, referred to as the action’s consenting characters.
Actions also define how character beliefs change as a re-
sult, and we omit those details here. In short, if a character



observes an action their beliefs are updated, and otherwise
their beliefs stay the same.

In the Traffic Stop domain, the officer can give a citation
to the driver. The precondition of this action is that the offi-
cer and passenger are both alive and free, and the officer has
the citation. The effect is that the driver now has the citation.
The officer and driver are both consenting characters, mean-
ing this action can only happen if both the officer and driver
have a reason to take it.

A story graph may have an edge s1
a−→ s2 from node s1

to node s2 via action a if PRE(a) is true in s1, and s2 is the
state that would result from taking action a. We use α(a, s)
to mean the state after taking action a in state s. So when
a graph has an edge s1

a−→ s2, then α(a, s1) = s2. If a’s
precondition is not true in s, α(a, s) is undefined.1 We also
use α({a1, a2, ..., an}, s) to denote the state after taking the
sequence of actions {a1, a2, ..., an}.

Our planning system finds a subset of the story graph
consisting only of actions that are explained for the char-
acters who take them, a concept that will be defined for-
mally over the course of this section. The desired behavior
is that characters take actions they believe will help them
most effectively achieve world states that are better, and/or
prevent ones that are worse, according to their preferences.
These preferences are defined by utility functions, which
map world states to real numbers. For every character c ∈ C,
let Uc(s) be c’s utility in state s.

The utility functions in the Traffic Stop domain are com-
plicated, but for our examples we will simplify them like so:

• The default utility is 0.
• A dead character has a utility of -2.
• An arrested character has a utility of -1.
• If the passenger is named on the protective order they are

dangerous. A dangerous passenger has a utility of 1 when
the driver is dead.

• The officer gets a utility of 1 for arresting a dangerous
passenger.

• If the driver is home safely with a warning, the driver’s
utility is 2 and the officer’s is 1.

• If the driver is home safely with a citation, the driver’s
utility is 1 and the officer’s is 2.

The simulation ends when anyone is killed or arrested or
when the driver leaves safely with the citation or warning.
Note both the citation and the warning endings are positive
for the driver and the officer, but the driver prefers the warn-
ing and the officer prefers the citation.

Helping and Hindering Outcomes
An action sequence π = {a1, a2, ..., an} is expected by
character c in state s just when:

1An exception is when an action a occurs in a state s where a
character c had not believed the action was possible; i.e., a’s pre-
condition is not met in β(c, s). In that case, rather than being unde-
fined, α(a, β(c, s)) is defined in a way that lets c’s beliefs accom-
modate the unanticipated action. See Shirvani, Ware, and Farrell
(2017) for details.

1. α(π, β(c, s)) is defined; and
2. every action ai is explained for all ci ∈ CON(ai) in state

α({a1, a2, ..., ai−1}, s).
In other words, a character c can expect an action sequence
when (1) the character believes it can occur and (2) every
action in that sequence makes sense for all characters taking
the action. We will now introduce more concepts that build
up to a definition of “explained” as used in requirement (2).

An action a1 helps utility u for character c in state s iff
there exists an action sequence π = {a1, ..., an} such that:

1. π is expected by c in s;
2. Uc(α(π, β(c, s))) = u; and
3. no strict subsequence of π exists that also meets these

criteria.

An action helps a utility for a character if the character can
anticipate a plan, containing no unnecessary actions, that
starts with that action and results in that utility. The officer
believes they can give the citation to the driver, they believe
the driver will accept it, they expect the plan to achieve a
utility of 2, and they can’t imagine a simpler version of this
plan which achieves the same utility.

An action a1 hinders utility u for character c in state s iff
there exists an action sequence π = {a1, ..., an} such that:

1. π is expected by c in s;
2. no action sequence π′ exists such that

Uc(α(π
′, α(π, β(c, s)))) = u; and

3. no strict subsequence of π exists that also meets these
criteria.

An action hinders a utility if the character can anticipate a
plan using that action where, after that plan, the utility is
no longer reachable. If the officer arrests the passenger, they
hinder utility -2 because the passenger can no longer attack
them; however they also hinder utility 2 because the simula-
tion will end without them delivering the citation.

Some existing systems use these as definitions of an ex-
plained action directly: Sabre (Ware and Siler 2021) requires
actions to help a higher utility for the consenting characters,
and the Shirvani and Ware (2020b) model used in the pre-
vious version of Traffic Stop (Fisher, Siler, and Ware 2022)
also allows actions that hinder a lower utility. We introduce
more specific requirements.

An action a is better than an action a′ for character c in
state s if a helps a utility higher than any that a′ helps. An
action a is safer than an action a′ for character c in state s if
a hinders a utility lower than any that a′ hinders. An action
a dominates an action a′ for character c in state s if:

1. a is better or safer than a′ for c in s; and
2. a′ is neither better nor safer than a for c in s.

With respect to a set A of actions, we say an action a ∈ A is
undominated if no member of A dominates a.

Finally, action a is explained for character c in state s if:

1. a helps a utility u > Uc(s) or hinders a utility u < Uc(s)
for c in s; and

2. no action dominates a for c in s.



Figure 2: A story graph fragment where the passenger (P)
wants to attack the driver (D), but the presence of the officer
(O) affects the safety of doing so immediately. Solid arrows
are edges for immediate actions from the current state of s0
while dotted arrows are for subsequent expected actions. For
conciseness, only the passenger utilities are shown.

In other words, a character will take an action only if it is
part of a plan to reach a state that is preferred to the current
one, or to reach a state where an unwanted outcome can-
not happen, and they reject one action if another action does
better in one aspect without doing worse in the other.

Note that the definitions of expected sequences and ex-
plained actions are recursive; for an action to be explained
for a character, the character may need to expect certain ac-
tions from other characters in order to help or hinder a utility,
and for the sequence to be expected, those other characters’
actions in turn need to be explained.

Suppose the passenger is armed and dangerous, but the
passenger believes the officer believes they are harmless.
Figure 2 shows two plans for the passenger to achieve their
goal of hurting the driver: attack after the driver returns
home, or attack immediately. If they attack where the officer
can see, they briefly achieve a utility of 1, but would then
expect to be arrested, ultimately resulting in -1. If they wait
until the traffic stop is over, they can attack without repercus-
sions. Neither plan is better for the passenger in terms of po-
tential to gain utility, but the second option is safer because it
hinders -1. Waiting for the officer to release the driver dom-
inates attacking immediately, even though the passenger is
not a consenting character to the release. This ability of char-
acters to anticipate the consequences of their actions and the
actions of others is the most significant improvement of our
model over previous ones.

So far, the definition of a dominated action is circular in
some cases. Suppose the passenger is harmless and there are
two ways the traffic stop could be resolved, as shown in Fig-
ure 3. The officer can let the driver off with a warning (which
requires only the officer’s consent), or the driver can give
their ID to the officer (which requires the consent of both)
so the officer can print and deliver a citation. Both endings
are better than the starting state for both characters, but the
driver prefers to get a warning and the officer prefers to de-
liver the citation.

Figure 3: A story graph fragment where both the officer (O)
and driver (D) want to finish the traffic stop, but have differ-
ent preferences for how.

The actions that are explained in this situation depend on
what the officer and driver expect the other is willing to do.
Giving the ID is explained for the driver if and only if they
do not expect to be let off with a warning. Giving a warning
is explained for the officer if and only if the officer does not
expect the driver to provide the ID.

The ambiguity leads to a dilemma. If we make a starting
assumption that the driver does not expect a warning, then
it is explained for the driver to give their ID. If we make a
starting assumption that the officer does not expect the driver
to give the ID, then it is explained for the officer to issue a
warning. However, if we make a starting assumption that the
driver expects the officer to issue a warning and that the of-
ficer expects the driver to give the ID, then the characters
become deadlocked and the narrative cannot progress. We
will next extend our model with an algorithm for determin-
ing a node’s set of explained actions in a way that avoids
deadlocks.

Pareto-Based Action Pruning
We determine which actions are explained by iteratively de-
tecting and pruning (i.e., eliminating) unexplained actions.
Let s be some node in the story graph that we want to prune.
Initially, s has all possible out-edges. That is, there is an edge
s

a−→ s′ for every action a whose precondition is met in s.
We assume that all descendant states of s have already un-
dergone the pruning process. In other words, any plan that
a character considers starting in state s will be explained,
except for possibly the first step.

The pruning process works by allowing characters to ap-
prove actions they want to take. Once an character approves
a set of actions in one step they will not approve any other
actions in later steps. If an action gets no approvals, it is
pruned.

The process below prunes one action at a time. Each time
an action is pruned, the process starts over at the beginning
from Step 1. This is because the range of possible outcomes



changes each time an action is pruned, so which actions are
dominated or undominated may also change.
1. Every action must be better or safer (or both) for all of its

consenting characters. If an action can be found which is
neither better nor safer for one of its consenting charac-
ters, prune that action and start over at Step 1.

2. For every character c we find the set Pareto(c) of actions
that are undominated for c. We consider all possible un-
pruned actions, regardless of who consents.

3. A unanimous action is one that is in Pareto(c) for all
of its consenting characters. Unanimous actions are the
clear best choices. Every character for whom a unani-
mous action is in Pareto(c) approves those unanimous
actions.2

4. A compromise action is one for which (1) none of its
consenting characters have approved other actions; (2)
the action is better or safer for all consenting characters;
and (3) the action is in Pareto(c) for at least one con-
senting character. Every character who is a consenting
character to a compromise action or for whom a compro-
mise action is in Pareto(c) approves those compromise
actions.2

5. At this point, if a character has not approved any actions
then their best outcomes depend on other characters do-
ing suboptimal things, so they should reconsider their op-
tions. We now recalculate Pareto(c) for all characters,
but this time we consider only actions where c is a con-
senting character, instead of all actions like in Step 2.
Note that these new sets may change which actions are
unanimous and compromise actions.

6. Every character for whom a unanimous action is now in
Pareto(c) approves those unanimous actions.

7. Every character who is a consenting character to a com-
promise action or for whom a compromise action is now
in Pareto(c) approves those compromise actions.

8. Find one action that has received no approvals. Prune it,
and start over at Step 1. If no actions can be found to
remove, pruning is complete.

It is possible a character has no actions remaining after prun-
ing. It is also possible a character has many actions remain-
ing. This is deliberate. Our goal is not to decide on exactly
which actions characters should take, but only to remove ac-
tions that would not appear believable. Once non-believable
actions have been removed, it is up to the experience man-
ager of the narrative to decide what should happen based on
its goals for the story.

Returning to the example in Figure 3, initially
Pareto(Officer) consists only of the driver giving

2Note unanimous and compromise actions can be in the Pareto
set for characters other than the consenting characters. For exam-
ple, an armed and dangerous passenger prefers to wait for the traffic
stop to end before they attack the driver, even through the passen-
ger is not a consenting character for any of the actions between the
officer and driver. In other words, the passenger will not act be-
cause their best outcome is achieved by waiting for the officer and
driver to do things which eventually enable the optimal outcome
for the passenger.

their ID, because it is better for the officer; and conversely,
Pareto(Driver) consists only of being released with a
warning. The algorithm determines that no actions are
unanimous because each dominates the other for one of
its consenting characters. However, the give-ID action is
undominated for one consenting character, the officer, and
still leads to a utility increase for the other consenting
character, the driver, so it is marked as a compromise action
and retained while the release action is pruned.

If we imagine a version of the domain where giving
the ID has only the driver as a consenting character, then
giving the ID is no longer a compromise action. Because
Pareto(Driver) has no unanimous or compromise actions,
the algorithm recomputes Pareto(Driver) from only the
set of actions where the driver is a consenting character. The
release action is dropped from the driver’s consideration,
making the give-ID action undominated, so giving becomes
the new sole member of Pareto(Driver) and is marked
as unanimous. A similar recalculation of Pareto(Officer)
leads to the release action being marked as unanimous as
well. Both actions are retained.

Practical Considerations
Our definition of action dominance requires finding a plan
to show an action is better or proving no plan exists to show
an action is safer. In practice, when pruning a story graph,
we place two upper limits on this process. The first limits
how long a plan can be. The second limits how far past a
plan we can search to check whether an outcome has become
impossible. These limits can be tuned based on the problem
to find a balance between the rationality of characters and
the speed of pruning.

5 Traffic Stop Integration
The Traffic Stop police de-escalation training simulation, il-
lustrated in Figure 4, is the first deployment of our model
in practice. It features a scenario similar to the planning do-
main described in previous examples, with the driver and
passenger as NPCs. The player plays the role of a police of-
ficer who has pulled over a car for erratic driving and whose
objective is nominally to issue a citation to the driver. Com-
plications can arise such as the characters’ non-cooperation
or the existence of a protective order by the driver against an
unidentified party, who may or may not be the passenger.

The Traffic Stop software architecture is divided into two
subsystems: the environment and the experience manager.
The environment includes the components that display the
game world to the player, detect player interactions with
objects in the world, and manage low-level decomposi-
tions of high-level actions using the Camelot (Shirvani and
Ware 2020a) action framework. The experience manager is
responsible for the system’s intelligent decision-making—
namely, choosing the high-level actions for the NPCs—to
ensure that the system’s pedagogical goals are met. The pair-
ing of these two components is modular; our modification
to the system consisted of implementing a new experience
manager using our planning model.

Our design objectives centered around Traffic Stop’s origi-
nal purpose to help trainees practice resolving high-pressure



Figure 4: A screenshot from the player’s point of view dur-
ing a playthrough of Traffic Stop.

situations without unnecessary use of force: First, NPCs
should act believably. One of the inciting incidents for de-
veloping our Pareto-dominance-based model was that with-
out it, unduly aggressive character plans were produced. For
instance, if the passenger foresaw any way that their utility
could be lowered by the player, a plan would be produced
for them to attack the player at the beginning of the sce-
nario. Overprediction of danger has been cited as a major
factor in excessive police use of force (Marenin 2016); a de-
escalation training platform should not reinforce this pattern.

Second, players should be able to have an informative
experience in only a few playthroughs. Although some de-
escalation skills take extensive practice and our simulation
only complements rather than replaces training programs
for those skills, our focus is on enabling information-dense
short-term interventions. Our experience manager ensures
that players who follow best practices get good outcomes,
and players who violate best practices get bad outcomes.
Players can explore different decisions and receive a clear
illustration of the possible consequences of those decisions.

Experience Management
We used an experience management paradigm introduced
by Ware et al. (2022): The experience manager models the
playthrough as navigation of a precompiled story graph. The
story graph is constructed first by exploring the whole state
space for a planning problem to get a graph of all classically
legal plans, and then applying rules to prune the graph. One
of the first pruning steps is to remove NPC actions that are
not explained according to our model. This addresses our
design objective of character believability, as the remaining
actions are more aligned to the NPCs’ goals. Further prun-
ing steps choose between those actions in a way that is most
convenient to the design objective of matching player out-
comes to player choices.

The final story graph represents a policy where there is at
most one surviving NPC action for each state, so the experi-
ence manager’s decisions at runtime are predetermined:3 In

3Currently, a human operator passes commands between the
experience manager and environment. This is needed because cer-
tain actions involve verbal communication by the player and Traffic
Stop does not yet have a speech processing component that can ac-
curately map utterances to actions. The operator is trained to inter-

states where all NPC actions have been pruned, the experi-
ence manager waits for the player to act. In states with an
unpruned NPC action, the experience manager tries to exe-
cute that action. However, because the player and NPCs are
interacting in real time, the experience manager’s attempted
action may be interrupted by the player’s.

To prepare the final story graph, we first generated un-
pruned story graphs for several versions of a planning prob-
lem with differences in the initial state: The passenger could
have a gun or be unarmed; the driver could have an ac-
tive protective order against someone or not, which can be
revealed when the driver’s ID is looked up in the police
database; and the name on the protective order could be the
passenger’s name or a different name.

We pruned each story graph to remove unexplained NPC
actions using the definition of explanation presented in this
paper. We then combined the story graphs into one super-
posed story graph (Robertson and Young 2018) where a
story graph node can represent multiple possible worlds at
a time. For instance, at the beginning of the scenario, the ex-
perience manager leaves the existence and target of the pro-
tective order undecided. If the player starts by acquiring and
looking up the driver’s ID, at that moment the experience
manager determines whether the protective order exists and
chooses an arbitrary name to appear on the protective order.
If the player later acquires the passenger’s ID, at that mo-
ment the experience manager chooses the passenger’s name
as either the one on the protective order or a different name.

This approach gives the experience manager an additional
tool to ensure the player experiences an outcome that high-
lights any mistakes. For instance, suppose the player tries to
investigate whether the passenger is the person on the pro-
tective order, but the passenger refuses to provide their ID.
The best practice in this situation, as described to us by a
consulting officer, is to explain to the passenger why the ID
is being requested. If the player instead assumes the passen-
ger is a criminal and arrests them, the experience manager
can retroactively decide that the passenger was innocent, so
the player’s mistake will never be rewarded by luck.

To ensure appropriate endings, we identified a mapping
from situations to acceptable player actions, and pruned the
combined story graph to remove any paths where the player
would get a good ending after taking an unacceptable action,
or a bad ending after taking only acceptable actions. Finally,
to reach a policy of at most one NPC-only action per state,
we arbitrarily pruned NPC-only actions from states where
multiple remained.

We are investigating ways to do effective quality assur-
ance on large story graphs. In this case, our process com-
bines quality assurance with the construction of the story
graph itself by detecting and removing undesirable paths.

Study Procedure
We evaluated our experience manager in a human-subjects
study with volunteers from the University of Kentucky Po-

pret the player’s utterances and otherwise to follow the experience
manager policy deterministically, simulating a fully automated ex-
perience manager with an idealized speech processor.



lice Department.4 Six officers participated, each with be-
tween 8 and 35 years of policing experience. All officers
had prior traffic enforcement experience, and none had pre-
viously used the Traffic Stop simulation.

Each officer began their session by viewing a video ex-
plaining the purpose of the simulation, instructions on using
the virtual reality equipment and game controls, and safety
guidelines. The officer then played a tutorial to familiarize
them with game mechanics, followed by playing the main
scenario repeatedly, as many times as they desired. After
each playthrough, they were presented through the game in-
terface with feedback about what they did well or poorly.

Along with gameplay logs, we collected data in the form
of a survey given to participants after their last playthrough.
The survey included the Presence Questionnaire, introduced
by Witmer and Singer (1998) to measure a user’s sense of
immersion in a virtual environment. The survey also in-
cluded the custom set of questions in Figure 5, modified
from Ware et al. (2022), that measured other aspects of
the participant’s experience: how believable they found the
NPCs, how much agency they felt they had, and how valu-
able they felt the simulation was as a training tool. Finally,
the survey invited the participant to give optional freeform
comments.

Character Believability
• The virtual characters felt realistic.
• The virtual characters reacted to things they saw and

ignored things they did not see.
• The virtual characters tried to accomplish their

goals.
• The things the virtual characters did made no sense

to me. (N)

Agency
• My actions had a significant effect on the story.
• I understood the consequences of the choices I

made.
• The story was the same no matter what choices I

made. (N)

Training Effectiveness
• This simulation helped me feel more prepared for a

situation I might experience.
• Exercises like this are a bad way to train police of-

ficers. (N)
• I want more training exercises like this.

Figure 5: The Simulation Experience Questionnaire. Partic-
ipants were asked to rate each statement (bulleted) on a five-
point Likert scale. The items marked (N) are reverse-coded.
The category headers were not shown as part of the ques-
tionnaire and are included to show which questions were
grouped together to compute subscores.

4Our study procedure was approved by our institution’s IRB.

Survey Results
The Presence Questionnaire is scored by taking the average
of the participant’s Likert-scale responses from 1 to 7 for
each question; it also has subcategories whose scores can
be taken in a similar manner. Figure 6 shows the average of
all participants’ overall and subcategory scores, as well as
the scores for each individual participant. Note that each bar
represents the mean of responses to several questions. Partic-
ipants tended toward agreement with the presence questions,
with only one officer having an overall score and some sub-
category scores below the scale midpoint of 4.

We defined subcategories similarly for our simulation ex-
perience questionnaire: one for questions about believabil-
ity of character behavior, one for questions about the par-
ticipant’s agency to affect the story, and one for questions
about the value of the simulation as a training exercise. Fig-
ure 7 shows the scores for this questionnaire. The average
across all participants was above the scale midpoint of 3 for
both the overall and subcategory scores. Individual scores
were above the scale midpoint for a majority of participants,
except within the agency subcategory, suggesting that an
area for further improvement is to have the simulation more
clearly illustrate the relationship between the officer’s ac-
tions and the story outcome.

The participants’ freeform comments in the survey em-
phasized ways to improve the interface (e.g., “use a glove
instead of hand controllers”) or the realism of the scenario
(e.g., “include descriptors of suspects”).

Gameplay Results
There were endings, ranked from worst to best, that a partic-
ipant could achieve; a police chief NPC gave praise in good
endings, while bad endings included the player getting in-
jured, or the chief pointing out harms to civilians. For each
participant, Figure 8 shows the endings they achieved for
each playthrough chronologically. All participants achieved
the best ending at least once: One officer achieved the best
ending in every playthrough, another achieved the best end-
ing initially and later had a suboptimal playthrough (which
may be the result of exploring the simulation after already
mastering the ideal path), and the rest started with subop-
timal playthroughs and later achieved the best ending. The
Kendall rank correlation between playthrough number and
ending ranking is positive (0.42, p = 0.03).

This study provides preliminary evidence that our appli-
cation helps users become more skilled with repeated play,
and is received positively by those users.

6 Limitations
The main limitation of the planning model itself is its com-
putational intensity. Even with limits on the length of ex-
pected action sequences a character considers, it would be
impractical to call a planner using our model at runtime dur-
ing gameplay like more lightweight narrative planners (Por-
teous, Cavazza, and Charles 2010; Ware and Young 2015),
instead being restricted to offline generation. See Ware et al.
(2022) for a discussion of the scalability of offline methods.



Figure 6: Presence questionnaire score and subcategory scores.

Figure 7: Simulation experience questionnaire score and subcategory scores.

The limitations of our evaluation include its lack of con-
trols and its narrow participant pool. Although the survey
results look positive subjectively, further experiments would
be needed to establish whether the new Traffic Stop experi-
ence manager improves over other approaches, and whether
our planning model is a cause of those improvements. These
experiments should also include inexperienced officers and
should measure the longer-term impacts of the training. Fi-
nally, we have not yet evaluated our character model in a
more general context than the Traffic Stop application.

7 Conclusions
This paper introduced a narrative planning model where
characters reason like rational game-playing agents, pursu-
ing the best outcomes and avoiding the worst outcomes they
can, based on the actions they anticipate from other char-
acters. It is efficient enough for offline compilation of story
graphs to later be used by a game, while avoiding some of
the problematic character behaviors of simpler models. For
interactive narratives, the offline approach to character rea-
soning is complementary to offline approaches to narrative
mediation (Riedl and Young 2005), the process of ensuring
that unexpected player decisions will still lead to an experi-
ence matching the designer’s intent.

We showed how our model was used to develop a serious-

games application that, based on a small user study, is effec-
tive at teaching users how to interact with the virtual charac-
ters. Besides this anecdotal support, we are planning a larger,
controlled study of the model separate from the application,
similar to Shirvani, Farrell, and Ware (2018), that compares
stories generated by our model to stories generated by pre-
vious models in terms of character believability.

A Pareto-based model of character planning does not need
to be restricted to increasing or preventing decreases to
one utility function. Consider that a character’s utility func-
tion may embed multiple objectives—e.g., in the traffic stop
planning domain, the officer character gets utility based on
their own survival, their adherence to the law, other char-
acters’ survival, and the completion of the traffic stop. By
splitting these into multiple utility functions per character,
we could apply the same planning process for selecting ac-
tions from the Pareto front of the different utility functions.
This would allow us to simulate internal conflicts between
desires, personality traits, or social norms (Schroeder 1999).
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