Designing a Modular, Scalable Benchmark for Narrative
Experience Management

Molly Siler!, Stephen G. Ware!, Gage Birchmeier®', Mira Fisher®" and
Lasantha Senanayake®'

Narrative Intelligence Lab, Department of Computer Science, University of Kentucky, Lexington, KY, USA 40506

Abstract

We discuss the ongoing development of MICROTALES, a collection of elements that can be combined to generate
interactive narrative environments of varying size and complexity. MicROTALEs aims to fill a gap among existing
Al benchmarks by featuring active non-player characters, a wide variety of actions, and the possibility to soft-lock
the problem. Its purpose is to provide a clearly defined environment to compare different experience management
algorithms without enforcing any one definition of what makes a good story. We present design goals and
a sketch of an initial design, and invite community feedback to help make our benchmark reusable by other
narrative intelligence researchers.

1. Introduction

An experience manager is an agent that dynamically adapts a game environment to the player. We con-
sider experience managers in an interactive narrative that assume control of the non-player characters
(NPCs). Compared to a manually-authored interactive narrative, an experience-managed interactive
narrative can include vastly more branching paths without a proportional increase in designer effort.
However, it is challenging to make an experience manager replicate the kind of experience that a skilled
human author can craft—one that guides the player through a cohesive narrative with believable NPCs
to a satisfying end, while making the player feel they had a meaningful role in that narrative.

How do we test how well an experience manager meets this challenge? It is common to evaluate
an experience manager using a custom-built interactive narrative environment [1]. The practice of
evaluating with only one environment is understandable, as it is a time-consuming process to engineer
a game or even to repurpose one so it showcases the features of a new experience management
architecture. However, this practice limits the generalizability of results. We have identified a need for
more benchmarks with parameterized generation of new problem instances, similar to those commonly
used in other Al research areas like classical planning [2].

This paper proposes MICROTALES, a collection of elements that can be combined to generate interactive
narrative environments of varying size and complexity. MicROTALEs problems are highly modular,
with different elements becoming available only when certain extensions are enabled. For example, the
Monarchy extension adds castle locations, noble characters, a crown item, and an action for crowning a
monarch. When the Monarchy extension is enabled, these elements can be used in a problem.

Along with the story world and characters, a problem provides story goals for an experience manager
and character goals as directives for what the individual characters want. However, the experience
manager is not restricted in how it makes characters act, and evaluation metrics are deliberately left
open. We want MicROTALES to aid exploration of different theories about what makes a good story.

MicroTALEs was conceived based on our own lab’s research needs, but we hope to make it easily
reusable by other researchers. We are presenting it during its ongoing development with an interest in

15th Intelligent Narrative Technologies Workshop at the 2025 Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, November 11, 2025, Edmonton, AB, Canada

"These authors contributed equally.

& molly.siler@uky.edu (M. Siler); sgware@cs.uky.edu (S. G. Ware); gage.birchmeier@uky.edu (G. Birchmeier);
mira.fisher@uky.edu (M. Fisher); lasantha.senanayake@uky.edu (L. Senanayake)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:molly.siler@uky.edu
mailto:sgware@cs.uky.edu
mailto:gage.birchmeier@uky.edu
mailto:mira.fisher@uky.edu
mailto:lasantha.senanayake@uky.edu
https://creativecommons.org/licenses/by/4.0/deed.en

community feedback. The remainder of this paper discusses our objectives and presents a tentative
design along with some working examples.

2. Design Objectives

This section describes the desiderata that MiICROTALESs is meant to fulfill. As we discuss in Section 3,
there are existing Al benchmarks that share some of these traits, but none that reflect all of them.

Game-Like Storytelling Environment: MIcROTALES is designed to imitate a simple game environ-
ment where a player controls one character, and a human game master or an automated experience
manager controls the other characters and the environment. Our intention for MICROTALES is to reflect
the kinds of problems that an experience manager would need to solve interactively, meaning that
new solutions are generated during play to adapt to unexpected player actions. At the same time, the
problems will be versatile enough to benchmark offline planning approaches.

Action-Level Storytelling: Stories can be generated at many levels of granularity. The basic unit
of story content in MicROTALES is an action, which would typically correspond to a sentence of a
written story with a subject, verb, and possibly one or two objects. Early intelligent narrative systems
like Universe [3] and Facade [4] create stories one scene at a time, and an atomic piece of storytelling
content corresponds to roughly one paragraph of a written story. Systems based on text generation,
like AT Dungeon [5], generate stories on a token level. Action-level storytelling exists between these
two poles.

Scalable Along Several Dimensions: It should be possible to generate a wide variety of problems
of varying size and difficulty, from trivially easy to nearly impossible. MiICROTALEs can vary in the size
of the map, the number of characters, the number of items, the types of actions that are available, and
the number and complexity of goals that need to be achieved. The ability to generate a wide variety of
problems has several advantages. By generating problems of different sizes and with different features
turned on or off, we can make a controlled study of what makes experience management problems
easy or hard to solve. Having many problems to train on also encourages learning-based approaches to
generalize rather than overfitting to a few specific problems.

Active NPCs: One purpose of MicROTALEs is to fill a gap we perceive in the kinds of games available
to test computational storytelling approaches, namely story games with active non-player characters
(NPCs). Many story games, like the interactive fiction Zork [6] and its descendants, rely on the player
character to take most of the actions in the story. Actions by other characters are often short and direct
reactions to the player. An ideal solution to a MicCROTALES problem will feature NPCs taking actions
motivated by their goals, ideally in ways that are predictable or at least believable to the player, allowing
the player to plan around anticipated NPC actions.

Following Genre Tropes: While MicROTALES is meant to allow a wide variety of problems, it is also
attempting to follow the genre tropes of simple medieval computer role-playing games. This serves
two purposes. First, it allows players of an interactive MICROTALES game to leverage existing genre
knowledge and minimize the amount of onboarding required to understand the game’s rules. Second,
MicroTALEs is intentionally attempting to mimic a spread of “naturally occurring” problems from
human-designed interactive narratives, complete with their irregularities. MICROTALES is not meant
to represent every conceivable situation or action. It is not meant to be the only type of benchmark
problem that experience managers should be tested on. We are attempting to add to, not restrict, the
variety of storytelling problems available for testing.

Wide Variety of Actions: Many planning and reinforcement learning benchmark problems have a
limited variety of action types available. For example, the classic Blocks World planning problem [7] has
only one type of action—moving a block onto another block or onto the table. While it might have a
large number of possible actions when we consider all blocks, it has only one type of action. Similarly,
the Cart Pole reinforcement learning problem [8] has only two actions: push the cart left or right. The
action can vary in the force applied, but still there is only one or two types of action. We find that
storytelling problems tend to involve a large number of action types. MicRoTALEs has many types of
actions with different kinds of preconditions and effects.

Soft Locks are Possible: A soft lock means that a solvable problem has been put into a state from
which no solutions are possible. The possibility to soft-lock a game or puzzle makes it challenging
because solvers must plan ahead. Solvers that rely on performing random actions—like Monte Carlo
random rollouts or random exploration in MDP solvers—will need to account for soft locks. Many of
the benchmark problems used to test classical planning algorithms do not create the possibility for
soft locks. Stories often feature irreversible actions that require careful planning, which is why the
possibility of soft locks is allowed, and even preferable, in MicROTALEs.

Deterministic Actions: Actions in MICROTALES are deterministic, i.e., the exact resulting state
is known before the action is executed. Determinism allows a wide variety of search and planning
techniques to be applied. Real-world problems are not deterministic, but MicCROTALEs is not designed to
simulate a real-world problem; it is designed to simulate a game in a virtual environment where the
experience manager has full control over the virtual world. While a MicROTALEs problem in isolation is
defined deterministically, the larger problem of experience management in an interactive game may be
viewed as nondeterministic since the player may take unexpected actions.

Complex Multi-Agent Interactions: Most problems will feature more than one character. Many
existing Al benchmarks feature only a single agent or assume agents are strictly cooperative or compet-
itive. In MicrOTALEs, each character has their own goals, and they should aid or thwart one another to
the extent that their goals align or diverge. One of the central challenges of storytelling is ensuring that
each character behaves realistically while maintaining a story’s central structure. MicROTALES provides
an environment to compare emergent storytelling via multi-agent systems to centralized storytelling
via planning.

No Model of Storytelling Enforced: MicrROTALES enables the study of what makes an interactive
narrative believable, interesting, and fun. It tries to avoid enforcing any particular model of storytelling
in its rules. Action preconditions are meant to be minimal requirements on when an action would be
“physically possible” in the virtual world. For example, one character can only give an item to another
if they are in the same location and if the giver has the item. The preconditions do not require that
the receiver wants the item; it is up to a model of storytelling to determine whether this action makes
sense. To study a model of good storytelling, it must be possible to generate bad stories. Many Al
benchmark problems define success as reaching a clear goal via a shortest or lowest cost path, but
many MicROTALEs problems will have “solutions” that are bad stories—that is, sequences of actions that
achieve the story goals but are made of actions that are not believable, interesting, or fun. The quality
of a MicrOTALES solution should not be judged solely on whether it achieves goals or on the number
of actions it contains. A solution must be evaluated as a story, but MicrRoTALES does not define what
makes a good story. In other words, MicrRoTALEs defines a set of objects, actions, and goals so that two
researchers can be said to be working in the same domain, but it does not define success in that domain.

3. Related Work

Riedl and Bulitko [9] attribute the start of experience management to Bates [10], who proposed that
interactive drama be framed adversarially—the aesthetic goals for the player’s experience versus
anything the player might do that derails those goals—suggesting a computational model similar to a
chess algorithm. The term “experience management” itself was coined by Riedl et al. [11], who proposed
that techniques for dramatic systems could also apply to intelligent training and tutoring systems. Riedl
et al’s approach models the future trajectory of the narrative as a plan structure, adapting to player
derailments via plan repair and replanning. Balancing this preservation of designer goals with player
agency has been identified as a major challenge of interactive narrative as a whole [12]. Our project is
motivated in part by evaluating our experience managers’ progress on this challenge.

Another challenge is the fact that the choices most convenient for an experience manager’s goals do
not always align with the choices that make sense for the NPCs involved [13]. Riedl and Young [14]
proposed narrative planning, which uses a single agent to plan for all characters but constrains the
actions that can be selected for the plan based on character believability. Later research has refined plan-
based models to reason about more features of plot (e.g., foreshadowing and suspense) and character
(e.g., social dynamics) [15]. Our characterization of experience management is most heavily influenced
by plan-based approaches.

Ramirez et al. [16] noted that to date, there had been few empirical evaluations of autonomous
experience managers. More recently, Mori et al. [1] observe that many experience management
approaches are tested only in custom-built environments. There have been recent efforts, including
those Mori et al. themselves, Thue and Bulitko [17], and Clerc et al. [18] to develop a unified framework
for comparison of experience managers, but so far none has achieved widespread community adoption.
Rather than trying to encompass experience management as a whole, we accept a degree of specificity
while still allowing a diversity of algorithms to be exposed to a variety of situations.

One of our inspirations is the International Planning Competition [2], in which Al planners developed
by the community on a common set of problems in a standardized format. Another is Gymnasium
[8], which provides an API to a collection of Markov decision process (MDP) environments for testing
reinforcement learning algorithms. Many benchmarks within these have relevant features like action-
level decision-making and scalability, but when benchmarks are game-like they typically evaluate only
decision-making from a player perspective, and they are built around rigid metrics for success like solve
time or cumulative reward whereas we are interested in story-centric evaluation criteria.

TextWorld [19] provides a generator for Zork-style [6] text-based adventure games and an interface
for Al agents to play them; however, the game world lacks active NPCs and rather only reacts to player
actions. Conversely, our previous works [20, 21] emphasize online experience management with active
NPCs, but each one uses a single predesigned world rather than supporting scalable problem generation.

4. Design Description

This section describes the design of MiCROTALES, centered around an example. A fuller set of definitions
is in Appendix A. As we discuss in Section 5, the framework is a work-in-progress and we are interested
in incorporating community feedback from the workshop.

At a low level, a running MicROTALES environment is a deterministic state transition system. At any
given time, the story world is in a state, which is defined by a complete assignment of values to a set of
variables. There is a set of actions that, when taken, determine the world’s next state. An action has
preconditions that limit when it can occur, defined by a proposition over the variables. An action also
has effects that take place when it occurs, defined in terms of new value assignments to variables.

This generic framework does not assume any particular implementation. We want it to be possible
to implement MicROTALEs in everything from the Planning Domain Definition Language (PDDL) [22],
used to define classical planning problems, to a Gymnasium environment [8], used to define an MDP
for reinforcement learning, to even non-digital implementations, like a board game.

- RlaEIIN HOOD

(£la]

g g gy g

Figure 1: A mockup of the Robin Hood problem in a graphical interface (sprite credit: 16-Bit Fantasy collection
by Oryx Design Lab).

Our running example, illustrated visually in Figure 1, is based on the tale of Robin Hood. Figure 2
shows a problem definition in YAML, the primary input format we are considering; we will explain its
components throughout this section. The sets of variables and actions are not specified directly in a
problem file, but rather implied by higher-level elements. Among other components, a problem includes
a map of locations, their types, and the paths between them, as well as a set of characters and their types.
For example, in Figure 2, Sherwood is a location of type forest with paths to all other locations, and
Robin is a character of type bandit.

Most variables are associated with a character, such as the character’s current location and held items.
Most actions are also associated with a character; the basic actions available in every MICROTALES
problem are to walk between locations that have a path, give an item to or trade items with another
character, and drop or pickup an item at the current location. For example, the Figure 2 problem implies
a variable location(Robin) an action walk(Robin, Abbey) with precondition location(Robin) =
Sherwood and effect location(Robin) = Abbey. The problem specification does not include an
explicit notion of player character—this is specific to the use case—but typically, an interactive narrative
will assign a player to choose actions for one character while an experience manager will control the
other characters as NPCs.

A core feature of MicROTALEsS is the ability to specify any number of extensions in a problem. An
extension is a group of related problem elements that become available when an extension is included
in a problem. Extensions are designed to allow additional types of actions in a problem, but doing so
means enabling the location and character types that would make those actions possible and relevant.

For example, in the Figure 2 problem definition, the inclusion of the Theft extension implicitly adds
the action take to the list of available actions, allowing characters with a Sword item to take an item
from another character. Characters of the bandit type have the special ability to bypass the Sword
requirement and take at any time. The bandit character type and Sword item are illegal in a default
MicroTALEs problem and specifically made legal by the Theft extension, as their relationship to the
take action is what gives them their unique functionality. Similarly, the problem can include chapel
locations where the marry action can occur because the Marriage extension is enabled, and so on.

The initial state of the world is another largely implicit element except where overridden in the
problem definition. In Figure 2, Robin’s starting location is set to Sherwood explicitly, but John’s,
Marian’s, and the Sheriff’s do not need to be specified because the noble and knight types default to the
first castle in the locations list, in this case Nottingham, when one is available.

Items in this case are also created from defaults; in this case, as a knight the Sheriff starts with a
Sword and as nobles John and Marian start with Coins. Items are not first-class elements in the way that
characters and locations are; instead, they exist as variable values such as le ft(John) = Coin denoting
a Coin existing in John’s left hand. If Robin takes the Coin from John, the effect is le ft(John) = Null
and le ft(Robin) = Coin, or right(Robin) = Coin if Robin’s left hand is full. The advantage of this

name: "Robin Hood"
version: 1.0

extensions:

- Crime # Adds jail; lawful goal; assault and theft now crimes
- Marriage # Adds chapel; wed goal; marry action

- Monarchy # Adds castle and Crown; ruling goal; enthrone action
- Theft # Adds bandit, Coin, and Sword; allows take action

- Violence # Adds knight and Sword; avenged goal; attack action
locations:

- Sherwood : forest # Sherwood Forest

- Nottingham : castle # Nottingham Castle

- Jail : jail # The Jail

- Abbey : chapel # Fountains Abbey

paths: # Sherwood Forest connects all locations
- [Sherwood, Nottingham]

- [Sherwood, Jail]

- [Sherwood, Abbey]

characters:
Robin : bandit # Robin Hood is a bandit
John : noble # Prince John is a noble
Sheriff : knight # The Sheriff of Nottingham is a knight
Marian : noble # Maid Marian is a noble

initial: # Only need to list values if they are not defaults

- [location, Robin, Sherwood] # Robin starts in Sherwood Forest
- [right, John, Crown] # Prince John starts with a crown
goals:

- [Robin, rich, Robin]

- [Robin, wed, Robin, Marian]
- [John, ruling, John]

- [John, wed, John, Marian]

- [John, avenged, John]

- [Sheriff, ruling, John]

- [Sheriff, lawful]

- [Marian, ruling, Marian]

- [wed, Robin, Marian]

Robin wants coins

Robin wants to marry Marian

John wants to be or marry the monarch

John wants to marry Marian

John wants his enemies dead

The Sheriff wants John to be or marry the monarch
The Sheriff wants no criminals

Marian wants to be or marry the monarch

H o H H H OH H B

Story goal: Robin marries Marian

Figure 2: An example MicROTALEs problem in YAML format.

scheme is compatibility with an implementation that must declare a finite set of objects at the beginning,
such as a PDDL planning domain; the items do not need to have their own individual identities and can
be “created” or “destroyed” at will, such as by crafting actions.

A component of the problem definition we have not yet discussed is goals. Unlike the other compo-
nents, goals do not modify states, variables, or actions. Instead, they suggest objectives the individual
characters should try to achieve, in the case of character goals, or that the story overall should try to
achieve, in the case of story goals. A goal is declared with these components: the character who has the
goal (omitted for story goals); a goal type; and a list of arguments.

For example, in Figure 2, the first line of the goals list declares that Robin has the goal rich(Robin).
The rich goal type takes a character as a parameter—in this case, Robin himself—and states that the
goal-possessing character wants the parameter character to have Coins. Meanwhile, the last line of
the goals list declares a story goal of wed(Robin, Marian) giving the experience manager itself an
objective—namely, a wed goal is fulfilled by having the parameter characters be each other’s spouse.
Like character and location types, most goal types are enabled by extensions, such as wed having the
Marriage extension as a prerequisite as it could not be achieved without Marriage-specific actions.

MicroTaLEs does not define the relative importance of one goal to another, and when a goal can be
achieved in multiple ways, it only defines ordinal preferences. For example, if a character has both rich

and wed goals, MICROTALES does not specify whether it is more important to that character to have
Coins or marriage; this is up to the experience manager. Similarly, for rich, a character would prefer to
have two Coins over one Coin, but it is not necessarily twice as good to have two Coins than it is to
have one. Again, this is left up to the experience manager.

MicroTALEs tries to avoid imposing any particular model of what makes a good story. Some good
stories may not achieve story goals, and stories that achieve story goals are not necessarily good stories.
If goals can be ignored, why define them at all? First, MicROTALES is meant to study the challenges of
storytelling. Goals provide constraints that make planning a story challenging because the storyteller
needs to look ahead to reason about what is and is not possible when deciding what actions to take.
Second, in an interactive setting, goals are what will be communicated to players about what the
characters want. Stories are meant to involve multiple active characters, so anticipating how non-player
characters will act requires information about what they want.

4.1. Example Stories

Here are some example stories that could result from the Figure 2 problem. Recall that the story
goal is for Robin Hood and Maid Marian to get married. We assume this problem is presented as an
experience-managed interactive game where the player controls Robin Hood.

walk (Robin, Nottingham) # Robin goes to Nottingham Castle.
take(Robin, Coin, John) # Robin is rich, so he wants coins.
attack(Sheriff, Robin) # The Sheriff drops Robin’s health to "hurt".
attack(Sheriff, Robin) # The Sheriff drops Robin’s health to "dead".

This is a simple but unsuccessful story. Robin robs Prince John, but the Sheriff of Nottingham executes
Robin for his crimes. This example does not achieve the story goal and in fact soft-locks the problem,
but if the problem is presented as an interactive puzzle it might be the outcome of a reasonable attempt
by the player to achieve Robin’s goals. Suppose the player tries a different approach.

walk (Robin, Nottingham)
take(Robin, Crown, John)
enthrone (Robin)
arrest(Sheriff, Robin, Jail)
walk(Marian, Sherwood)

Robin goes to Nottingham Castle.
Robins steals John’s crown.

Robin is crowned king.

Lawful Sheriff throws Robin in jail.
Marian on her way to release Robin.
release(Marian, Jail)

walk (Robin, Jail, Sherwood)
walk (Robin, Abbey)
walk(Marian, Abbey)
marry(Robin, Marian)

Marian unlocks the jail.

Robin on his way to marry Marian.
Robin goes to the chapel.

Marian goes to the chapel.

H O H OH OH OH K R

Marian becomes queen by marriage.

This story is more interesting. Robin steals the crown and becomes king. The experience manager is
faced with two possible responses from the Sheriff: attack like in the previous story, or arrest Robin
and move him to the jail. Killing Robin would end the story before the goal is achieved, but arresting
him leaves it open for a happy ending later. Robin can’t do anything from the jail, but Marian comes to
free him. From here, Marian can marry Robin to satisfy her ruling goal, which also satisfies the story
goal. We consider this story more interesting because non-player characters take an active role.

While this makes a plausible story, it may not work when presented as a puzzle, since the player
might wonder why Robin was allowed to take several actions in a row without any response from
the Sheriff. Next, we will consider a story that enforces strict turn-taking, always allowing one player
action after one NPC action.

enthrone(John, Nottingham) # John is crowned king.
The player chooses to wait, passing their turn.

walk(John, Sherwood)
take(Robin, Coin, John)
walk(Marian, Sherwood)
take(Robin, Crown, John)
walk(John, Abbey)

walk (Robin, Nottingham)
walk(Marian, Abbey)
enthrone (Robin)
take(Sheriff, Crown, Robin)
walk (Robin, Sherwood)
walk (Sheriff, Sherwood)
walk (Robin, Abbey)

walk (John, Sherwood)
marry(Robin, Marian)

John on his way to marry Marian.
Robin steals John’s money.

Marian on her way to marry John.
Robin steals John’s crown.

John on his way to marry Marian.
Robin on his way to be crowned.
Marian on her way to marry John.
Robin is crowned king.

Sheriff steals Robin’s crown.
Robin on his way to marry Marian.
Sheriff on his way to John.

Robin on his way to marry Marian.
John on his way to the Sheriff.
Marian becomes queen by marriage.

H O H HF H H OH OH OH O B O HH

John starts by achieving his ambition to become king. He and Marian then set off in the direction
of Fountains Abbey for their wedding. On the way, John gets robbed by Robin Hood. The player
waiting for John to pass by is a prime example of a player anticipating active NPCs. Robin then goes to
Nottingham Castle and crowns himself king before the wedding can take place. The Sheriff takes the
crown from Robin and goes to Sherwood Forest hoping to give the crown to John. Robin makes his
way to Fountains Abbey and marries Marian, achieving the story goal.

In this example, we assume characters only witness actions that occur in their location (except
enthrone, which gets announced to everyone throughout the kingdom). The Sheriff is not aware
of Robin’s crimes, since he was not in Sherwood Forest during the robbery. This model of limited
observability is not required. MicROTALES does not model character beliefs; that is left to the experience
manager, which is free to use this or any other model. For this problem, we think it makes the characters
seem more realistic, and it adds a new dimension to the puzzle by encouraging Robin to avoid witnesses.

Given the Sheriff does not know about Robin’s crimes, it may seem odd that he would take the crown.
The Sheriff thinks he is stealing, which makes him a criminal and goes against his lawful goal which
calls for minimizing criminals who walk free. The Sheriff takes the crown because he hopes to return it
to John so that John can again take the throne. After returning the crown, the Sheriff plans to arrest
himself, satisfying all his goals, though the story ends before he can complete his plan. Does it make
sense for the Sheriff to arrest himself? This is up to the experience manager.

Notice also how the Sheriff and John meet in Sherwood Forest. According to our earlier assumptions
about belief, the Sheriff saw John leave for the forest, but did not see John continue to the Abbey, so
the Sheriff wrongly believes John is in the forest. John did not see the Sheriff go to Sherwood, so John
wrongly believes the Sheriff is at Nottingham. Luckily, these two meet by chance in the forest despite
their wrong beliefs thanks to some coordination by the experience manager.

5. Discussion Points

Our intention in presenting this early-stage work to the Intelligent Narrative Technologies community
is to elicit discussion on how we can make the final benchmark relevant to a sufficient breadth of
experience management approaches and reusable for other narrative Al researchers. The following are
some topics that we are especially interested in presenting for feedback.

One point of discussion is the appropriateness to the target audience. The design commitments of
MicroTALEs preclude its relevance to certain types of narrative generation and experience management:
Some experience management approaches focus on tailoring a more reactive game environment to
player preferences [23], contrasting with our emphasis on active NPCs. Systems emphasizing highly
open-ended story generation with natural language [?] may find the predetermined action space
too constraining. Storylet-based systems [24] are potentially but not necessarily compatible with
our framework, as they are designed to assemble narratives on a higher level than action. Given

our assumptions of multi-character storytelling within constrained action-based game mechanics, we
nonetheless hope to make our benchmark accessible to a diversity of approaches.

A design challenge we have faced is the tension between the objective to avoid enforcing a model
of storytelling, and the need to articulate character goals. Although they do not appear in action
preconditions and in theory can be ignored at an experience manager’s convenience, there are some
variables in our state models that represent social rather than physical properties. For problem, in order
to define the avenged character goal, which says that a character wishes to harm their enemies, we
needed to introduce a relationship variable that tracks friendship and enmity and an explicit definition
of what causes those relationships to change. We are looking to find the right balance between defining
benchmarks that can clearly express social goals, and ensuring that different narrative approaches can
override these definitions with their own models of phenomena like interpersonal relationships [25],
personality and affect [26], and social norms [27].

A notable exclusion from our design so far is actions that exist solely for the purpose of communication
between characters. Fully open-ended dialog is out of our scope; it would make the action space vast
or infinite and sometimes trivialize the situations we want to study where players and experience
managers must infer each other’s intentions from their decisions [28]. We are considering whether
to include possible communication approaches ranging from a simple “ping”, e.g., “[character1] tells
[character2] about [entity]”, to a more precise set of speech acts.

6. Future Work

Our next step after this workshop will be to leverage community discussions to reach a stable version
of MicroTALES. We will then create tools implementing the framework. One tool will be a procedural
generator that can create MicROTALES problems scaled to a desired number of locations, characters,
and extensions. Others will include an API for running a generated problem with arbitrary player
and experience manager agents; sample implementations of random and human-controllable agents
as a template for implementing new agents; and a graphical interface to facilitate experiments with
human participants, similar to Figure 1. Our latest work will be available on the project webpage at
http://cs.uky.edu/~sgware/projects/microtales/.

In the longer term, we will use our benchmark to study story generation and experience management
approaches from a variety of angles. In offline benchmarking, we can compare the scalability of narrative
planning algorithms and heuristics by varying the size and complexity of problems. In interactive
experiments with human participants, we can change the game over multiple within-subjects trials so
a player reasons about new situations instead of memorized ones. We will use these experiments to
investigate what makes an experience manager effective at balancing properties like cohesive story
structure, achievement of story goals, player agency, and character believability.

Acknowledgments

This material is based upon work supported by the U.S. National Science Foundation under Grant
No. 2145153 and the U.S. Army Research Office under Grant No. W911NF-24-1-0195. Any opinions,
findings, conclusions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation or the Army Research Office.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

http://cs.uky.edu/~sgware/projects/microtales/

References

(1]

[10]

[11]

G. Mori, D. Thue, S. Schiffel, EM-Glue: A platform for decoupling experience managers and
environments, in: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 18, 2022, pp. 266-274.

A. Taitler, R. Alford,]J. Espasa, G. Behnke, D. Fiser, M. Gimelfarb, F. Pommerening, S. Sanner,
E. Scala, D. Schreiber, J. Segovia-Aguas, J. Seipp, The 2023 International Planning Competition, Al
Magazine 45 (2024) 280—-296.

M. Lebowitz, Story-telling as planning and learning, Poetics 14 (1985) 483-502.

M. Mateas, A. Stern, Structuring content in the Facade interactive drama architecture, in: AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 1, 2005.

N. Walton, Al Dungeon, https://aidungeon.com/, 2019.

Infocom, Zork I: The Great Underground Empire, 1980.

J. Slaney, S. Thiébaux, Blocks World revisited, Artificial Intelligence 125 (2001) 119-153.

M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D. Cola, T. Deleu, M. Gouléo, A. Kallinteris,
M. Krimmel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, H. Tan, O. G. Younis,
Gymnasium: A standard interface for reinforcement learning environments, 2024. URL: https:
//arxiv.org/abs/2407.17032. arXiv:2407.17032.

M. O. Riedl, V. Bulitko, Interactive narrative: An intelligent systems approach, AI Magazine 34
(2013) 67-77.

J. Bates, Virtual reality, art, and entertainment, Presence: Teleoperators & Virtual Environments 1
(1992) 133-138.

M. O. Riedl, A. Stern, D. Dini, J. Alderman, Dynamic experience management in virtual worlds
for entertainment, education, and training, International Transactions on Systems Science and
Applications 4 (2008) 23-42.

E. W. Adams, Interactive narratives revisited: Ten years of research, in: Games Developers
Conference, 2005.

M. Mateas, A. Stern, Towards integrating plot and character for interactive drama, in: Socially
Intelligent Agents: Creating Relationships with Computers and Robots, Springer, 2002, pp. 221-228.
M. O. Ried], R. M. Young, Narrative planning: Balancing plot and character, Journal of Artificial
Intelligence Research 39 (2010) 217-268.

R. M. Young, S. G. Ware, B. A. Cassell, J. Robertson, Plans and planning in narrative generation: a
review of plan-based approaches to the generation of story, discourse and interactivity in narratives,
Sprache und Datenverarbeitung, 37 (2013) 41-64.

A. Ramirez, V. Bulitko, M. Spetch, Evaluating planning-based experience managers for agency
and fun in text-based interactive narrative, in: AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 9, 2013, pp. 65-71.

D. Thue, V. Bulitko, Toward a unified understanding of experience management, in: AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 14, 2018, pp.
130-136.

[18]]. Clerc, D. Lourdeaux, M. Sallak, J. Barbier, M. Ravaine, Modeling interactive narrative systems: A

[22]

formal approach, in: International Workshop on Computational Models of Narrative, volume 8,
2025.

M.-A. Cété, A. Kadar, X. Yuan, Q. Kybartas, T. Barnes, E. Fine, J. Moore, M. Hausknecht, L. El Asri,
M. Adada, W. Tay, A. Trischler, TextWorld: A learning environment for text-based games, in:
Computer Games, Springer, 2019, pp. 41-75.

M. Siler, S. G. Ware, Structure, agency, and intent: Preliminary data collection, in: Intelligent
Narrative Technologies Workshop, volume 14, 2024.

M. Fisher, M. Siler, S. G. Ware, Structure, agency, and improvisation in human-led digital interac-
tive narrative exercises, in: AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 21, 2025.

M. Ghallab, A. Howe, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL—the Planning

https://aidungeon.com/
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032
http://arxiv.org/abs/2407.17032

Domain Definition Language, 1998.

[23] K. K. Yu, M. Guzdial, N. R. Sturtevant, Evaluating the effects of Al directors for quest selection,
in: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 20,
2024, pp. 245-252.

[24] M. Kreminski, N. Wardrip-Fruin, Sketching a map of the storylets design space, in: International
Conference on Interactive Digital Storytelling, volume 11, 2018, pp. 160-164.

[25] J. Porteous, F. Charles, M. Cavazza, NetworkING: Using character relationships for interactive
narrative generation, in: International Conference on Autonomous Agents and Multi-Agent
Systems, volume 12, 2013, pp. 595-602.

[26] A. Shirvani, S. G. Ware, L.]. Baker, Personality and emotion in strong-story narrative planning,
IEEE Transactions on Games 15 (2022) 669-682.

[27] R. Pérez y Pérez, Representing social common-sense knowledge in MEXICA, in: T. Veal, F. A.
Cardoso (Eds.), Computational Creativity: The Philosophy and Engineering of Autonomously
Creative Systems, Springer, 2019, pp. 255-274.

[28] R. Cardona-Rivera, R. Young, Symbolic plan recognition in interactive narrative environments, in:
Intelligent Narrative Technologies Workshop, volume 8, 2015, pp. 16-22.

A. Draft Definitions

This appendix is a tentative listing of the full collection of MicROTALEs elements; refer back to Section
4 for how they appear in a problem file and how they are used to define gameplay. This version of
the definitions is informal and compact to fit the page limits. A more detailed version can be found
at https://github.com/sgware/microtales-doc, which will be updated as the project is developed. As
shorthand, in definitions of parameterized elements—actions, goals, and variables—assume parameters
starting with c are characters, 4 are item constants, and [are locations.

A.1. Extensions

Table 1 shows the names of the MicroTALES extensions and the actions, variables, location types,
character types, and goals introduced by each. Some elements are enabled by more than one extension.

Table 1: List of MICROTALES extensions.

extension enables...

Alchemy laboratory locations, Flower items; brew actions

Commerce market locations; merchant characters; Coin items; rich goals; sell ac-
tions

Crafting workshop locations; Ore items; cra ft actions

Crime jail locations; knight characters; criminal variables; Coin items;
lawless and law ful goals; arrest, jailbreak, and release actions

Enchantment noble and sorcerer characters; CharmPotion items; charm actions

Forgiveness chapel locations; cleric characters; forgive and repent actions

Healing cleric and sorcerer characters; HealPotion items; heal actions

Marriage chapel locations; spouse variables; Flower items; wed goals; marry
actions

Monarchy castle locations; noble characters; monarch variables; Crown items;
ruling goals; enthrone actions

Sickness sorcerer characters; health variables; CursePotion items; harmed and

unharmed goals; curse, die, loot, recover and sicken actions

https://github.com/sgware/microtales-doc

Stealth camp locations; bandit and sorcerer characters; wvistble variables;
HidePotion items; hide actions

Teleportation | sorcerer characters; TeleportPotion items; teleport actions
Theft bandit characters; Coin and Sword items; rich goals; take actions
Undead graveyard locations; cleric and sorcerer characters; BanishPotion

and RaisePotion items; banish and curse, raise, and rise actions

Violence knight characters; health variables; Sword items; harmed and
unharmed goals; attack, die, loot, and recover actions

A.2. Item Constants

MicroTALEs elements cannot be created or destroyed, but items are not first-class elements. Rather,
they are a group of constants, special values that can be assigned to some variables. Each character has
left and right hand variables, and the values that can be assigned are the item constants or Null to
represent holding nothing. This means each character can hold zero to two items.

Table 2 lists the item constants along with a summary of associated uses. Items listed as “potion”
in the table can be created by brew, and “metal” by cra ft. See Section A.7 for full details about how
actions interact with items. All items have extensions as prerequisites; refer back to Section A.1.

Table 2: List of M1CROTALES items.

item constant description

BanishPotion Potion. Used by banish.

CharmPotion Potion. Used by charm.

Coin Metal. Creatable by sell. Desired by rich goal.
Crown Metal. Used by enthrone.
CursePotion Potion. Used by curse.

Flower Creatable by grow. Used by brew.
HealPotion Potion. Used by heal.

HidePotion Potion. Used by hide.

Ore Metal.

RaisePotion Potion. Used by raise.

Sword Metal. Used by arrest, attack, and take.
TeleportPotion Potion. Used by teleport.

A.3. Location Types

MicroTALEs problems take place on a map made of one or more locations. A location has a unique
name and a type. A problem must define at least one location, and how locations are connected via
paths. Paths are symmetric and are used to determine where characters can walk.

Table 3 describes each location type. The cave, crossroads, forest, and village types can be
used in any problem; the rest are enabled by extensions as listed in Section A.1. Locations typically
have actions associated with them; these are elaborated in the Section A.7 action definitions.

Table 3: List of MicroTALEs location types.

location type | description

camp Used to hide. 1-2 paths.

castle Used to enthrone. 1-4 paths.

cave Used to drop and pickup. Starts with ore by default. 1-2 paths.
chapel Used to repent and marry. 1-3 paths.

crossroads Used to drop and pickup. 2—4 paths.

forest Used to drop, pickup, and grow. 0-4 paths.

graveyard Used to raise and rise. 0-2 paths.

jail Used to arrest, jailbreak, and release. Has locked variable. Exactly 1 path.
laboratory Used to brew. 1-2 paths.

market Used to sell. 1-4 paths.

village Used to drop and pickup. 0-4 paths.

workshop Used to craft. 1-2 paths.

A.4. Character Types

A character has a unique name and a type. Table 4 defines the character types. Default locations
initialize location(c) to the first defined location of that type. Default items initialize le ft(c) to that
item constant. Some character types have special abilities that override the action preconditions in
Section A.7. The peasant is available in all problems; the rest come from extensions in Section A.1.

Table 4: List of MicroTALEs character types.
character | description

type

bandit Starts at camp or crossroads by default. Can take without Sword and hide
without HidePotion.

cleric Starts at chapel by default. Can heal or banish without potions. Can forgive.
avenged goal forbidden.

knight Starts at camp or crossroads with Sword by default. Can attack without Sword.

merchant | Starts at market or crossroads with Coin by default. Can’t sell. liked goal
forbidden.

noble Starts at castle or chapel with Coin by default. Can charm without
CharmPotion.

peasant | Startsatvillage or workshop by default.

sorcerer | Starts at laboratory or graveyard by default. Can brew without laboratory.

A.5. Variables

A variable is identified by a name followed by an ordered list of arguments. Table 5 lists these variables.
It describes the parameter types, the values that can be assigned to the variable, and default initial value.
If the default value is an item constant that requires an extension and the problem does not enable that
extension, the default value is Null instead. Some character definitions also override default values.
Variables are used to define the preconditions and effects of actions, as well as goal fulfillment. More
details are in the definitions for those elements. The item, left, location, relationship, and right
variables exist in all problems; see Section A.1 for the extensions that enable the others.

Table 5: List of MicrROTALES variables.

variable description

criminal(c) maps character to Boolean, default False

health(c) maps character to Healthy (default), Hurt, Dead, or Ghost

item(l) maps a cave, crossroads, forest, or village to item, default Null
left(c) maps character to item, default Null

location(c) maps character to location, default by character type

locked(l) maps a jail to Boolean, default False

monarch() single character, default Null

relationship(cl, c2) | mapstwo characters (asymmetric) to Friend, Null (default), or Enemy

right(c) maps character to item, default Null
spouse(c) maps character to another character (symmetric)
visible(c) maps character to Boolean, default True

A.6. Goals

Table 6 defines the possible goals. The first column is the goal with name and arguments. The second
column describes the goal’s objective. The avenged, at, disliked, liked, and obliged goals may be
added to any problem; the others come from extensions.

There are additional goals that always apply implicitly. First, if Sickness or Violence is enabled,
characters c prefer health(c) = Healthy over Hurt, Hurt over Dead, and Ghost over Dead. Second,
if Undead is enabled, each ¢ has a goal that behaves as avenged(c) when health(c) = Ghost.

Table 6: List of MicROTALEs goals.

goal description

at(c,l) achieve location(c) =1

avenged(c) minimize number of ¢ such that relationship(c,¢’) = Enemy and
health(c’) # Dead

disliked(c) maximize number of ¢ such that relationship(c’,c) = Enemy

harmed(c) achieve health(c) # Healthy

law ful() minimize number of ¢ such that criminal(c), health(c) = Healthy or Hurt,
and loc(c) isnot a jail

lawless() maximize number of ¢ such that criminal(c), health(c) = Healthy or Hurt,
and loc(c) isnota jail

liked(c) maximize number of ¢’ such that relationship(c’,c¢) = Friend

obliged(c) maximize number of ¢’ such that relationship(c,¢/’) = Friend and
health(c") # Dead

rich(c) maximize Coin values among left(c) and right(c)

ruling(c) achieve monarch() = ¢ or monarch() = spouse(c)

unharmed(c) | achieve health(c) = Healthy

wed(cl, c2) achieve spouse(cl) = 2

A.7. Actions

Actions have a name and arguments. Table 7 lists the actions and their preconditions and effects. We
use shorthands as follows.

“Must” implies a precondition; other statements imply effects unless otherwise noted. For a character
¢ to have an item i means left(c) = i V right(c) = i. To lose i means there is an effect of left
or right no longer being i. To expend i must have and loses it. Available space means left(c) =
NullVright(c) = Null. To gain ¢ means the le ft value becomes i if it was Null, otherwise the right
value becomes i. Given a location [rather than a character, these terms apply similarly to item(l).

We say a character or location “is” (for preconditions) or “becomes” (for effects) a constant, e.g.,
Healthy, when the relevant variable, e.g., health(c), takes that value. We say c is “at” (precondition) or
“moved to” (effect) [when location(c) = I. To raise or lower ¢’s health is to change health(c) by one
stage along the ascending ranking Dead, Hurt, Healthy if possible, no change otherwise. Likewise,
the “relationship of ¢ to ¢’” raises or lowers relationship(c, ¢’) along Enemy, Null, Friend.

If a variable would be checked or modified by an action while not enabled by an extension, that part
of the action description is ignored. Some character abilities override preconditions; see Section A.4.
Unless otherwise specified, assume actions require characters to be alive; actions with two characters
require their location to be the same, and the second character to be visible.

Table 7: List of MiCROTALES actions.

action

description

arrest(cl, c2,1)

¢1 must have Sword. Moves ¢2 to jail [. [becomes locked. Lowers ¢2’s
relationship to cl. c¢1 becomes criminal if ¢2 not criminal.

attack(cl, c2)

c1 must have Sword. Lowers c2 health and relationship to c1. c1 becomes
criminal if ¢2 not criminal.

banish(cl, c2)

c2 must be Ghost. cl expends BanishPotion. c2 becomes Dead. Low-
ers c2’s relationship to cl.

brew(c, 1)

c must be at laboratory. ¢ must be potion. ¢ expends Flower, ¢ gains i.

charm(cl, c2)

cl expends CharmPotion. Raises ¢2’s relationship to cl.

craft(c,il,i2)

c must be at workshop. 71 and ¢2 must be metal. ¢ expends i1, c gains 2.

curse(cl, c2)

c1 must be Ghost or expends CursePotion. Lowers c2 health and rela-
tionship to cl. c1 becomes criminal if ¢2 not criminal.

die(c) ¢ must be Hurt. ¢ becomes Dead.

drop(c, i) ¢ must be at cave, crossroads, forest, or village. ¢ expends i. ¢’s
location loses item if any, gains <.

enthrone(c) ¢ must have Crown and be at castle. ¢ becomes monarch.

forgive(cl, c2)

cl must be cleric. c2 stops being criminal.

give(cl, i, c2)

c2 must have available space. c1 expends 7. 2 gains 7.

grow(l) [must be forest [and have available space. [gains Flower.
heal(cl,c2) cl expends HealPotion. Raises ¢2’s health and relationship to cl.
hide(c) ¢ must be visible and at camp. ¢ stops being visible.

jailbreak(l) [must be locked jail. [stops being locked.

loot(cl,1,c2)

c1 must have available space. ¢2 must be Dead. ¢2 expends i. cl gains <.

marry(cl, c2)

c1 and ¢2 must not have spouse. ¢l and c2 become each other’s spouse.

pickup(c)

¢ must have available space. ¢’s location [must be cave, crossroads,
forest, or village. [expends item ¢. ¢ gains 1.

raise(cl, c2,1)

c1’s location must be ¢2’s location or [. ¢2 must be Dead. [must be
graveyard. cl expends RaisePotion. c¢2 becomes Ghost [and loses
all items. Moves c2 to [.

recover(c)

c must be Hurt. ¢ becomes Healthy.

release(c,l)

I must be locked jail. ¢’s location must have path to I. [becomes un-
locked. c becomes criminal if character at [is criminal. Raises relationship
of characters at [to c.

repent(c) ¢ must be at chapel. ¢ stops being criminal.

rise(c,) ¢ must be Dead. [must be graveyard. ¢ becomes Ghost and loses all
items. Moves c to [.

sell(e, 1) ¢ must be at market. ¢ expends i, gains Coin.

sicken(c) ¢ must be Healthy. ¢ becomes Hurt.

take(cl,i,c2)

c1 must have Sword and available space. c2 expends i. cl gains 4. cl
becomes criminal if ¢2 not criminal. Lowers ¢2’s relationship to c1.

teleport(c,l)

c expends TeleportPotion. Moves c to [.

trade(cl,il, c2,i2)

cl expends ¢1, gains 2. c2 expends 2, gains 71.

walk(e,)

c must be Healthy or Ghost at location with path to [. Moves c to (.

	1 Introduction
	2 Design Objectives
	3 Related Work
	4 Design Description
	4.1 Example Stories

	5 Discussion Points
	6 Future Work
	A Draft Definitions
	A.1 Extensions
	A.2 Item Constants
	A.3 Location Types
	A.4 Character Types
	A.5 Variables
	A.6 Goals
	A.7 Actions

