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Abstract
Player goals in games are often framed in terms of achieving something in the game world, but this framing can fail to

capture goals centered on the player’s own mental model, such as seeking the answers to questions about the game world.

We use a least-commitment model of interactive narrative to characterize these knowledge goals and the problem of knowledge
goal recognition. As a first attempt to solve the knowledge goal recognition problem, we adapt a classical goal recognition

paradigm, but in our empirical evaluation the approach suffers from a high rate of incorrectly rejecting a synthetic player’s

true goals; we discuss how handling of player goals could be made more robust in practice.

Keywords
goal recognition, interactive narrative, narrative planning, question answering

1. Introduction
Goal recognition is the task of inferring the intentions be-

hind an agent’s actions. When the agent in question is a

human game-player, it can serve as a form of player mod-

eling [1] that helps the system predict what the player

will do next. Proposed applications have included tailor-

ing procedurally-generated quests to a player’s prefer-

ences in an adventure game [2], assessing the player’s

understanding in an educational application [3], or de-

tecting when the player’s actions threaten to derail the

authorial intent in a story-focused experience [4].

Goal recognition has been studied extensively in a

games context [2], but the work so far has largely cen-

tered around goals about the state of the game world:

achievement goals to make a particular fact about the

world state true or maintenance goals to prevent a fact

from being undone [5]. Although many goals in games

fit into this framework—e.g., obtaining an item, getting

to a location, or defeating an adversary are achievement

goals; keeping a character alive is a maintenance goal—

players may also pursue goals that cannot be expressed

solely in terms of world state.

For instance, Ram [6] defines knowledge goals as the in-

tentions of an agent to extend or organize its own mental

structures. Knowledge goals encompass players’ desire

to explore the game world, uncover mysteries about past

occurrences, and explain unexpected findings. They are

central to genres such as mystery games [7] as well as

tutoring and training systems [8]. A goal recognition ap-

proach that does not account for exploratory behavior is

liable to fail even when dealing with an accomplishment-

focused player, since a knowledge goal can be instrumen-
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tal to a world-state goal: Obtaining the item involves

figuring out where to find it, and staying alive involves

figuring out which characters have harmful intent.

In interactive narrative games, the line between knowl-

edge goals and non-knowledge goals is further blurred:

As gameplay progresses, the player extends their model

of the story by discovering new information through

their interactions while at the same time their choices

constrain the range of possible stories that could emerge.

In an interactive narrative architecture using an experi-
ence manager—an artificially intelligent agent that con-

trols the non-player elements of the game to adapt to the

player’s decisions—the experience manager may have its

own goals for the story, reflecting the game designers’ in-

tent for the player’s experience. An experience manager

that recognizes the player’s goals can find the overlap

with its own goals and guide the story down a path that

satisfies both [9, 10].

This paper’s contributions are as follows. First, we

provide a framework for characterizing knowledge goals

and knowledge goal recognition in an interactive narra-

tive environment. Because the player may have limited

awareness of how the game will respond to their deci-

sions, classical frameworks that make strong assump-

tions about an agent’s model of environment dynamics

are inadequate. Instead, we draw on a formal model of

discourse from semantics and pragmatics that has the

asking and answering of questions as its basic opera-

tions [11]. Analogous to how a question prompts the

respondent to extend the body of information mutually

known to both parties in the dialogue, a player acting

in an interactive narrative game prompts the game to

extend the mutually-known body of information about

the story. Our model can capture traditional goal types,

but also knowledge goals reflecting implied questions for

the story to answer; we define these goals with reference

to a cognitive model of literal, spoken questions [12].

Second, we present a preliminary study of algorithms
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for identifying a player’s knowledge and achievement

goals from the player’s actions. We adapt a planning-

based goal recognition paradigm [13] into our frame-

work to define these algorithms, and empirically evalu-

ate them on synthetic player agents. Our experiments

reveal important shortcomings in the algorithms; robust

goal recognition for diverse goal types remains an open

problem, so we conclude by discussing a research agenda

for addressing it.

2. Related Work
Our model of interactive narrative draws from others that

treat the story world as only “existing” as far as the player

is aware of it, rather than simulating the entire world. By

modeling the player’s knowledge of the story so far, an

experience manager can delay decisions about proper-

ties and events outside the player’s perception and use

those decisions as tools to adjust the course of the story

in response to the player’s actions. This idea has been

the basis of approaches to preventing player derailment

of experience manager goals [14], saving computational

resources by deferring [15] or shortcutting [16] how off-

screen events are decided, and increasing the depth [17]

and diversity [18] of generated stories.

Horswill [19] introduces the term story state to refer

to the evolving set of design decisions about a story over

the course of its creation, whether the creation involves

the changing decisions of an external author or improvi-

sation of story-world background within an interactive

narrative during the unfolding of the narrative events

themselves. The state-transition model we use in our

framework operates on a form of story state.

Baikadi et al. [7] present a machine learning model

for recognizing player goals where the player may not

be aware of all game-supplied goals at the start, and

may take exploratory actions to discover new gameplay

goals for themself. Interactive narratives are modeled

as a graph of narrative discovery events where story-

driving information is revealed; with the testbed of the

Crystal Island [20] educational mystery game, Baikadi

et al. allude to the idea we build on here of handling

knowledge-seeking and objective-achieving in a unified

framework. However, their approach uses training data

to build domain-specific goal recognition models, while

ours uses domain-independent planning to try to recog-

nize goals in the absence of training data.

Goal recognition has been explored in a planning-

centric narrative context before, albeit focused on world-

state models of planning. Farrell and Ware [21] take a

narrative generation framework that models story char-

acters’ beliefs and intentions [22], and build upon it to

identify the intentions and beliefs of an existing agent

from its actions. Cardona-Rivera and Young [9] present

algorithms to recognize a player’s intentions for the nar-

rative trajectory, and also propose that interactive narra-

tive players predict an experience manager’s intentions

for the narrative trajectory, and that plan recognition

algorithms can serve as a proxy for how players make

these predictions.

Meneguzzi and Pereira [13] give a survey of planning-

oriented approaches to goal recognition in general. They

taxonomize the approaches by the type of environment

(stochasticity/determinism and complete/incomplete in-

formation), extent of the goal recognizer’s information

(complete awareness of the target agent’s actions vs. miss-

ing or noisy information), the target agent’s behavior

(whether it plans optimally and whether it tries to thwart

goal recognition), and form of the solution (whether can-

didate goals are assigned a probability or qualitative or-

dering for how likely they are to be the true goal, or

else a binary accept/reject decision). Recently active

goal elicitation has been proposed by Amos-Binks and

Cardona-Rivera [23] where the recognizer affects the

agent’s environment.

Building on the analogy of interactive narrative as a di-

alogue between player and game [24], player and author

[10], or player and co-participants [25], our framework

borrows from a model of explicit dialogue from semantics

and pragmatics by Roberts [11] with foundations from

Stalnaker [26]. We adapt the concept of the common
ground, the set of propositions that dialogue participants

mutually accept as true, and the progression of a dia-

logue as a sequence of moves from among two types,

assertions that add to the common ground (analogous

to our observation sets) and questions that define which

subsequent moves are relevant (analogous to our player

actions). However, a key difference between our assump-

tions and those of the dialogue models is that moves in an

interactive narrative can constrain or determine which

facts are true rather than simply revealing static facts

that were already true.

Another perspective on explicit question-asking comes

from Rothe et al. [27], who ask what humans are likely

to ask in the context of the game Battleship. They define

a “good” question in terms of maximizing information

gain. By studying players empirically, they conclude that

people tend to choose the most informative questions

when presented with a list of question options, but not

when generating their own questions from scratch. Their

environment is restricted compared to our interactive

narrative focus: They assume that the Battleship play-

ers are asking questions solely to optimize their chances

of winning the game, and informativeness of questions

translates directly to increased ability to win, whereas we

consider knowledge goals that sometimes reflect ques-

tions asked simply for their own sake.



3. A Model of Interactive Narrative
and Goals

In Section 3.1, we propose a representation for how in-

formation is revealed over the progression of interactive

narrative. In Section 3.2, we define a class of knowledge

goals with respect to this framework.

3.1. Interactive Narrative Domains
At a high level, we model an interactive narrative domain

as a state-transition model similar to a Markov decision

process, but nonstochastic: there is a known set of possi-

ble outcomes for taking a given action in a given situation,

but no assignment of probabilities to outcomes.

The domain is a tuple ⟨𝑃, 𝑆,𝐴, 𝐿,𝑂⟩. 𝑃 is a universe

of propositions. 𝑆 is a universe of proposition sets 𝑠 ⊆ 𝑃 .

We call 𝑠 the common ground in reference to the discourse

model by Stalnaker [26], as it represents the information

about a story mutually known between the player and

game at a given time during a playthrough. Besides not

being self-contradictory, we place no general restrictions

on the contents of a common ground, although we pro-

pose a more restricted implementation later in this sec-

tion. A common ground functions like a state, but unlike

a world state which only tracks facts that are true in the

present moment of the story, a common ground in de-

scribes the story as a whole and will only grow over time;

if a propositional representation of world state needs to

be tracked within the model, the propositions should be

defined to contain time indices or other ordering con-

straints that distinguish the past of the story from the

present in which the player is currently interacting.

𝐴 is a set of player actions. 𝐿(𝑠) is a function mapping

a common ground 𝑠 ∈ 𝑆 to the set of player actions that

are legal from that common ground. 𝑂(𝑠, 𝑎) is a function

that maps a common ground 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐿(𝑠)
to a set of possible resultant observation sets, each of

which takes the form of a proposition set 𝑜 ⊆ 𝑃 where

(𝑠 ∪ 𝑜) ∈ 𝑆.

We use this formalism to model the evolution of a

player’s knowledge over the course of a playthrough

of an interactive narrative game. At any given time,

the current common ground 𝑠 encompasses all of the

facts revealed to the player about the story so far. When

the player chooses an action 𝑎, they know the result

will be some observation set in 𝑂(𝑠, 𝑎), but they can-

not necessarily predict which one. This can model game

architectures where the actual results of actions are pre-

determined but depend on information unknown to the

player (and therefore unmodeled in the common-ground

representation), but also architectures that use least- or

late-commitment experience management or dynamic

procedural content generation where that information

is altogether undecided by the system until it is needed.

After 𝑎 is taken, the game determines and reveals the

chosen observation set 𝑜 ∈ 𝑂(𝑠, 𝑎). This encompasses

the direct results of the player action as well as anything

else that happens in the story world before the player is

able to act next (e.g., NPC actions). The new common

ground then becomes 𝑠′ = (𝑠 ∪ 𝑜).
As a more specific language for representing the com-

mon ground, we consider the knowledge representation

from QUEST [12], which has seen prior use for model-

ing audience reasoning about narratives [28] and can

encode the causal relationships [29] and character inten-

tions [30] commonly emphasized in plan-based narrative

generation.

A QUEST knowledge structure (QKS) is a directed

graph where nodes are annotated with semantic informa-

tion and where nodes and arcs each have one of several

predefined types; see Graesser et al. [31] for an extended

account of types and their constraints. We focus on a few

types: event nodes which correspond to character actions

or happenings in the world, state nodes which correspond

to something being true in the world, consequence arcs
which express a causal relationship between two nodes,

goal nodes which define in-story character goals (distinct

from our model of player goals; we omit these from our

examples for brevity and clarity), and outcome arcs show-

ing motivation of event nodes by goal nodes, and reason
arcs linking goal nodes together as character plans.

To relate this to the abstract model from above, we can

define the propositions in 𝑃 to indicate the existence of

QKS nodes and edges, so a common ground in 𝑠 ∈ 𝑆
corresponds to a QKS. When the player takes an action 𝑎
in 𝑠, each observation set in 𝑂(𝑠, 𝑎) will include at mini-

mum a new event node expressing that 𝑎 took place and

consequence arcs to that event node from prior events

or facts that made the player action possible.

We describe an example of how we represent a

common-ground change in a hypothetical adventure

game. To start, the player is informed that their charac-

ter is at their cottage and that a bandit has just broken

into the cottage and left with some stolen money. These

facts make up the common ground 𝑠. We illustrate an

initial QKS representation in Figure 1, including a state

node reflecting the player’s location, and a network of

state and event nodes reflecting the burglary backstory.

(Depending on the architecture, the game may have pre-

determined where the coin and the bandit went after the

burglary, but this information is not yet part of the story

as far as the player is aware so it is not modeled in the

common ground.)

The player is presented with a choice of actions to go

to one of the two other locations in the game world—the

market and the camp. The player chooses to go to the

market (action 𝑎). From their perspective, there may be

one of multiple outcomes (the full range of possibilities

makes up 𝑂(𝑠, 𝑎)): They may encounter the bandit there,



Figure 1: Example of a common ground in the QKS represen-
tation.

and may or may not witness the bandit spending the

stolen money there, or else they may not find the bandit

and therefore conclude that the bandit went to the camp

instead. These map to candidates for how to update the

common ground, as illustrated in Figure 2.

The game mechanics resolve what the actual outcome

should be: For instance, the player is informed that they

see the bandit buying a potion with the money. We up-

date the QKS to include the corresponding observation

set to represent the new situation, as with the top-right

QKS in Figure 2. The observation set adds information

both forward in time, such as the event node for the

player’s action of traveling, and backward in time, such

as the consequence arc reflecting the past occurrence of

the bandit’s arrival at the market.

3.2. Goals
Abstractly, we define a player goal as a formula over

propositions in 𝑃 . We say that a goal 𝐺 is satisfied in

common ground 𝑠 if 𝑠 |= 𝐺. In the QKS model, this

translates to a goal specifying what nodes and arcs can be

added to make the QKS satisfactory. This representation

does not lose generality over a world-state model since

it can specify world-state goals using state nodes for the

desired facts, but we focus this section on how it can be

used to define a certain class of knowledge goals.

An advantage of the QKS representation is that it can

make direct use of QUEST’s question-answering proce-

dures to determine whether the present common ground

answers certain kinds of questions about the story. For

instance, a question of the form “How did [event/state]
happen?” can be answered by following consequence

arcs backward from the node; a question of the form

“What are the consequences of [event/state]?” can be an-

swered by following consequence arcs forward from the

node; or a question of the form “Why did the character

want (via [goal node]) to do [event linked by outcome arc to
the goal node]?” can be specified by following reason arcs

forward from the goal node. The QUEST cognitive model

predicts that among the neighboring nodes returned this

way, humans will rate nearer neighbors as better answers

than more distant ones.

In the situation where we ask a QUEST-style question

about a common ground that does not yet contain an

answer, we can model the question as a goal to reach a

common ground where the answer exists. For instance,

consider the example from Section 3.1. The player could

have the question: “What are the consequences of the

bandit having the coin?” The question starts out unan-

swered in the initial QKS of Figure 1; but by going to

the Market, the player may witness the bandit using the

coin as in the top-right QKS of Figure 2, in which case

a consequence arc from the bandit-has-coin state node

now exists and the question is answered.

Formally, let 𝑠 be the QKS representation of the current

common ground. We define a QUEST question goal as

a tuple ⟨𝑛𝑞, 𝑡𝑟, 𝑑𝑟, 𝑡𝑎⟩, where 𝑛𝑞 is an existing node in

𝑠, 𝑑𝑟 is an arc direction among incoming or outgoing,

𝑡𝑟 is an arc type, and 𝑡𝑎 is a node type. We say that a

state 𝑠′ ⊇ 𝑠 satisfies ⟨𝑛𝑞, 𝑡𝑟, 𝑑𝑟, 𝑡𝑎⟩ if the QKS for 𝑠′

contains an arc of type 𝑡𝑟 going direction 𝑑𝑟 from 𝑛𝑞

such that the node on the other end of the arc has type

𝑡𝑎. 𝑛𝑞 constitutes the subject of the question (e.g., an

event/state node in the how case) and the others define

the form of an answer (e.g., incoming consequence arc

from a state/event node).

4. Goal Recognition
Suppose we have a log of actions the player has taken

during an interactive narrative. The log may end be-

fore the player has completed any identifiable goals,

but an observer—e.g., a game designer analyzing the

playthrough in hindsight or an experience manager try-

ing to adapt to the player for later interactions—may

nonetheless need to reason about the player’s inten-

tions. How do we identify possible player goals, including

knowledge goals, motivating the actions?

Our first attempt to solve this problem is a goal recog-
nition as planning [32] approach: We model the player

with an artificial agent which we call an agent model, hy-

pothesize that the player has a specific goal, simulate the

agent model’s reasoning about how to pursue that goal,

and determine whether the agent could have chosen the

same course of action that the player did in the logs; if

so, we conclude the player had that goal.

However, agent models for existing goal-recognition-

as-planning approaches prescribe behavior in a determin-

istic or stochastic environment, whereas our framework

treats the game as a nondeterministic, nonstochastic envi-



Figure 2: Example of possible observation sets (highlighted) and resulting QKS structures from one player action after the
QKS in Figure 1.

ronment: players know the range of possible observation

sets that could result from their action but have no reli-

able way of anticipating which specific observation set

will be chosen. An agent model now needs to account

for how a player might handle this unpredictability.

In our framework, we define a goal recognition prob-

lem instance as a tuple ⟨𝐷,𝑇,𝐶⟩. 𝐷 is an interactive

narrative domain ⟨𝑃, 𝑆,𝐴, 𝐿,𝑂,𝑀⟩ as defined in Sec-

tion 3.1. 𝑇 is a trajectory consisting of a sequence

𝑠1, 𝑎1, 𝑠2, 𝑎2, · · · 𝑠𝑛, 𝑎𝑛, where 𝑠𝑖 ∈ 𝑆 and 𝑎𝑖 ∈ 𝐴 for

𝑖 = 1 to 𝑛. This represents (chronologically) the com-

mon grounds that the player has experienced so far and

the actions the player took in response. 𝐶 is a set of

candidate goals. 𝑀 is an agent model as elaborated later

in this section.

Assume 𝑇 comes from a game log, presenting a snap-

shot of an in-progress playthrough where the player is

acting toward some goal in 𝐶 but has not yet achieved

it. The solution to a goal recognition problem is the set

𝐶′ ⊆ 𝐶 of candidate goals such that an agent modeled

by 𝑀 acting in domain 𝐷 pursuing any goal 𝑔 ∈ 𝐶′

could produce trajectory 𝑇 .

Algorithm 1 sketches the goal-recognition-as-planning

process. For each player action so far in 𝑇 , it checks the

consistency of that action with each goal; assume the sub-

routine verify is a search process that returns whether

the action could be selected by the agent model. (We

check each action individually instead of the whole se-

quence of actions at once because an agent may plan with

the expectation of a certain observation set but receive a

different observation set in actuality and have to revise

its plan.)

We spend the rest of this section discussing specific

agent models that the goal recognizer could assume.



Algorithm 1 Goal recognition for the common ground

Input: Domain 𝐷, common-ground/player-action tra-

jectory 𝑇 , candidate goals 𝐶 , agent model 𝑀
Output: A set of goals 𝐶′ ⊆ 𝐶 that an agent modeled

by 𝑀 could have been pursuing if it took the action

sequence in 𝑇
1: 𝐶′ ← 𝐶
2: for all 𝑠𝑖 ∈ 𝑇 do
3: for all 𝑔 ∈ 𝐶′ do
4: if ¬verify(𝐷, 𝑠𝑖, 𝑎𝑖, 𝑔,𝑀) then
5: 𝐶′ ← 𝐶′ ∖ {𝑔}
6: return 𝐶′

First we propose goal recognition using an optimistic
planning agent model where the agent plans for the best

case, hoping that its action will result in a specific ob-

servation set that gets it closer to the goal. Given a cur-

rent common ground 𝑠𝑖, for an optimistic-planning agent

with goal 𝑔, the agent can take an action 𝑎𝑖 iff there exists

some hypothetical plan 𝑎𝑖, 𝑠𝑖+1, 𝑎𝑖+1, · · · 𝑎𝑗 , 𝑠𝑗 where

𝑠𝑗 satisfies 𝑔; we also require the plan to be nonredun-

dant in that no strict subsequence of 𝑎𝑖, 𝑎𝑖+1, · · · 𝑎𝑗 also

satisfies 𝑔. This definition is based on Sabre’s character

model [22, 33].

We also propose an adversarial planning agent model

that plans for the worst case, trying to act according to

a policy that can eventually satisfy the goal even when

its actions result in the worst-case observation sets. For

some goal 𝑔, define a safe common ground 𝑠 as (base case)

one that satisfies 𝑔 or (recursively) for which there exists

an action 𝑎 ∈ 𝐿(𝑠) such that all outcomes in 𝑂(𝑠, 𝑎)
result in safe common grounds. Given a current common

ground 𝑠𝑖, for an adversarial-planning agent with goal

𝑔, the agent can take an action 𝑎𝑖 if all possible result-

ing common grounds are safe. However, because this

definition alone could easily result in situations where

the agent would have no valid action choices defined

(because the agent will eventually have to take an ac-

tion where at least one possible outcome could prevent

the goal), we generalize this definition—we model an

agent who believes the observation sets are chosen uni-

formly at random, and the agent follows an expectimax-

style [34] policy that it thinks will maximize the worst-

case probability of satisfying the goal. Define the score

expectimax(𝑠) of a common ground 𝑠 for goal 𝑔 as 1

if 𝑔 satisfies 𝑠, or 0 if 𝑔 can never be satisfied from 𝑠
(e.g., because 𝑠 is a leaf in a finite tree of possible tra-

jectories); otherwise, define expectimax(𝑠) as the aver-

age score of common grounds reached from choosing

a best action, max𝑎∈𝐿(𝑠)

∑︀
𝑜∈𝑂(𝑠,𝑎) expectimax(𝑠∪𝑜)

|𝑂(𝑠,𝑎)| . An

adversarial-planning agent can take an action 𝑎𝑖 if 𝑎𝑖

maximizes the average in this manner.

5. Experiments
There are many risks to the robustness of a goal recog-

nition model when applied to real human players: the

player acting toward a goal outside of the candidates con-

sidered, changing goals, behaving in a non-goal-directed

way, missing or misunderstanding information the model

assumes is available to them. This preliminary study con-

siders synthetic players that do not yet incorporate these

risks, but we acknowledge the importance of human fac-

tors for our future work.

There is a wide spectrum of ways even idealized ar-

tificial agents can handle the nondeterministic environ-

ments of our framework, as shown by the contrast be-

tween the highly risk-taking optimistic-planning agent

model and the highly risk-averse adversarial-planning

agent model described in Section 4. A mismatch between

the agent model assumed by the goal recognizer and the

decision-making criteria of the actual player can result

in wrong conclusions about the player goals—false posi-

tives where a candidate goal is wrongly attributed to the

player, and false negatives where the player’s actual goal

is wrongly rejected as a possibility.

Our experiment seeks to quantify the error-proneness

of goal recognition that assumes one agent model when

the player acts according to another agent model. By us-

ing an optimistic planner as the “real” player and trying to

identify that player’s goals using the opposite extreme of

an adversarial-planning goal recognizer, and the reverse,

we aim to establish upper bounds on goal recognition

error before human factors are applied.

We generated goal recognition problem instances as

follows: To derive the domain 𝐷, we started with depth-

limited, tree-structured story graphs [35] from a narra-

tive planning [36] problem, generated using the Sabre

narrative planner [33]; these graphs consist of nodes rep-

resenting world states and edges representing player or

non-player actions, annotated with information such as

whether the player observed a given non-player action.

We restructured the story graphs to alternate between

branching on a choice of player actions and branching

on a choice of non-player macro-actions containing any

number of non-player actions. At each node, we used

previously-proposed mappings [29, 30] to derive a QKS

equivalent of the story so far. We also used an approach

similar to Robertson and Young [37] and Fisher et al. [38]

to allow uncertainty about which of multiple story-graph

nodes the player was in, due to possible unobserved past

events; we derived the final QKS common ground rep-

resenting the player knowledge by taking the maximal

subgraph that is shared by the original stories.

To obtain a trajectory 𝑇 of player actions so far,

we sampled and truncated goal-satisfying playthroughs

given a goal 𝑔 and agent model 𝑀 . We manually defined

the set of candidate goals 𝐶 for the domain.



As a source for our domain, we used the narrative

planning problem from the Grandma adventure game

used by Ware et al. [39]. We retained the same characters,

actions, locations, and items, but modified the initial

state and NPC goals to create the initial setup as follows:

Known to the player in the initial QKS, three actions have

already happened in the backstory: The bandit character

has stolen a sword and a coin from the player character’s

house and left the house. The merchant character is at the

market and the guard character is at the bandit’s camp,

both locations reachable from a crossroads reachable

from the cottage. Unknown to the player and thus not

represented in the initial QKS, the bandit intends to use

the sword to kill the guard and/or rob the merchant,

and/or use the coin to buy from the merchant.

We defined four possible goals that the synthetic player

would try to satisfy and that the goal recognizer would

try to distinguish between as the candidate goal set 𝐶:

achievement goals to get the stolen coin and to get the

stolen sword, and knowledge goals in the form of QUEST

question goals for “Why did the bandit steal the coin?”

and “Why did the bandit steal the sword?” These goals

overlap in some of the player actions that can be used in

the course of satisfying them, e.g., following the bandit

can support any of the goals, but diverge in others, e.g.,

killing the bandit enables taking back the stolen items

but eliminates opportunities to watch the bandit’s plans

unfold and learn their intentions.

We generated the narrative planning problem’s story

graph to a fixed depth of 6 steps, based on available com-

putation time, and converted it to the graph of QKS com-

mon grounds as described above. We then collected all

trajectories for each agent model and each goal and ana-

lyzed them in the following process:

Suppose the real player is an optimistic-planning agent

and the goal recognizer assumes an adversarial-planning

agent model, or the reverse. Let 𝑇 be a trajectory; let 𝐶
be all the goals, let 𝐶′

𝑡𝑟𝑢𝑒 be the set of goals for which

the player generated 𝑇 and let 𝐶′
𝑜𝑢𝑡𝑝𝑢𝑡 be the set of

goals identified by the goal recognizer for 𝑇 . We counted

goals in 𝐶′
𝑡𝑟𝑢𝑒 ∩ 𝐶′

𝑜𝑢𝑡𝑝𝑢𝑡 as true positives for which the

goal recognizer would correctly identify a player goal

for 𝑇 ; 𝐶′
𝑡𝑟𝑢𝑒 ∖𝐶′

𝑜𝑢𝑡𝑝𝑢𝑡 was false negatives for which the

recognizer failed to identify a goal that was consistent

with the true player model; 𝐶′
𝑜𝑢𝑡𝑝𝑢𝑡 ∖ 𝐶′

𝑡𝑟𝑢𝑒 was false

positives for which the recognizer identified a goal that

was actually inconsistent with the true player model;

and 𝐶 ∖ (𝐶′
𝑡𝑟𝑢𝑒 ∪𝐶′

𝑜𝑢𝑡𝑝𝑢𝑡) was true negatives where the

recognizer correctly did not identify a goal that would

have been inconsistent with the true player model.

We show confusion matrices for the results across all

goals and trajectory lengths: Figure 3 shows the per-

formance of a goal recognizer assuming an adversarial-

planning agent model if the actual player acts like an

optimistic-planning agent model, and Figure 4 shows the
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Figure 3: Adversarial-planning goal recognizer on optimistic-
planning player over all goals and trajectories
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Figure 4: Optimistic-planning goal recognizer on adversarial-
planning player over all goals and trajectories

reverse. We show standard measures of performance for

a test to distinguish positive from negative cases: sensi-

tivity (how often the recognizer concluded the player had

the goal, given that the goal was consistent with the true

player model), and specificity (how often the recognizer

concluded the player did not have the goal, given that

the goal was inconsistent with the true player model).

Both of the player-recognizer combinations had worse-

than-random sensitivity and better-than-random speci-

ficity; the recognizers skewed toward correctly rejecting

candidate goals when the player did not have those goals,

but failing to detect the true goals. The difference was

especially strongly pronounced in a goal recognizer that

assumed an optimistic-planning agent model when the

actual player used the adversarial-planning agent model;

that is, when considering a goal that the player actually

had, the optimistic-planning goal recognizer was highly

likely to erroneously reject that goal. These instances

came from the fact that our optimistic-planning agent

model attempts to be as efficient as possible by avoiding



actions that could be redundant to the goal, while the

adversarial-planning model accepts longer paths in favor

of safety; the simulated adversarial-planning player often

took actions that were unexplainable to the optimistic-

planning recognizer because there was a more direct

route available. This experiment suggests that strict as-

sumptions about agent efficiency—which are common in

existing goal recognition approaches—are too brittle in

practice, and future goal recognition approaches should

be designed to handle cautious or meandering players.

6. Conclusions
This paper highlighted an underexplored class of goals

important to interactive narratives—player goals to fill

the gaps in their knowledge about the story so far. We

extended goal recognition to these goals by defining a

planning framework over the space of player mental mod-

els rather than over the space of world states, drawing

on representations of discourse and question-answering

from linguistics and cognitive science.

Accurate algorithms for knowledge goal recognition

are still an open problem. An approach based on sim-

ulating a hypothetical player and comparing its deci-

sions to the real player’s can easily fail to detect goals

of a player whose playstyle does not match the algo-

rithm’s assumptions. However, the desiderata for a goal

recognition algorithm depend on how that algorithm

will be used. For instance, high-specificity but low-

sensitivity goal recognition could be acceptable for an

experience manager whose objective is to find a small

handful of the player’s interests and use them to offer

the player mutually-beneficial opportunities. Conversely,

low-specificity but high-sensitivity goal recognition can

still be useful for a highly-improvisational experience

manager deciding when to fix “plot holes” in its stories

that may be exposed by player knowledge goals [40].

Reasoning about player goals will ultimately require

considering the context that goals come from. In the case

of knowledge goals, aside from offering models, the liter-

ature we reference goes on to emphasize that reasoning

effectively about questions requires understanding why
they were asked: Roberts [11] and Ram [41] frame ba-

sic questions as part of strategies to answer higher-level

questions, and Graesser et al. [42] and Ram [6] discuss

the functions of questions to support the asker’s goals

and explain anomalous findings. In the long term, we aim

to take theories of when knowledge goals are likely to

occur, and integrate them with mechanisms for confirm-

ing those knowledge goals from a player’s actions and

for using this information to shape the story in concert

with the player.
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