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Abstract

Interactive story systems today sit at three extremes. Emer-
gent multi-agent simulations give each character local intel-
ligence but no global view, often losing plot structure. Re-
active systems makes fast, state-based decisions. They form
plans using hand-authored rules without searching for ac-
tion sequences, so these systems can respond quickly but can
wander if long-term rules are not explicitly authored. Cen-
tralized narrative planners reason globally to craft coherent,
goal-directed plots, yet are computationally expensive. In my
doctoral work I treat these not as isolated choices but as the
three corners of a triangle spectrum of narrative generation.
I propose hybrid, landmark-guided approaches that can scale
to larger domains. I am also exploring how large language
models (LLMs) can be embedded within these hybrid ap-
proaches themselves. This paper outlines research questions,
methodology, progress to date, evaluation plan, and requested
feedback.

Introduction
Interactive narrative environments, such as games and train-
ing simulations, often need to maintain a coherent storyline
while adapting to user choices. Narrative planning is the
use of automated planning to construct, communicate, and
understand stories, a form of information to which human
cognition and enaction is predisposed (Rivera et al. 2024).
I organize this landscape around three points of a triangle,
as seen in Figure 1: reactive systems (no search), emergent
systems (local agents), and centralized narrative planners
(global search and reasoning).

Reactive systems make fast, state-based decisions from
hand-authored rules, allowing quick responses but risking
shallow or wandering stories without long-term guidance
(e.g. Façade (Mateas and Stern 2005)). Because plans are as-
sembled from rules without searching over action sequences,
these systems are highly responsive and generally the lowest
cost.

Emergent multi-agent simulations give each character lo-
cal intelligence but no global view, yielding high character
believability (e.g. Dwarf Fortress (Adams 2019)) but often
losing coherent plot structure. They are typically more ex-
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pensive than purely reactive approaches and do not guaran-
tee story organization.

Centralized narrative planners reason globally about story
logic and character intentions, producing coherent, goal-
directed plots, but they are computationally expensive. Sys-
tems like Sabre (Ware and Siler 2021) model the intentions
of the author as well as the intentions and beliefs of each
character, ensuring every action is grounded in goals and be-
liefs. Narrative planners reason about the logical structure of
events using preconditions and effects (Young 1999), explor-
ing many possible story paths to ensure quality and struc-
ture. However, forward search in these domains is computa-
tionally expensive since planning is P-SPACE hard (Helmert
2006) and does not scale well to longer or more complex sto-
ries.

No single paradigm is universally optimal for all story-
telling contexts, consistent with the No Free Lunch theorem
(Wolpert and Macready 1997). In this framing, reactive sys-
tems are low cost and highly responsive. Emergent systems
are medium cost with high believability but weaker struc-
ture. Classical planners sit inside the triangle (medium cost,
high structure, medium believability) and full narrative plan-
ners occupy the high-cost, high-structure, high-believability
corner. My doctoral research investigates hybrid methods
situated along the edges and interior of this triangle such
as landmark-guided approaches and tries to fit Large Lan-
guage Models (LLMs) into each of those corners to improve
scalability, coherence, and believability.

Background
Planning is popular for generating interactive stories be-
cause it provides a formal, generative framework that rea-
sons about causality and event ordering (Young 1999).
Early systems such as Tale-Spin (Meehan 1977), Universe
(Lebowitz 1985), and Façade (Mateas and Stern 2005) em-
ployed symbolic representations of characters, locations, ob-
jects, and conditions, but lacked the full search capabilities
of modern narrative planners.

Classical planners were later used to create playable nar-
rative adaptations of Friends (Cavazza, Charles, and Mead
2002), Madame Bovary (Pizzi and Cavazza 2007), and The
Merchant of Venice (Porteous, Cavazza, and Charles 2010),
and narrative planning has also been applied to training sim-
ulations (Fisher, Siler, and Ware 2022). Subsequent nar-



Figure 1: The triangle spectrum of interactive narrative
generation. Each corner represents a paradigm, emergent
multi-agent simulation, reactive decision-making, and cen-
tralized narrative planning

rative planners extend classical planning by modeling ad-
ditional story properties. IPOCL (Riedl and Young 2010)
represents character intentions. IMPRACTical (Teutenberg
and Porteous 2013) and Glaive (Ware and Young 2014) in-
corporate conflict and failed plans. HeadSpace (Sanghra-
jka, Young, and Thorne 2022), Ostari (Eger and Martens
2017), and Sabre (Ware and Siler 2021) allow characters
to act under mistaken beliefs. A survey by Young et al.
(2013) summarizes these systems. Because the number of
possible action sequences grows quickly, much work has fo-
cused on efficient search using classical heuristics (Bonet
and Geffner 2001) or narrative-specific methods (Teuten-
berg and Porteous 2013; Ware and Young 2014). Addi-
tional structural pruning strategies, such as causal neces-
sity (Ware, Senanayake, and Farrell 2023) and salience-
based costs (Farrell, Ware, and Baker 2020; Ware and Farrell
2022), further reduce search effort.

Recent research explores integrating LLMs with plan-
ning. Neural story planning techniques keep an LLM goal
oriented during generation (Ye et al. 2023). Other work uses
an LLM as a cost function to prioritize promising actions
(Senanayake and Ware 2025). Studies on the planning abili-
ties of LLMs in symbolic domains (Valmeekam et al. 2023)
can transfer to narrative problems. Drama Llama introduces
an LLM-powered storylets framework that combines the
structural benefits of storylet based systems with the gen-
erative capabilities of large language models, supporting au-
thor responsiveness and coherent, believable character in-
teractions in interactive stories (Sun et al. 2025). Together,
these advances motivate hybrid approaches that combine the
structural guarantees of symbolic planning with the flexi-

bility of LLM-based reasoning, situated along the triangle
spectrum defined above.

Research Questions and Proposed Approach
To provide global scaffolding without over committing to a
full trajectory, I use planning landmarks, propositions that
must become true at some point along every valid solution,
typically organized as a partial order that constrains when
they should be achieved (Hoffmann, Porteous, and Sebas-
tia 2011). Ordered landmarks are widely used to decompose
hard planning problems into smaller subproblems while pre-
serving causal coherence (Hoffmann, Porteous, and Sebastia
2011). In narrative planning, this gives a way to encode high-
level plot points that support causal progression and inten-
tional character behavior while leaving flexibility and allow-
ing the specific sequence of low-level actions that achieves
each point (Riedl and Young 2010) to be chosen at run time.
The research questions I propose to explore are:

1. How do narrative quality (story structure and charac-
ter believability), controllability, and computational cost
vary across pure paradigms (emergent, reactive, central-
ized) as world complexity scales?

2. Do landmark-guided hybrids achieve higher quality than
emergent or reactive baselines while scaling better than
centralized narrative planning?

3. How robust are high-level landmark plans to deviations
introduced by agents at runtime (e.g., failed actions,
LLM hallucinations)?

Hybrid Systems. The following two hybrid systems illus-
trate my approach. Additional variants will be explored as
the work progresses. Neither the LLM nor the planner are
trained or tuned to a single story world; both are kept domain
agnostic so they can be dropped into new domains with only
a change of action schema and initial state.

1. State trajectory constrained LLM Simulation: A cen-
tralized narrative planner computes a sequence of causal
landmarks over an abstracted domain. Each agent is an
agent with sensors (observations), internal state (belief,
intention, memory, goals). The agent’s actions are con-
trolled by an LLM conditioned on the currently active
landmark depending on the agent’s observations and the
internal state.

2. Landmark-Guided Classical Planner: The abstracted
plan supplies a sequence of sub-goals. A centralized clas-
sical planner expands the next sub-goal into low-level
actions, executes them, monitors effects, and either ad-
vances to the next sub-goal. I am currently implement-
ing this component as a low-level GPU (CUDA/C++)
parallelized planner. After the basic classical version is
stable, I will incrementally add a lightweight layer of
narrative features (e.g., simplified intention model) so
it sits between pure classical search and the full be-
lief/intention model of Sabre. This intermediate planner
can then serve as a hybrid planner that respects high-level
narrative structure while remaining generic and reusable
across story domains.



Progress to Date
This research builds on top of several existing assets and
early implementations:

• Narrative Planner: The Sabre planner supports author
goals, character intentions, and mistaken beliefs (Ware
and Siler 2021). Its code base will be extended to export
abstracted domain models for landmark computation.

• Scalable Narrative Domain: A parameterized story do-
main allows controlled variations of:
– number of characters,
– available actions,
– items and locations,
– author goals.
These parameters can be changed to produce different
story domains for scaling studies.

• Baselines:
– Pure narrative planning using Sabre with classical and

narrative-specific heuristics (e.g., Glaive (Ware and
Young 2014)).

– Emergent simulation prototype in which agents act
from predefined goals with only local knowledge.

– Reactive simulation in which agents act towards their
goals without searching for plans.

• Instrumentation: Logging utilities record wall-clock
time, memory usage, node expansions and plan length
enabling consistent comparison across methods and
scales.

• Landmark Extraction: An abstract domain representa-
tion system (with reduced action and predicate set).

• Hybrid Infrastructure: Messaging interfaces are de-
signed so that LLM agents can reason and find action
sequences to achieve the current landmark and a classical
planner can request the next sub-goal when a landmark is
achieved.

These components establish the experimental foundation
needed to implement and evaluate the proposed hybrid sys-
tems.

Evaluation Plan
I propose to evaluate the system along three dimensions:
quality, scalability, and controllability/stability. For each
configuration (method and scale parameters), I will run
multiple trials with different random seeds and record raw
counts, measuring metrics from internal state of the plan-
ner or simulation. I also proposed human evaluations of the
qualities.

Quality I will evaluate both character believability and
story structure using a combination of human subjects eval-
uation and automatic metrics. For the human study, partici-
pants judge how plausible and intentional the characters’ ac-
tions appear and how coherent the overall plot feels. For the
automatic measures, each run logs which author and charac-
ter goals are satisfied (and how many times) and tracks pre-
defined set of “main plot points” (e.g., discovery events, key

relationship changes, critical resource transfers). I record
how many of these plot points occur and at what plan depth.
Runs with higher goal satisfaction and broader/earlier plot-
point coverage are taken to reflect stronger structure and,
alongside human ratings, provide quantitative evidence rel-
evant to believability.

Scalability Scalability will be measured by wall-clock
time, number of states visited, memory usage, and the max-
imum feasible scale before timeout or failure. Scale is con-
trolled by increasing the number of characters, actions,
items, and locations. For each scale step I will record to-
tal search time, memory usage, number of node expansions
(for planning components), and whether a complete story
reaching at least one author goal was produced. The “max-
imum feasible scale” is the largest configuration in which
the method still produces a valid story within a fixed time
limit. This lets me plot how quickly the pure approaches fail
versus the hybrids.

Controllability/Stability Finally, I will look at how pre-
dictable each method is under the same initial conditions.
For hybrids with landmark guidance, I will compute land-
mark adherence, the fraction of planned landmarks that are
achieved in the order predicted by the abstract plan. Devia-
tions (skipped landmarks, reordered landmarks) are logged
and give me a direct measure of how robust the method is
to failed actions and/or LLM variation. I will also measure
variance in final goal counts across seeds. A method that
produces wildly different outcomes is less controllable. One
that keeps goal completion without much deviation is more
stable.

Requested Feedback
I would appreciate feedback and support on the following
points:

1. Triangle Framing. Is the idea of treating emergent sys-
tems, reactive decision-making, and centralized narrative
planning as the three corners of a spectrum clear and
novel enough to guide a dissertation? If not, how might I
sharpen or adjust this framing?

2. Metrics, Landmark Methodology, and Human Eval-
uation. Are the current system metrics (author/character
goal completion, main plot point achievement, landmark
adherence, variance across seeds, and scalability) to-
gether with the human-subjects measures of coherence,
intention, and reader preference sufficient to compare hy-
brids against baselines? I am especially interested in ad-
vice on additional metrics that could strengthen the argu-
ment about “quality”.

3. Handling LLM Unpredictability. I welcome sugges-
tions on practical strategies for mitigating LLM drift or
hallucination when agents attempt to follow a landmark
sequence.

Any comments on other risks I may have overlooked or
references to similar evaluation practices in adjacent work
would also be very helpful.
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