An Answer Set Encoding for Narrative Planning with Theory of Mind

Molly Siler, Stephen G. Ware

Narrative Intelligence Lab, Department of Computer Science, University of Kentucky
329 Rose Street
Lexington, Kentucky 40506
molly.siler@uky.edu, sgware @cs.uky.edu

Abstract

There has been much research into making planning-based
story generators more efficient; however, the question re-
mains whether the same efficiency could be achieved by re-
ducing the problem to a more widely-studied search problem
and leveraging existing solvers. We investigate this question
for the narrative planning formalism used by Sabre, which
models character goals and beliefs with deeply-nested the-
ory of mind. We use answer set programming to develop a
declarative implementation of the same planning formalism.
Benchmarking our implementation, we find that existing, spe-
cialized planners remain the state of the art for solving their
target problems as quickly as possible. However, the com-
pactness and modularity of our approach will make it easier
for researchers to develop prototype generators for new solu-
tion spaces that build on existing models.

1 Introduction

Machine-learning-based approaches have seen resounding
success in recent narrative generation research, taking ad-
vantage of improvements in large language models (LLMs)
(Sun et al. 2023; Kumaran, Rowe, and Lester 2024). Com-
pared to symbolic narrative generators, they avoid the need
for extensive knowledge engineering to define the possi-
ble structure and content of stories. The two paradigms
can complement each other in neurosymbolic systems, with
symbolic models being used to guide long-term coherence
in LLM-generated stories (Martin 2021). However, we also
argue that the trait of symbolic approaches often consid-
ered a weakness—the fact that they require the system
builder to commit to a precise, explicit definition of the story
space—makes them interesting for study in their own right.
These approaches can contribute to narratology by provid-
ing testable formal models of narrative structure and human
narrative reasoning (Mateas and Sengers 1999).

Narrative planners (Young et al. 2013) are a family of
symbolic narrative generation algorithms that use the propo-
sitional state and action model of classical planning to rep-
resent events within a story world. They are distinguished
from classical planners by how they define a valid solution—
not only requiring a goal to be achieved, but also constrain-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ing the plan to be story-like with properties such as the ap-
pearance of character autonomy (Riedl and Young 2010).

One area of study is refining the constraints on char-
acter behavior (Ware et al. 2014; Sanghrajka, Young, and
Thorne 2022) or overall story structure (Bae and Young
2008; Cardona-Rivera and Li 2016) to incorporate new nar-
rative properties into the solution definition. As Dabral and
Martens (2020) point out, many works in this area involve a
large amount of engineering effort using an imperative pro-
gramming language to build a new planner satisfying the so-
Iution definition of choice. Dabral and Martens instead argue
for plan generation in a declarative language, allowing for a
concise and more easily extensible codebase that promotes
faster implementation of new narrative constraints.

This argument makes declarative narrative planning at-
tractive when the objective is to study new solution spaces
in a research setting. There is another comparison to be
made, however, in terms of computational performance. On
one hand, specialized planners use search strategies that
take advantage of story-specific properties (Birchmeier and
Ware 2025; Senanayake and Ware 2025); on the other, a
declarative approach benefits from powerful solvers from a
more heavily-studied research area (Horswill 2021), some of
which also allow for custom heuristics (Gebser et al. 2013).

This paper introduces a new declarative encoding of
narrative planning written using answer set programming
(ASP) (Brewka, Eiter, and Truszczynski 2011). One of our
contributions is the encoding itself. ASP-based narrative
planners (Dabral and Martens 2020; Siler and Ware 2020)
and plan validators (Wang and Kreminski 2025) have been
written before, but ours is novel in that it incorporates fea-
tures introduced in Sabre (Ware and Siler 2021). These fea-
tures include triggers, state updates that occur automatically
similar to the notion of natural exogenous actions (Reiter
1996) or rigid actions (Subrahmanian and Zaniolo 1995);
but most importantly, a model of character belief where the-
ory of mind (one character believes that another believes
that...) can be deeply nested (Shirvani, Ware, and Farrell
2017). Although the Dabral and Martens (2020) encoding is
versatile, it generates partial-order plans without explicitly
tracking state, and using that paradigm to represent a Sabre-
style belief model is still an open problem; we chose to de-
velop an encoding for total-order plans with explicit state to
handle the belief model with a preestablished method.

Our encoding makes the Sabre model more accessible not
only for researchers modifying the constraints to develop
new planner variants, but also for authors of new planning
domains. Rather than requiring a problem instance to fully
specify the values of fluents in the initial state, our encoding
accepts an arbitrary proposition over the fluents as a most
general initial state (Ware and Young 2010); a plan can be
generated if it is legal in any fully-specified initial state con-
sistent with the proposition. This allows domain authors to
experiment with the range of stories their domains can gen-
erate by effectively specifying a whole class of problem in-
stances in one, testing whether and how a set of starting con-
ditions could lead to a particular outcome.

Another contribution of this paper is benchmarking our
ASP planner on a suite of established narrative planning
problems. We find that our encoding can generate plans at
a speed that is useful for researchers prototyping new so-
lution spaces, but fails to outperform specialized planners.
Our study is not conclusive about the overall performance
potential of declarative approaches but highlights the com-
plementary value of imperative-language planners.

2 Related Work

Our work is at the intersection of several research areas.

Narrative planning solution spaces Our formulation of
narrative planning traces its ancestry to [POCL (Riedl and
Young 2010), which extends classical planning to add a no-
tion of intentionality: Actions are taken by characters with
goals, and a character’s action must lead to the achievement
of the character’s goal. CPOCL (Ware et al. 2014) modi-
fies the intentionality requirement so a character action must
be part of a hypothetical plan to achieve a character goal,
but can fail to achieve the goal in the executed plan. The
ASP planner by Dabral and Martens (2020) bases its so-
lution definition on CPOCL’s. The model defined by Shir-
vani, Ware, and Farrell (2017), and implemented by Sabre
(Ware and Siler 2021) and by our encoding, combines inten-
tionality with a model of characters’ beliefs. In a graph of
possible worlds, a character’s beliefs in one state are repre-
sented by a pointer to another state, allowing for recursive
theory of mind. Other belief models in narrative planning
include those that represent beliefs about the world state
only (Sanghrajka, Young, and Thorne 2022), a non-recursive
layer of theory of mind (Christensen, Nelson, and Cardona-
Rivera 2020), or a separation of beliefs into public and pri-
vate knowledge (Teutenberg and Porteous 2015).

Open-world planning The problem of planning stories
from partially-specified initial states was formulated by
Riedl and Young (2005). Their algorithm, Initial State Revi-
sion, modifies partial-order planning to handle initial states
where some facts have undetermined truth values; the truth
values become determined when used to satisfy precondi-
tions. After originally using a classical planner as its base,
Initial State Revision was later implemented (Riedl and
Young 2006) in a narrative planner incorporating charac-
ter intentionality. Ware and Young (2010) proposed a gen-
eralization of the algorithm in which the initial state was

an arbitrary formula and consistency was checked with a
SAT solver, similar to conformant planning (Hoffmann and
Brafman 2006) except ensuring that the plan solved the
problem from some rather than all completions of the ini-
tial state. Open-world planning is reminiscent of automated
problem modification models such as excuse generation
(Gobelbecker et al. 2010): taking an instance where a plan
could not be found, and highlighting reasons for failure by
showing modifications to the initial state, goal, or opera-
tors that would have made the problem solvable. RoleModel
(Chen et al. 2010) and Retcon (Horswill 2022) are non-
planner authoring tools that also use retroactive constraining
of story worlds as the story develops.

Answer set planning The use of ASP for (non-narrative)
planning dates back to Subrahmanian and Zaniolo (1995)
and Lifschitz (2002), the latter of whom likened it to the
emerging success of SAT-based planning (Kautz and Sel-
man 1992) but with added synergies between ASP’s non-
monotonicity and planning’s dynamics of how facts change
or persist between actions. See Son et al. (2023) for a survey
of later developments. In the area of multiagent epistemic
planning, Burigana et al. (2020) present an ASP encoding of
agent beliefs as a state-graph structure similar to our encod-
ing of the Shirvani, Ware, and Farrell (2017) model.

Logic programming for procedural narrative Logic
programming in general is the basis for a variety of nar-
rative applications outside of planning. RoleModel (Chen
et al. 2010) uses it to generate stories that reinterpret events
in light of character roles (e.g., aggressors and victims).
The Celf linear logic programming language has been used
to define story worlds and analyze their causal structures
(Martens et al. 2014), and the Ceptre language to analyze
the gameplay spaces resulting from interactive narrative me-
chanics (Martens 2015). Social simulation is a particularly
successful narrative application of logic programming that
has seen commercial use (Evans and Short 2013; Zubek
et al. 2021; Horswill and Hill 2024).

3 Narrative Planning Background

This section describes the narrative planning formalism that
we translated to ASP. The formalism includes Sabre-specific
(Ware and Siler 2021) features that extend more typical def-
initions of narrative planning.

A narrative planning problem defines a set of fluents, vari-
ables over a multi-valued domain. The possible values for a
fluent may be booleans, numbers, or story-world objects. A
special category of story-world objects is characters.

To define the other features of a narrative planning prob-
lem, we must refer to the notion of state. A state specifies an
assignment of values to all fluents. For each character, a state
specifies the character’s beliefs, which are also a state; i.e.,
to find the character’s beliefs about a proposition in a state,
one can check the true value of the proposition in the belief
state. Similarly, the state representing a character’s beliefs
can also point to other states representing the character’s be-
liefs about others’ beliefs, and so on.

A narrative planning problem defines any number of trig-
gers. A trigger has preconditions and effects. The precon-

ditions are a proposition over the fluent assignments and/or
beliefs in a state; when the proposition is true in a state, the
trigger is automatically applied to derive a new state. The
effects are changes to fluent assignments and/or beliefs that
become true in the state resulting from the trigger; other flu-
ents and beliefs retain their original value.

A narrative planning problem also defines a set of actions.
Actions have preconditions and effects, but unlike triggers,
they are chosen by the planner rather than happening auto-
matically; an action’s preconditions define when it is legal
rather than when it is necessary. An action can have one or
more consenting characters; these will be used in later def-
initions, but intuitively, they are the characters who “take”
the action. An action also has an observability condition, a
proposition, for each character. In a state where the action’s
observability condition holds for a character, if the action is
taken, the character observes the action—the action is ap-
plied to the state representing the character’s beliefs. This
means that the action effects will become true in the belief
state as well as the original state, and observations will hap-
pen recursively—characters within that belief state will ob-
serve the action if the observability conditions hold there.

A narrative planning problem provides a utility function
for each character as well as an author utility function. A
utility function is a mapping from states to numeric values;
increasing a utility value is akin to achieving a goal in stan-
dard planning formalisms.

Finally, a narrative planning problem specifies a most gen-
eral initial state, a proposition over fluent assignments and
beliefs.

A solution to a narrative planning problem consists cen-
trally of an action sequence {a1,as, -, a,} that satisfies a
few properties.

First, there must exist a sequence of states
{s0, s1, 2, -, Sn } where:

* the most-general-initial-state proposition holds in sg;
e each action qa; is legal in state s;_1;

* each state s; is the result of applying the effects of a; 43
to state s;, plus the effects of any triggers that were en-
abled; and

* the value of the author utility function is higher in state
Sy, than in sg.

Second, for each consenting character c of an action a;, there
must exist an explanation for c taking a;. Intuitively, an ex-
planation shows how the action furthers the character’s own
interests by contributing to the character’s plan to achieve a
goal; it consists of an action sequence {a}, a5, - -, al,} with
a state sequence {s(, s, 85, -+, s, } where:

* s(is the state representing c’s beliefs in s;_1, i.e., just
before the action a; was taken;
*a) =ag

« each action a; is legal in state s;_l;
e each state s; 41 is the result of applying the effects of
a4 to state s”, plus the effects of any triggers that were

enabled;

e if an action a;- has consenting character ¢’ # c, there
exists an explanation for ¢’ taking a;

* the value of ¢’s utility function is higher in state s/, than
in s(; and

/

m?>

* a) is necessary for achieving the utility increase in s
as defined below.

There have been a variety of ways to define the last bullet
point, requiring that an action in some way contributes to the
character’s plan rather than being redundant. The Shirvani,
Ware, and Farrell (2017) redundancy check involves check-
ing causal links between the action and the utility increase,
similar to the concept of well-justification proposed by Fink
and Yang (1992). The Sabre version (Ware and Siler 2021)
accepts an explanation if and only if no strict subsequence
of the explanation achieves a utility increase at least as high,
what Fink and Yang call perfect justification. We adopt a re-
dundancy check that is stronger than the first one without
the increase in complexity class needed by the second, using
Fink and Yang’s greedy justification.

In short, the check concludes that an action is necessary
for the character’s plan if and only if skipping the action, and
skipping any actions prevented by previous skips, would re-
sult in a worse outcome for the character. More formally,
given the candidate explanation {a}, a5, - - -, al,,} starting in
state s(, and ending in s}, a) passes the greedy justification
test and its explanation is accepted if there exists a state se-
quence {sY,s5,---, s} } where:

o st = s
* for k > 1, if aj, is legal and explained in s}/_,, then s} is
the result of taking a;C in s%_l;

* for k > 1, if aj, is not both legal and explained in s}_,,

then s} = s}/ _;;
» the character’s utility in s}/ is lower than in s,.

In summary, a narrative plan is a solution if it improves
the author’s utility, and any given consenting character for an
action can foresee a plan to increase their own utility starting
with that action, such that the action is actually necessary to
the character’s plan.

4 ASP Background

We briefly summarize the ASP paradigm and the ASP-
Core-2 (Calimeri et al. 2020) language as it is used in our
later code examples. A more comprehensive introduction
to ASP can be found in the article by Brewka, Eiter, and
Truszczynski (2011).

A basic ASP problem consists of rules of the form
head :- body., where the head is a literal and the body
is a comma-separated list of literals, treated as a conjunc-
tion. If the body holds, the head is derived. A solution to an
ASP problem—an answer set—is a maximal set of literals
that can be mutually derived from the rules.

A head with no body (i.e., head.) is treated as always
true; a body with no head (i.e., : = body.) is called a con-
straint, and the body is forbidden from holding in an answer
set.

For instance, given the rules x. andy :— x., the single
answer set consists of x due to the first rule, and y due to
the second rule and the derivation of x. If we add the rule
:— y., there are no answer sets due to the contradiction
between the derivation of y and the constraint against y.

A literal in a body may be negated; for a literal x, the
negation is written as not x. Negations in ASP hold by
default; i.e., not x should be interpreted as “x cannot be
derived”. For instance, given an ASP problem consisting of
the singlerule y :- not x.,the sole answer set consists
only of y. If we keep the aforementioned rule but also have
x :— not vy. then there are two answer sets: one consist-
ing only of y, and one consisting only of x, as we can apply
either rule and the derivation will prevent the other rule from
applying.

Literals can take the form of predications, such as x (a) .
A predication with constants, such as numbers or low-
ercase terms, are handled like non-predicated variables,
but this syntax also allows for predications over variables
which are specified using uppercase. For instance, the rule
v (A) :— x(A) . is equivalent to the set of rules where
constants are substituted for A; in an ASP problem where
x (1) and x (2) are derived, the aforementioned rule will
cause y (1) and y (2) to be derived as well. ASP solvers
typically ground the program before searching for solutions;
that is, they replace rules containing variables so there are
only constants.

A choice rule has a head of the form c1{ choices
}c2 :- body, where choices is a set of literals and
cl and c2 are numbers; when body holds, anywhere be-
tween c1 and c2 literals from the set may be derived. For
instance, giventherules z. and 1{ x; y }2 :- z.,the
problem’s answer sets are x, zandy, zandx, vy, z.
A choice rule may also be defined using variables, with a
condition specifying what values the variable can take; for
instance, given therule 1{ vy (A) : x(A) }1.,ifx(a)
and x (b) hold, then one of either y (a) ory (b) is derived.

A percent symbol (%) at the start of a line denotes a com-
ment.

S Encoding and Solving

This section discusses how we encoded the narrative plan-
ning problem definition from Section 3 in an answer set pro-
gram. We will describe features of the encoding at a con-
ceptual level, showing code fragments when most relevant;
the full codebase is available online.! Some code fragments
are modified from the original when necessary to provide
concise illustrations.

As input, the program takes an ASP representation of the
problem instance to be solved, separate from the general
ASP representation for narrative planning we describe later
in this section. The ASP problem instance declares the char-
acters, actions, triggers, fluents and their possible values,
most general initial state, utility functions, and the logical
expressions needed to define these, such as the propositions
that make up action preconditions. We currently use Sabre’s

"https://cs.uky.edu/%7Esgware/projects/aspnp/

Listing 1: Example action declaration in a problem instance.

action (buy (teen, shoes)) .

precondition (buy (teen, shoes), propositionl).
% Representing at (teen)==mall

comparison (propositionl) .

operator (propositionl, equals).

left (propositionl, at (teen)).

right (propositionl, mall).

causes (buy (teen, shoes), at (shoes),
teen) .

consenting (buy (teen, shoes),
teen) .

observability (buy (teen, shoes),
teen, true).

observability (buy (teen, shoes),
mom, proposition2).

% Representing at (mom)==mall)

comparison (proposition?2) .

operator (proposition2, equals).

left (proposition2, at (mom)) .

right (proposition2, mall).

built-in parser to read and preprocess the problem file, with
a custom printer to output the ASP rendering.

For instance, Listing 1 shows an excerpt from an example
ASP problem instance declaring an action where a consent-
ing character, the teen, buys some shoes; the precondition is
that the teen must be at the mall, the effect is that the teen
now possesses the shoes, and another character, the mom,
observes the action only if also at the mall.

The problem-instance rules do not directly cause any rea-
soning to be performed; the actual semantics in the context
of the plan result from domain-independent rules described
in the rest of this section. We designed these rules to yield
answer sets that map one-to-one with unique combinations
of the following: a plan, a completed initial state from which
the plan is a solution, and a set of explanations for all ac-
tions’ consenting characters.

To generate these answer sets without prior knowledge of
the size of the solution (e.g., number of actions and triggers
required), we use the multi-shot solving (Gebser et al. 2019)
functionality of the Clingo (Gebser et al. 2018) solver. This
functionality allows for changes to program constraints and
incremental additions of ground rules while keeping the pre-
processing work already done by the grounder rather than
starting grounding over from scratch. We divide a plan into
units we call nodes, whose contents we will explain later in
the section. Starting from n = 0, we try generating n nodes
with a constraint that the plan must be completed at the nth
node; if no plan is found, we add rules for generating the
n + 1st node while keeping the rules for generating nodes
0,---,n, and we replace the constraint requiring a solution
at the nth node with a constraint requiring a solution at the
n + 1st.

Listing 2: Initial state assignment.

Listing 3: Detecting and applying triggers.

node (n) .
base_state(n, s(n)).

node_type(n, initial) :- n=0.

% Choose values for all fluents
1{ assigned(S, F, V) :
fluent_domain(F, V) }1 :-
node_type(n, initial),
base_state(n, S),
fluent (F) .
fluent_domain (F, V) and fluent (F) are
from the problem instance

o\

o°

o°

Assignments must fit problem instance

:— node_type(n, initial), base_state(n, S3),
init (P), not holds (S, P).

init (P) is from the problem instance

holds (S, P) is defined elsewhere

o\

o°

Nodes are associated with one of several types prescrib-
ing their meaning in the final plan representation and which
rules apply to them. For n = 0 only, the node generated is
a initial node. Nodes contain states, including one which we
will call the node’s base state to distinguish it from states
generated for auxiliary purposes. The initial node’s purpose
is to hold the initial state of the plan as its base state. A
choice rule, shown in Listing 2, directs an arbitrary value to
be assigned to each fluent in this state. A series of rules, not
shown in the listing, determine what relevant propositions
hold in the state via the holds (S, P) predicate; one of
these propositions is the one defining the most general ini-
tial state, supplied as P in a literal init (P) given in the
specific planning problem. A constraint, the last rule in the
listing, only allows answer sets where the fluent assignments
generated by the choice rule are consistent with that proposi-
tion. In other words, an answer set takes the most general ini-
tial state and completes it into a fully-specified initial state.

We track a character C’s beliefs in a state S using a literal
of the form beliefs (S, C, S’), where S’ is the state
the character believes to be true. By default, as in Sabre,
characters’ initial beliefs about the values of fluents are as-
sumed to match the true values of fluents; if a character has
only these default beliefs, then S’ =S. However, the prob-
lem instance may allow a character’s initial beliefs to differ
from the true fluent values. We generate and constrain these
beliefs in the same way as the true initial fluent values; if
wrong beliefs for the character are indeed generated, we de-
fine a separate state for S’ within the initial node. Likewise,
if a character has theory-of-mind beliefs—beliefs about the
beliefs of another character—that differ from their own, we
repeat this process recursively to create additional layers of
belief states. We omit code fragments for these rules due to
their length.

In later nodes, fluent values in states do not need to be
generated and constrained in this way, as they follow de-
terministically from the interaction of previous states and

node_type (n, trigger)
trigger (T) .
occurs (n, T) :- trigger(T),
generated_at (S, n-1),
precondition (T, P), holds (S, P).
effect_applies(n, S) :- trigger(T),
occurs (n, T),
generated_at (S, n-1),
precondition (T, P),
holds (S, P).
% generated_at (S, N) is defined elsewhere

:— occurs(n, T),

Listing 4: Updating states based on effects.

assigned(s’, F, V) :-—
occurs (n, E),
causes (E, F, V),
derived_from(S’, S),
effect_applies(n, S).
changed(S’, F) :-
derived_from(S’, S),
assigned (S, F, V1),
assigned(S’, F, V2),
vV1i!=v2.
assigned(S’, F, V) :—
derived_from(S’, S),
assigned (S, F, V),
not changed(s’, F).
derived_from(S’, S) is defined elsewhere
omitted: edge cases for modifying beliefs

o\

o

actions or triggers. A node is assigned the type of trigger
node if the preconditions for a trigger are met in any state
associated with the previous node, including the base state
but also the beliefs. The trigger effects are applied to those
states to get the states for the new node; any fluent values not
changed by triggers remain the same as before. These rules
are illustrated in Listings 3 and 4. The generated_at (S,
N) predicate is defined for states S associated with nodes
N; the derived_from(S’, S) predicate is defined for
states S’ that should copy their default values, besides ef-
fects, from an earlier state S.

A node is assigned the type of action node if no other
node type is required. A choice rule for action nodes causes
an action to be added to the plan from among those whose
preconditions were met; besides the selection of initial state
values, this is the only nondeterministic choice in the pro-
gram.

An action applies in the base state; recursively, the ac-
tion’s observability to characters is checked to determine
whether the action should propagate to belief states. These
dynamics are illustrated in Listing 5. Like trigger effects, ac-
tion effects result in updates to fluent assignments as mod-
eled in Listing 4.

The plan generation process needs to produce explana-
tions as well as the executed plan. At each node, our en-
coding maintains a list of prior action nodes that have not
finished being explained yet. For an answer set to be consid-
ered a solution, this list must be empty at the final node and

Listing 5: Generating and applying actions.

node_type (n, action) :-
not node_type(n, initial),
not node_type(n, trigger),
not node_type (n, explanation_start).
1{ occurs(n, A)
action(A), possible(S, A) }1 :-
node_type (n, action),
base_state(n, S’),
derived_from(S’, S).
effect_applies(n, S) :-
occurs(n, A), action(Ad),
base_state(n, S).
effect_applies(n, S’) :—
occurs(n, A), action(d),
effect_applies(n, S), S’!=S,
beliefs(s, C, S’),
observability (A, C, P), holds (S, P).
% derived_from(S’, S) is defined elsewhere

Listing 6: Initializing explanations.

node_type (n, explanation_start) :-
node_type (n-1, action),
occurs (n-1, A),
consenting (A, C).
% consenting (A, C) is from problem instance
derived_from(S, S’'’) :-—
node_type (n, explanation_start),
base_state(n, S),
occurs (n-1, A),
consenting (A, C).
base_state(n-1, S’),
beliefs(s’, C, S’'')
occurs(n, A) :-—
node_type (n, explanation_start),
occurs (n-1, A).
% omitted: handling multi-character actions

the author utility must have increased.

The first node in an explanation, the explanation start
node, models the perspective of the character whose action is
being explained. Given the character C taking action A from
state S, we take beliefs (S, C, S’) and apply the ef-
fects of A to S’ ; the result becomes the base state for the ex-
planation start node. A fragment of this process is illustrated
in Listing 6. After the explanation start node, action nodes
expand the explanation in the same manner as expanding the
executed plan.

Figure 1 shows a subset of an example plan to illustrate
the relationships between nodes and states. Node O has the
initial state as its base state, including pointers to initial be-
liefs for the characters. In this story domain, we start out
with the feen character at home and the mom character at the
party, but the teen believes the mom is at work and the mom
believes the teen is at school. Node 1 represents the result of
an action where the teen goes to the mall. The base state is
copied, except the location of the teen is updated in the new
base state. Because the teen observes the action, the location
update also takes place in the teen’s beliefs; but because the
mom does not observe the action, the mom’s beliefs remain

the same. Now the action must be explained for the teen.
Node 2 is an explanation start node, representing the teen’s
expected result of the Node 1 action instead of the actual re-
sult; the base state is copied from the teen’s original beliefs,
except with the location update applied. Node 3 is another
action node but it is part of the new explanation instead of
the original author plan; after going to the mall, the teen in-
tends to buy the shoes.

For each node within an explanation, there is one more
type of state that is tracked outside of the base state and
its belief states). These special states are responsible for
tracking the greedy justification of the explained action, i.e.,
showing that the character plan would fail without that ac-
tion and the later actions it enables. We use a constraint to re-
ject solutions containing an action shown to be unnecessary
for its own explanation (code fragments omitted for brevity).

6 Experiments

We benchmarked our ASP planner on a machine with 512
GB RAM and an Intel Xeon w3-2425 processor.

Fully Specified Initial State

As a baseline for comparing our ASP planner, we ran
the Sabre benchmark suite by Ware and Farrell (2023) on
our machine. We used the Ware and Farrell benchmarking
tool to run Sabre 10 times each in different combinations
of search strategy (goal-first, explanation-first, or A*) and
heuristic (sum-graph, relaxed-plan-graph, or reachability).

Similarly, we parsed the problems from the benchmark
suite into their ASP counterparts and ran our planner
10 times each for different built-in Clingo configurations
(auto, jumpy, handy, crafty, and tweety).

Table 1 shows the results of this benchmarking. For each
problem instance, the “auth. limit” and “char. limit” columns
show the limits on author and character plan length, re-
spectively, placed on both the Sabre and ASP planners.
The “exp. nesting” column shows the maximum depth of
explanations-within-explanations allowed—e.g., the author
plan has depth 0, an explanation for a character’s action in
the author plan has depth 1, and an explanation for a charac-
ter’s action within that explanation has depth 2. We used the
limits suggested in the original Sabre benchmark report.

The remaining columns show the average CPU times in
seconds over a set of trials. The “def.” columns show the
times for the Sabre default planner configuration of A*
search with a relaxed plan graph heuristic, and for the default
Clingo configuration auto. The “best” columns show the
times for the fastest configuration for each individual prob-
lem. ASP times include grounding as well as the main search
process; grounding is a significant portion of Clingo’s run-
time because of the optimizations it makes during this phase.

Some problems from the benchmark suite are omit-
ted: aladdin, gramma, hospital, lovers, and
western. Our ASP planner was unable to solve these be-
cause the grounding size went beyond Clingo’s built-in limit
on the number of IDs that can be assigned to objects. Solv-
ing these problems in ASP would require either a more com-
pact encoding or an answer set solver without this ID limit.

Node O
Type: initial
POV: author

at(teen)=home
at(mom)=work
at(shoes)=mall

bel(teen)

base state
at(teen)=home
at(mom)=party
at(shoes)=mall

bel{(mom)

at(teen)=school
at(mom)=party

Node 1
Type: action
PQOV: author

at(teen)=mall
at(mom)=work
at(shoes)=mall

bel(teen)

base state
at(teen)=mall
at(mom)=party
at(shoes)=mall

bel(mom)

Node 2
Type: expl. start
POV: teen

base state
at(teen)=mall
at(mom)=work
at(shoes)=mall

Node 3
Type: action
PQOV: teen

base state
at(teen)=mall
at(mom)= work
at(shoes)=teen

at(shoes)=mall

at(teen)=school
at(mom)=party
at(shoes)=mall

Figure 1: A conceptual illustration of the structure of nodes and states in a generated plan. Blue rounded rectangles represent
nodes. Orange hexagons represent states and the fluent assignments are shown inside. Cyan arrows annotated bel([character])
indicate a character’s beliefs from a state; for brevity, only one layer of beliefs is shown. Green arrows indicate that a state
copies its fluent values from another, except for values changed by actions, which are italicized.

Furthermore, the Sabre benchmark suite includes some vari-
ations of problems that require specific author utilities, but
our benchmarking includes only versions of the problem that
allow any author utility increase.

Among the benchmark problems solved successfully
in ASP, the average ASP time for basketball and
raiders was faster by a few seconds than Sabre given de-
fault configurations for both, but an optimal Sabre configu-
ration was the fastest for all problems. The default Clingo
configuration was faster than other Clingo configurations,
except in the case of deerhunter and fantasy where
trendy was the fastest and raiders where jumpy was
the fastest.

Partially Specified Initial State

To explore our ASP planner’s potential for handling prob-
lems with nondeterministic initial states, we created a
set of synthetic benchmarks by modifying some of the
original benchmarks from the previous section. We chose
basketball, jailbreak, and raiders because of
their original runtimes—short enough to collect larger vol-
umes of data but long enough to more confidently attribute
changes to solving complexity rather than overhead—as
well as their structural similarities that we used to modify
all of them in the same way.

Specifically, because these problems all focus on charac-
ters moving between locations and using items, we chose
to create partially-specified initial states by removing spec-
ifications for the starting locations of characters and items.
For each original problem, for each value of k£ from 1 to the
number of location fluents, we generated ten new problem
instances by randomly selecting & location fluents to leave
unspecified in the initial state. The other fluent values were
the same as in the original problem instance.

Figure 2 shows the average times taken to solve prob-
lems for each value of k using the Clingo default config-
uration. With the exception of the first fluents removed in
basketball, runtimes showed a decreasing trend as more
fluents had their initial value unspecified. This trend is the
case because more general initial states permit a wider set
of solutions, and the ASP solver was able to effectively take
advantage of the new available solutions.

To examine this trend more closely, in Figure 3 we plot the
unspecified initial fluent values against the average length of
a solution in terms of our encoding’s nodes, which corre-
spond to actions, triggers, and plan or explanation initializa-
tions as discussed in Section 5. The node counts, like the
runtimes, became smaller as the problem became more gen-
eral. Although the trend is closer to linear than to exponen-
tial like in the case of runtime, this makes sense because

Table 1: Sabre and ASP benchmarking results. Times are in seconds.

problem auth. limit | char. limit | exp. nesting | Sabre def. | Sabre best | ASP def. | ASP best
basketball 7 5 2 607.2 22 601.7 601.7
bribery 5 5 2 <0.1 < 0.1 0.3 0.3
deerhunter 10 6 1 4.2 <0.1| 26567.8 17893.6
fantasy 9 3 2 4.0 0.9 2542.7 2155.2
jailbreak 7 6 1 20.3 0.2 15.4 15.4
raiders 7 4 1 0.3 <0.1 1607.1 1327.4
secretagent 8 8 1 < 0.1 < 0.1 48722.1 48722.1
space 9 3 1 < 0.1 < 0.1 1.1 1.1
treasure 4 4 3 < 0.1 < 0.1 122.1 122.1
the ASP solver must explore an exponentially larger space 25
of candidate plans as our planner iteratively increases the
node limit; recall that in our multi-shot solving process we
first determine whether there are any plans at node count 20
1 before moving on to node count 2 and so on. Therefore,
the runtime savings for adding unspecified fluent values are 15
likely a direct result of new solutions becoming available at
shorter node limits. 0
10000
5
1000 0
0 1 2 3 4 5 6
100 raiders basketball jailbreak
Figure 3: Number of unspecified initial fluent values (hor-
10

0 1 2 3 4 5 6

raiders basketball jailbreak

Figure 2: Number of unspecified initial fluent values (hor-
izontal axis) versus average ASP solve time (vertical axis;
note the logarithmic scale). There are fewer data points
for raiders because there are fewer fluents whose initial
value specifications could be removed.

Our data collection shows that, when the domain author
will accept a variety of initial states, combining them all into
one most general initial state can offer computational sav-
ings over committing to initial states individually. However,
this approach creates a risk of generating stories that are
unsatisfying narratively. For instance, in the jailbreak
domain, one possible end condition is the police catch-
ing the protagonist with contraband; when the solver could
choose most or all starting character and item locations, it
would start the story with the protagonist holding a smug-
gled weapon directly in front the police, allowing the police
to catch them and end the story in a single action.

Future development of nondeterministic narrative plan-

izontal axis) versus average nodes in the solution (vertical
axis).

ners would be best supported by new benchmarks that can
be varied in the level of initial state specification like ours,
but are designed to prevent initial states that have trivial so-
lutions. However, there are also research opportunities for
placing the responsibility on the planner itself to evaluate
story quality and select stories that satisfy structural require-
ments other than simply goal achievement.

7 Limitations

The primary limitation of our approach is its computational
intensity, with most solve times for standard problems being
orders of magnitude slower than their Sabre counterparts.
Although it offers a modifiable starting point for exploration
of new problem definitions, our implementation is not com-
petitive in its current form as a solver for well-studied nar-
rative planning formulations. It is not yet clear whether spe-
cialized planners have an inherent advantage over ASP for
speed or if optimizations to our ASP planner could eventu-
ally help it become competitive; in a classical planning set-
ting, custom ASP solver configurations have been able to
produce orders-of-magnitude speedups over the base con-
figuration (Gebser et al. 2013).

8 Conclusions

This paper introduced the first combination of ASP with a
Sabre-style narrative planning model. The synthesis brings
a nested theory-of-mind model to answer set narrative plan-
ning. Conversely, it brings nondeterministic initial state to
Sabre-style planning, and is the first implementation of non-
deterministic narrative planning to handle the original Ware
and Young (2010) vision of a most general initial state as
an arbitrary proposition. The declarative format simplifies
the process of modifying the narrative planning model; the
domain-independent portion of the ASP encoding consists
of about 115 unground rules, fewer than the number of
classes in the imperative Sabre code. This allows narrative
planning researchers to prototype new features before im-
plementing them in a conventional planner, and allows do-
main authors to add simpler requirements ad hoc; for in-
stance, a PDDL-style state trajectory constraint (Porteous
and Cavazza 2009) can be placed on plans with the addition
of a single unground rule.

We found that Sabre itself outperforms our ASP planner
on established benchmark problems. However, it is possible
that the speed of specialized planners and the versatility of
ASP could be combined using a hybrid approach. For in-
stance, in a conventional narrative planner modified to han-
dle initial states that are only partially specified, an ASP en-
coding could be used for plan verification rather than plan
generation: The planner’s original algorithm explores candi-
date plans, and the ASP encoding is used to check whether
there exists a completion of the initial state where plan con-
straints like action legality are met. A similar approach has
been used successfully with SAT encodings in nondetermin-
istic variations of classical planning (Hoffmann and Braf-
man 2006).

Integrating nondeterministic planning with action expla-
nations raises new challenges. First, once a deterministic
narrative planner explains an action, the explanation is guar-
anteed to be usable in the eventual solution; but in nondeter-
ministic planning, an explanation for one action may later be
invalidated because it is not compatible with any of the same
initial states as the explanations for another action. Second,
many planning heuristics that are effective for deterministic
planning are undefined in the nondeterministic setting and
effective replacements must be found. Our future work in-
cludes investigating the viability of the hybrid approach and
developing these heuristics.

Acknowledgments

This paper benefited from feedback from Gage Birchmeier
and the AIIDE program committee; code from Mira Fisher;
and a discussion on ASP representations with Chinmaya
Dabral, Chris Martens, Adam Smith, and David Thue.

This material is based upon work supported by the U.S.
National Science Foundation under Grant No. 2145153 and
the U.S. Army Research Office under Grant No. W911NF-
24-1-0195. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation or the Army Research Office.

References

Bae, B.-C.; and Young, R. M. 2008. A use of flashback and
foreshadowing for surprise arousal in narrative using a plan-
based approach. In International Conference on Interactive
Digital Storytelling, volume 1, 156-167.

Birchmeier, G.; and Ware, S. G. 2025. Speeding up narrative
planning with Causal Width Search and Pruning. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 21.

Brewka, G.; Eiter, T.; and Truszczyrnski, M. 2011. Answer
set programming at a glance. Communications of the ACM,
54(12): 92-103.

Burigana, A.; Fabiano, F.; Dovier, A.; and Pontelli, E. 2020.
Modelling multi-agent epistemic planning in ASP. Theory
and Practice of Logic Programming, 20(5): 593—608.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. The-
ory and Practice of Logic Programming, 20(2): 294-309.
Cardona-Rivera, R. E.; and Li, B. 2016. PLOTSHOT:
Generating discourse-constrained stories around photos. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 12, 2-8.

Chen, S.; Smith, A. M.; Jhala, A.; Wardrip-Fruin, N.; and
Mateas, M. 2010. RoleModel: Towards a formal model of
dramatic roles for story generation. In Intelligent Narrative
Technologies Workshop, volume 3.

Christensen, M.; Nelson, J.; and Cardona-Rivera, R. 2020.
Using domain compilation to add belief to narrative plan-
ners. In AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, volume 16, 38—44.

Dabral, C.; and Martens, C. 2020. Generating explorable
narrative spaces with answer set programming. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 16, 45-51.

Evans, R.; and Short, E. 2013. Versu—A simulationist sto-
rytelling system. IEEE Transactions on Computational In-
telligence and Al in Games, 6(2): 113-130.

Fink, E.; and Yang, Q. 1992. Formalizing plan justifications.
In Conference of the Canadian Society for Computational
Studies of Intelligence, volume 9, 9-14.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Liihne, P.; Ober-
meier, P.; Ostrowski, M.; Romero, J.; Schaub, T.; Schell-
horn, S.; and Wanko, P. 2018. The Potsdam Answer Set
Solving Collection 5.0. Kiinstliche Intelligenz, 32: 181-182.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming, 19(1): 27-82.

Gebser, M.; Kaufmann, B.; Romero, J.; Otero, R.; Schaub,
T.; and Wanko, P. 2013. Domain-specific heuristics in an-
swer set programming. In AAAI Conference on Artificial
Intelligence, volume 27, 350-356.

Gobelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up with good excuses: What to do
when no plan can be found. In International Conference on
Automated Planning and Scheduling, volume 20, 81-88.

Hoffmann, J.; and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artificial
Intelligence, 170(6-7): 507-541.

Horswill, I. 2021. Answer set programming for PCG: The
good, the bad, and the ugly. In Workshop on Programming
Languages in Entertainment.

Horswill, I. 2022. Retcon: A least-commitment storyworld
system. In Experimental Al in Games Workshop, volume 9.

Horswill, I.; and Hill, S. 2024. Fast, declarative, character
simulation using bottom-up logic programming. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 20, 54-64.

Kautz, H.; and Selman, B. 1992. Planning as satisfiability. In
European Conference on Artificial Intelligence, volume 10,
359-363.

Kumaran, V.; Rowe, J.; and Lester, J. 2024. NarrativeG-
enie: Generating narrative beats and dynamic storytelling
with large language models. In AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 20, 76-86.

Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence, 138(1-2): 39-54.

Martens, C. 2015. Ceptre: A language for modeling genera-
tive interactive systems. In AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, volume 11,
51-57.

Martens, C.; Ferreira, J. F.; Bosser, A.-G.; and Cavazza, M.
2014. Generative story worlds as linear logic programs. In
Intelligent Narrative Technologies Workshop, volume 7.

Martin, L. J. 2021. Neurosymbolic automated story genera-
tion. Ph.D. thesis, Georgia Institute of Technology.

Mateas, M.; and Sengers, P. 1999. Narrative intelligence. In
AAAI Fall Symposium on Narrative Intelligence, 1-10.

Porteous, J.; and Cavazza, M. 2009. Controlling narrative
generation with planning trajectories: the role of constraints.
In International Conference on Interactive Digital Story-
telling, volume 2, 234-245.

Reiter, R. 1996. Natural actions, concurrency and continu-
ous time in the situation calculus. In International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, volume 5, 2—13.

Riedl, M. O.; and Young, R. M. 2005. Open-world planning
for story generation. In International Joint Conference on
Artificial Intelligence, volume 19, 1719-1720.

Riedl, M. O.; and Young, R. M. 2006. Story planning as ex-
ploratory creativity: Techniques for expanding the narrative
search space. New Generation Computing, 24(3): 303-323.

Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
Balancing plot and character. Journal of Artificial Intelli-
gence Research, 39(1): 217-268.

Sanghrajka, R.; Young, R. M.; and Thorne, B. 2022.
HeadSpace: Incorporating action failure and character be-
liefs into narrative planning. In AAAI Conference on Artifi-

cial Intelligence and Interactive Digital Entertainment, vol-
ume 18, 171-178.

Senanayake, L.; and Ware, S. G. 2025. Speeding up narra-
tive planning using Fog of War Pruning. In AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 21.

Shirvani, A.; Ware, S.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 13, 101-107.

Siler, M.; and Ware, S. G. 2020. A good story is one in a mil-
lion: Solution density in narrative generation problems. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 16, 123-129.

Son, T. C.; Pontelli, E.; Balduccini, M.; and Schaub, T. 2023.
Answer set planning: A survey. Theory and Practice of
Logic Programming, 23(1): 226-298.

Subrahmanian, V.; and Zaniolo, C. 1995. Relating stable
models and Al planning domains. In International Confer-
ence on Logic Programming, volume 12, 233-247.

Sun, Y.; Li, Z.; Fang, K.; Lee, C. H.; and Asadipour, A. 2023.
Language as reality: A co-creative storytelling game experi-
ence in 1001 Nights using generative Al. In AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment, volume 19, 425-434.

Teutenberg, J.; and Porteous, J. 2015. Incorporating global
and local knowledge in intentional narrative planning. In
International Conference on Autonomous Agents and Multi-
agent Systems, 1539—-1546.

Wang, Y.; and Kreminski, M. 2025. Can LLMs generate
good stories? Insights and challenges from a narrative plan-
ning perspective. arXiv preprint arXiv:2506.10161.

Ware, S. G.; and Farrell, R. 2023. A collection of benchmark
problems for the Sabre narrative planner. Technical report,
Narrative Intelligence Lab, University of Kentucky.

Ware, S. G.; and Siler, M. 2021. Sabre: A narrative plan-
ner supporting intention and deep theory of mind. In AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 17, 99-106.

Ware, S. G.; and Young, R. M. 2010. Rethinking traditional
planning assumptions to facilitate narrative generation. In
AAAI Fall Symposium on Computational Models of Narra-
tive, T1-72.

Ware, S. G.; Young, R. M.; Harrison, B.; and Roberts, D. L.
2014. A computational model of narrative conflict at the fab-

ula level. IEEE Transactions on Computational Intelligence
and Artificial Intelligence in Games, 6(3): 271-288.

Young, R. M.; Ware, S. G.; Cassell, B. A.; and Robertson,
J. 2013. Plans and planning in narrative generation: A re-
view of plan-based approaches to the generation of story,
discourse and interactivity in narratives. Sprache und Daten-

verarbeitung, Special Issue on Formal and Computational
Models of Narrative, 37(1-2): 41-64.

Zubek, R.; Horswill, I.; Robison, E.; and Viglione, M. 2021.
Social modeling via logic programming in City of Gang-
sters. In AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment, volume 17, 220-226.

