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Abstract

Narrative planning is the process of generating sequences
of actions that form coherent and goal-oriented narratives.
Classical implementations of narrative planning rely on
heuristic search techniques to offer structured story gener-
ation, but often struggle with scalability because of large
branching factors and deep search requirements. To improve
the speed of narrative planning, we introduce Fog of War
Pruning, where actions are only allowed if they involve
people, places, and things that the protagonist character has
discovered. This pruning technique restricts the planning to
what is known from the perspective of the story’s central
character or characters, pruning branches of the search tree
that involve actions beyond their current knowledge. This
method is particularly useful in narratives where there is a
strong protagonist focus and the story unfolds gradually as the
character learns. This enables more efficient planning, while
more closely aligning with how people would experience
stories. Experiments across many narrative domains show
that this technique speeds up the search process under
identical search limits and lets the planner solve more unique
problems.

Introduction
Narrative planning is a tool used to generate and regenerate
structured stories during runtime for interactive narrative
environments, such as games and training simulations, that
need to maintain a coherent storyline while adapting to user
choices (Young et al. 2013). A narrative planner generates
stories by reasoning about the logical structure of events
(Young 1999). Unlike reactive systems that make limited
look-ahead decisions, planning-based approaches evaluate
many possible story paths far into the future to ensure both
quality and structure. However, the high computational cost
of planning (Helmert 2006) means that story generation does
not scale well to complex and longer story domains.

Classical heuristic search methods, like those using the
h+ and hmax heuristics (Bonet and Geffner 2001), and
even search methods specifically designed for narrative
planning, like the Glaive heuristic (Ware and Young 2014),
can help mitigate some scaling issues. Prior work has also
looked at guiding search by using large language models
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as heuristics (Senanayake and Ware 2025). Still, even with
good heuristics, deeply nested searches will eventually
become intractable.

Inspired by the Fog of War in strategy video games,
where unexplored places and characters are hidden until
discovered, we introduce Fog of War Pruning for narrative
planning. One element of the story, typically the protagonist,
begins as seen. When a seen element interacts with other ele-
ments, those other elements become seen. Actions involving
only unseen things are not allowed. Just like in these games
where the fog of war fades as the player explores the map,
our approach gradually reveals the elements of the story and
only reasons about them once they are discovered.

We implement Fog of War Pruning in the Sabre narrative
planner (Ware and Siler 2021) and test it on a suite
of benchmark problems. Our pruning technique typically
improves the number of problems a planner can solve, the
number of nodes visited, and the time spent searching.

Our findings suggest that Fog of War Pruning is especially
effective in first person narratives with a central protagonist.
It relies on the assumption that characters and the important
items in the story are strategically placed for the protagonist
to discover, so the search is sometimes incomplete, but when
these assumptions hold, the speed and efficiency of the
planner is improved.

Related Work
Early interactive storytelling systems like Tale-Spin (Mee-
han 1977), Universe (Lebowitz 1985), and Façade (Mateas
and Stern 2005) used symbolic logic to represent characters,
locations, and conditions. They employed preconditions and
effects to control when actions could occur and how they
changed the story state, but they did not perform extensive
planning searches. Tale-Spin and Universe lacked true
planning capabilities, and Façade’s planning was limited.

Planning techniques can play an important role in story-
driven games as they can provide a clear way to represent
causality and event ordering (Young 1999). Off-the-shelf
classical planners have been used to make playable inter-
active versions of well-known narratives such as Friends
(Cavazza, Charles, and Mead 2002), Madame Bovary (Pizzi
and Cavazza 2007), and The Merchant of Venice (Porteous,
Cavazza, and Charles 2010).

Narrative planners extend classical planning by reasoning



about story properties. Systems like IPOCL (Riedl and
Young 2010) model character intentions, while IMPRAC-
Tical (Teutenberg and Porteous 2013) and Glaive (Ware
and Young 2014) model conflicts and failed plans. Planners
like HeadSpace (Sanghrajka, Young, and Thorne 2022),
Ostari (Eger and Martens 2017) and Sabre (Ware and Siler
2021) model characters with mistaken beliefs which enables
more complex and realistic story behaviors. A survey by
Young et al. (2013) covers various story planning systems.
Narrative planning has been used for interactive games
(Ware et al. 2014, 2022) and training simulations (Garcia,
Ware, and Baker 2019; Fisher, Siler, and Ware 2022).

Because the number of possible action sequences that
need to be considered explodes quickly, even for small
problems, much research has been done on fast planning
algorithms. Much of it has focused on heuristic search,
either using traditional planning heuristics (Bonet and
Geffner 2001) or methods tailored to stories (Teutenberg and
Porteous 2013; Ware and Young 2014).

It is also possible to improve the speed of narrative
planning by examining the structure of a story. Recent
work used causal necessity as a step-cost function (Ware,
Senanayake, and Farrell 2023; Birchmeier and Ware 2025).
An action is causally necessary if omitting it would make the
plan impossible. Favoring plans rich in causally necessary
actions can accelerate the search process. In other words,
using causal necessity as a cost function helps prune
irrelevant branches and focuses the search on actions that
are necessary for plot progression, thereby speeding up the
search. The Fog of War Pruning technique we introduce in
this paper can be seen as a kind of structural pruning.

Most relevant to this paper are search methods based on
salience, or how easy it is to remember certain elements of
a story (Zwaan and Radvansky 1998). Farrell, Ware, and
Baker (2020) did a series of studies that measured how
salient each event is to a story based on its protagonist,
time, place, causal structure, and goal. Later work built on
this idea by using salience as a cost function—plans that
link high salience events are rewarded and branches that
cannot reach a minimum salience are pruned (Ware and
Farrell 2022). Fog of War Pruning can be considered a type
of salience-based pruning, though we use a simpler, binary
model of salience. One element of the story begins as salient,
and each time a salient thing appears in an action it makes
the other elements of the action permanently salient also.

Another related line of research on narrative focalization
(Bae, Cheong, and Young 2011) limits the narration to
a particular character’s viewpoint. When the protagonist
begins as the only salient object, the early events of a
story told with Fog of War Pruning are focalized on the
protagonist. However, as the fog clears, events not involving
the protagonist quickly become eligible to add to the story.

Another connection can be made to planning under partial
observability. Bonet et al. (2011) showed that classical
re-planning techniques can be adapted to domains where
the agent has only limited information about the world.
Our Fog of War Pruning method restricts planning to the
protagonist’s vantage point, effectively modeling a form of
partial observability.

Example Story Planning Problem
We will use the Save Gramma interactive storytelling
problem (Ware et al. 2022) throughout this paper to illustrate
our method. The player character Tom begins at his sick
grandmother’s cottage holding a coin. A bandit waits in the
nearby camp with a sword and is willing to commit crimes
to get rich. A merchant stands at the market with a healing
potion, eager for profit but unwilling to break the law. The
cottage, camp, and market are linked by a central crossroads.
Tom’s goal is to obtain the potion and heal his grandmother
or die trying.

Background
In forward state-space planning (Russell and Norvig 2009),
the planner begins in the initial world state and adds one
fully ground action after another to the end of the plan until
a goal condition is reached. In a classical planning problem,
any action sequence that reaches a goal state is a valid plan.

Narrative planning typically imposes additional criteria
on which plans are considered solutions. We tested our Fog
of War Pruning method in the Sabre narrative planner (Ware
and Siler 2021), which defines a narrative planning problem
as having these elements:

• Objects are entities that exist in the story world including
characters, places and items. Tom, the cottage, and the
healing potion are examples of objects.

• Fluents are variables that can be assigned Boolean,
numeric, or nominal values. Propositions can be formed
by making statements about the value of a fluent or what
a character believes the value of a fluent to be. Tom’s
location is an example of a fluent, and its possible values
are the cottage, market, camp, and crossroads. “Tom
believes the merchant is at the market,” is an example
of a belief proposition.

• Actions are events similar to ADL operators (Pednault
1994). An action has a precondition that must be true
before it can occur, an effect which changes that state,
a list of consenting characters who are responsible
taking the action, and a function that determines which
characters observe an action occurring. Every action has
a unique signature, which is an action name followed by
a list of objects. Tom walking from his cottage to the
crossroads is an example of an action.

• Triggers are events that fire automatically as soon as
their preconditions are met. They do not have consenting
characters or observation functions. Tom observing that
the bandit is also at the crossroads is an example trigger.

• Utility Functions define numeric preferences over states.
The author’s utility function encodes the author’s desired
outcome. For example, the author’s utility is usually 0,
but goes up to 1 when Tom is dead and up to 2 when
Tom has the potion at his cottage. Each character also
has a personal utility function that guides its behavior.
For example, the bandit’s utility is her number of coins.

• The Initial State defines starting values for all fluents,
including any wrong beliefs the characters begin with.



Fog of War Pruning could be used by many different
narrative planners, and it does not rely on Sabre’s particular
problem structure or its definition of what is considered a
solution, so we will not describe these in detail. Briefly, a
solution is any sequence of actions that carries the story
from the initial state to one that increases the author’s utility,
while ensuring that every step is explained for all characters
who consent to those actions. An action is explained for
a character when that character believes they can take the
action as part of a plan to improve their own personal utility.

In most planners, including Sabre, each action has a
unique signature, which is typically a name followed by
a list of arguments. Arguments are objects defined in the
problem. For example, a typical action signature looks like:

walk(Tom, Cottage, Crossroads)

The name of this action signature is walk, indicating the
type of event that is occurring. This signature has three
arguments: Tom, Cottage, and Crossroads, which
provide additional detail about who is walking where. In
this case, the action means that the character Tom is walking
from his cottage to the crossroads.

Fog of War Pruning
Fog of War Pruning focuses narrative planning by defining
some plans which the search does not need to consider—
i.e. plans that can be pruned from the search. Every story
begins with a set of seen objects, typically just the story’s
protagonist. An action may only occur if at least one of the
arguments in its signature has been seen. After an action
occurs, all of its arguments are considered seen.

Let plan π be a sequence of n actions {a1, a2, . . . , an}.
Let sig(ai) be a function that returns the set of objects in
the signature of action ai. Finally, assume that each problem
defines k objects {protagonist1, ..., protagonistk} that will
begin as seen in the initial state. In our experiments, this
initial set of seen objects was typically a single protagonist
character, though it could be any arbitrary set of objects.

Algorithm 1 Fog of War Pruning
Input: A plan π = {a1, a2, ..., an}
Output: ⊤ if π should be pruned, else ⊥

1: S ← {protagonist1, . . . , protagonistk} ▷ Initial seen set
2: for each action ai ∈ π
3: if S ∩ sig(ai) = ∅ ▷ Prune if all arguments unseen.
4: return ⊤
5: S ← S ∪ sig(ai) ▷ Add to the seen set.
6: return ⊥ ▷ Plan is valid under Fog of War.

Algorithm 1 describes our simple pruning procedure.
The algorithm will compute the seen set S of all ob-
jects that the protagonist characters have encountered in
some way, starting with the initial set of seen objects
{protagonist1, . . . , protagonistk}. It considers each action ai
in plan π one at a time. If it finds an action such that none of
the objects in its signature are seen, it returns ⊤ to indicate
that the plan should be pruned—i.e. that the planner should
stop building on that plan when trying to find a solution. If

an action does not cause the plan to be pruned, all objects
from its signature are added to S. If no actions cause the
plan to be pruned, the planner continues the search.

Examples
We will illustrate Fog of War pruning using two examples
from the Save Gramma problem mentioned earlier. The first
example shows a plan that is not pruned.

Example 1: Not Pruned
S0 = {Tom}
a1 : walk(Tom, Cottage, Crossroads) ✓

S1 = {Tom,Cottage, Crossroads}
a2 : walk(Bandit, Camp, Crossroads) ✓

S2 = {Tom,Cottage, Crossroads,Bandit, Camp}
a3 : attack(Bandit, Tom, Crossroads) ✓

S3 = {Tom,Cottage, Crossroads,Bandit, Camp}
At first, only the protagonist Tom is in the seen set. The

first step is allowed because it includes Tom in its signature.
After the first step, the seen set grows to include the cottage
and crossroads locations. The second action is allowed
because, even though the bandit and camp have not been
seen yet, the crossroads has. Taking the second step expands
the seen set to include the bandit and camp. The third action
is allowed because all three objects in its signature are seen.
Since every action in the sequence references at least one
object that was previously seen, the plan is not pruned.

Now we will consider a plan that would be pruned.

Example 2 — branch pruned
S0 = {Tom}
a1 : walk(Tom, Cottage, Crossroads) ✓

S1 = {Tom,Cottage, Crossroads}
a2 : give(Merchant, Guard, MSword) ×

This second example begins with the same first step. The
second step, where the merchant gives their sword to the
market guard, fails the visibility test because all three of the
objects it references are still unseen. Since no object in the
action’s signature overlaps with the current seen set, the plan
is immediately pruned and no further successors of this plan
will be generated.

Incompleteness
While Fog of War pruning has the potential to speed up
narrative planning by pruning many plans during search,
it may also make the search incomplete. In other words,
some previously solvable problems may become unsolvable
if pruning removes all plans that can lead to solutions.
The effectiveness of pruning depends on which objects are
chosen for the initial seen set, how the signatures of actions
are authored, and how the objects in a problem are laid out.

For example, it is possible to write the walk action in the
Save Gramma problem so that its signature includes only the
destination location:

walk(Tom, Crossroads)



The precondition can be written to express that Tom must be
at any location adjacent to the crossroads without specifying
which one in the signature. This would change which actions
become seen and how aggressively plans will be pruned.
In our evaluation, which we will describe next, Fog of War
Pruning rarely made problems unsolvable.

Evaluation
We evaluated Fog of War Pruning in the Sabre narrative
planner, version 0.8, and tested it on a suite of benchmark
problems by several authors that have been collected for that
planner (Ware and Farrell 2023). All of these problems were
created before we developed Fog of War Pruning, so we
believe they represent “naturally occurring” problems that
have not been unconsciously designed to work well with
this pruning technique. The detailed report cited above pro-
vides background and historical context for each problem,
including their origins in prior narrative planning research.
This report serves as a useful reference for understanding the
design and motivation behind these problems.

Benchmark Problems

Table 1: The number of characters, fluents, actions, and
triggers in the benchmark narrative planning problems.

Problem Problem size
|C| |F | |A| |T |

Aladdin 5 150 282 378
Basketball 4 93 168 192
Bribery 3 16 27 0
Deer Hunter 3 35 28 76
Fantasy 4 68 76 136
Gramma 4 61 812 896
Hospital 4 57 102 196
Jailbreak 3 26 106 54
Lovers 3 40 312 375
Raiders 3 21 39 66
Secret Agent 2 14 44 75
Space 2 23 29 62
Western 4 99 352 637

The test suite provides 14 benchmark story domains. One
of them, Treasure Island, contains only 5 ground actions, 3
of which have no arguments in their signatures. It can be
solved quickly by any planner configuration, so we exclude
it from our evaluation. Table 1 shows the size of each
benchmark domain, represented by the number of characters
|C|, fluents |F |, actions |A|, and triggers |T | after the
problem has been fully grounded and simplified.

For the 12 remaining domains, several define multiple
problems that can be solved by specifying higher author
utility thresholds for the search. For example, Gramma Any
sets the author utility threshold for a solution to 1, which
will accept any story where Tom dies or succeeds on his
mission. Gramma Win sets the threshold to 2, which only

accepts stories where Tom succeeds. In total, we evaluated a
total of 26 narrative planning problems.

Choosing Protagonists
For each domain, we need to choose one or a few characters
to start in the initial seen set. We made these choices based
on the descriptions of the benchmark problems.

• Several problems have a clear protagonist: Deer Hunter
(Bubba), Secret Agent (the Agent), Aladdin (Aladdin),
Hospital (Hathaway), Western (Hank), Space (Zoe), Save
Gramma (Tom), Raiders of the Lost Ark (Jones).

• For Bribery, we used the Villain as the protagonist,
since that character is featured most prominently in both
example solutions, and the other character, Hero, does
not appear in the first example solution.

• For Basketball we used the detective, Sherlock, as the
protagonist, despite the fact that he is not essential to
some solutions.

• For Fantasy we used Talia, since the author’s utility
revolves around her utility.

• For Jailbreak we used both Earnest and Roy. This
domain was originally designed for an interactive story
where either of those characters could become the
protagonist depending on choices made by the player, so
we decided to use both.

• For Lovers we use C1 as the protagonist, since they are
the one who needs to lie in the example solution.

Planner Configurations
We tested many combinations of Sabre search techniques
on each benchmark problem. Each configuration was tested
with and without Fog of War Pruning.

Breadth-first search (BFS) is a simple search method that
always expands a shortest plan first. Here, a “shortest plan”
means the one where the fewest actions have occurred in
the author’s plan since the initial state—what Sabre calls
temporal cost. Explanation-first search (EFS) requires an
action to be explained for all other consenting characters
before it is added to a plan. Goal-first search (GFS) requires
the planner to verify that a plan can improve utility before
it attempts to explain any of its actions. In other words,
EFS explores only plans with explained actions while
searching for the goal, while GFS explores only plans known
to achieve the goal but which may not be composed of
explained actions. When faced with multiple plans that are
legal to expand next, basic EFS and GFS revert to breadth-
first search behavior, expanding a shortest plan first.

We also tested variants of these three methods as heuristic
search. BFS, when done with a heuristic, becomes A*
search, which always expands a plan that minimizes the sum
of its cost and heuristic value, where cost is temporal cost
and the heuristic is one of three classical planning heuristics
that estimates the distance from the current state to the
nearest state where utility is improved. EFS and GFS can
also be done using the sum of cost and heuristic to choose
which legal plan to expand next.



For all three types of heuristic search (A*, EFS, and GFS),
we tested three well-known classical planning heuristics:
h+, hmax (Bonet and Geffner 2001), and a relaxed-plan
heuristic hrp which is similar to the Fast-Forward heuristic
(Hoffmann and Nebel 2001). The details of these heuristics
are not important for this evaluation, but all of them work
by relaxing the planning problem, solving the relaxed
problem, and using the solution to that relaxed problem as
an approximation of the solution to the real problem.

We also placed several limits on each search to improve
their chances of success. The Author Temporal Limit (ATL)
is the maximum number of actions that may appear in a so-
lution to the problem. The Character Temporal Limit (CTL)
restricts how long an individual character’s explanatory plan
may be. The Epistemic Limit (EL) fixes how many levels
of nested beliefs the planner reasons about. We chose these
values based on the recommended settings described in the
benchmark suite (Ware and Farrell 2023). We also limited
each search to visit a maximum of 1 000 000 nodes before
failing automatically. Visiting a node means that, for action
whose preconditions are satisfied, we add a successor plan
to the search queue with that action added to the end (unless
doing so would violate one of the above mentioned limits).

When adding actions to a plan, the order in which
actions are considered can influence the success rate of
a planner configuration. For example, considering walk
actions before attack actions may find solutions faster.
For this reason, we ran each planner configuration on each
problem 10 times, shuffling the problem’s list of actions
between each run to control for this tendency.

In total, we tested 3 search techniques (BFS, EFS, GFS)
with and without three heuristics (h+, hmax, hrp) for a total
of 12 planner configurations. Each was run 10 times on
each of 26 problems. Each configuration was tested with and
without Fog of War Pruning, for a total of 6 240 tests.

Hardware
We performed all tests on a computer with an Intel Xeon w3-
2425 processor and 512GB RAM. No non-system processes
were active during the tests.

Results
We summarize our results in two tables. Table 2 summarizes
the results for each planner across all problems. Table 3
summarizes the results for each problem across all planners.

Results by Planner
Table 2 shows how Fog of War Pruning affected each
planner configuration based on the following features.

• Problems Solved: The total number of tests where the
planner found a solution. Recall that each planner was
tested 10 times on 24 problem, making 240 the maximum
value, though no planner achieved this maximum.

• Unique Problems Solved: The total number of problems
that the planner solved at least once. The maximum value
is 24, though no planner achieved this.

• Average Nodes Visited: The mean number of plans
visited during all searches across all problems. When
calculating this average, we only consider tests where
the planner succeeded with and without Fog of War
Pruning. This allows us to make meaningful comparisons
between planners with and without pruning. If we did
not calculate the average this way, planners that solved
more problems might appear to visit more nodes on
average, since more tests would have been considered in
the calculations.

• Average Time: The mean number of milliseconds that
a planner spent searching during all tests. Again, we
only consider tests where the planner succeeded with and
without pruning.

Our results show that Fog of War Pruning improves
planner performance for most configurations. Out of the
12 search types, BFS and all GFS variants profit the most.
Specifically in GFS, GFS hmax and GFS h+ the number of
nodes visited falls by 65-83% and runtime drops by a similar
margin while each variant solves between 1 and 5 more
unique problems than the baseline. Among A* planners,
A* hmax shows the largest gain, solving 2 more unique
problems than the baseline and doing so with just 60K
nodes visited compared to the baseline’s 245K. A* hrp and
EFS h+ display the same pattern of faster search with higher
coverage.

Fog of War Pruning is less beneficial to EFS search
variants. Basic EFS, EFS hmax and EFS hrp all solve fewer
unique problems compared to the baseline, indicating that
pruning may be occasionally cutting off valid explanations
that these planners rely on. A* h+ is an unique outlier, Fog
of War Pruning does solve more problems than the baseline,
though it visits 2 times more nodes and takes 3x more time.

Across all these 12 planners, Fog of War Pruning reduces
total node visits by 37% and also reduces the runtime by
48%. It was also able to solve more unique problems.
We believe this demonstrates that our pruning technique is
broadly advantageous.

Results by Problem
Table 3 shows how Fog of War Pruning affected all planners
that ran on each problem.

• Time Solved: The total number of times a test on this
problem found a solution. Each problem was tested 10
times by 12 planners, so 120 is the maximum value.

• Unique Planners Solved: The number of unique planner
configurations that were able to solve this problem at
least once. There are 12 planners, so the maximum value
is 12.

• Average Nodes Visited: The mean number of plans vis-
ited by planners solving this problem. When calculating
this average, we only consider tests where the planner
succeeded with and without Fog of War Pruning. For
example, there is no value for the Fantasy All problem
because, while some planners were able to solve it
without pruning and some were able to solve it with
pruning, there was no overlap; i.e. there were no planners



Table 2: Planner performance across all problems with and without Fog of War Pruning. Green cells indicate values that
improved with pruning; red cells indicate values that got worse; yellow cells indicate no change.

Planner
Without Fog of War Pruning With Fog of War Pruning

Solved Unique Nodes Time (ms) Solved Unique Nodes Time (ms)
BFS 180 18 991 674 136 882 182 19 248 208 31 303
A* h+ 170 17 425 938 328 356 182 19 1 014 422 1 279 811
A* hmax 190 19 244 834 239 237 210 21 60 076 63 143
A* hrp 200 20 1 570 002 3 751 521 206 22 1 477 873 1 814 124
EFS 161 17 2 690 414 1 489 233 150 15 911 580 74 432
EFS h+ 163 17 1 408 877 776 121 170 17 569 448 213 419
EFS hmax 210 21 366 407 466 880 180 18 365 632 364 860
EFS hrp 177 19 1 948 922 919 390 171 18 1 649 025 705 464
GFS 140 14 439 761 53 405 152 16 376 162 25 668
GFS h+ 148 15 635 002 50 175 160 16 222 838 17 403
GFS hmax 160 16 517 134 983 199 210 21 87 958 156 644
GFS hrp 160 16 559 227 221 751 179 18 495 899 133 414

Total 2 059 209 11 798 190 9 416 150 2 152 220 7 479 120 4 879 684

Table 3: Results for each problem across all planners with and without Fog of War Pruning. Only instances where at least one
configuration produced a result are listed. Green cells indicate values that improved with pruning; red cells indicate values that
got worse; yellow cells indicate no change.

Problem
Without Fog of War Pruning With Fog of War Pruning

Solved Unique Nodes Time (ms) Solved Unique Nodes Time (ms)
Basketball Any 109 12 1 052 472 497 927 80 10 3 583 962 2 636 386
Basketball Both 20 2 487 291 905 462 3 2 991 893 1 252 493
Bribery 120 12 34 566 718 120 12 22 887 339
Deer Hunter Any 120 12 197 583 22 488 120 12 30 831 3 273
Deer Hunter Both 50 5 1 547 386 3 698 207 100 10 539 875 61 796
Fantasy Any 120 12 752 245 120 12 393 151
Fantasy Two 120 12 141 607 54 244 120 12 38 929 16 649
Fantasy All 10 1 – – 40 4 – –
Gramma Any 120 12 170 870 109 823 120 12 92 883 71 971
Gramma Win 100 10 1 708 211 1 970 295 110 11 224 166 240 734
Hospital Any 98 10 1 258 612 604 292 110 11 734 476 346 220
Jailbreak Escape 50 5 1 576 130 475 836 70 7 343 880 79 529
Jailbreak Lose 110 11 1 346 465 60 710 120 12 498 541 25 071
Jailbreak Revenge 10 1 – – 37 4 – –
Lovers 61 7 2 242 408 1 010 691 82 9 318 824 133 953
Raiders 120 12 10 958 1 051 120 12 3 440 399
Secret Agent 120 12 3 054 86 120 12 932 34
Space Any 120 12 88 15 120 12 91 19
Space Two 120 12 181 33 120 12 95 18
Space Three 120 12 365 81 120 12 95 19
Space Four 120 12 7 583 1 577 120 12 1 095 195
Space All 120 12 11 610 2 368 80 8 51 832 10 437
Western 1 1 – – 0 0 – –

Total 2 059 209 11 798 190 9 416 150 2 152 220 7 479 120 4 879 684



that solved it with and without pruning, so we cannot
make a meaningful comparison here.

• Average Time: The mean number of milliseconds that
planners spent working on this problem. Again, we only
consider tests where the planner succeeded with and
without pruning.

Across the benchmark suite, Fog of War Pruning im-
proves both nodes visited and runtime for the majority
of problems. In large narrative spaces like Deer Hunter
Both, Fantasy All, and Jailbreak Revenge 3 to 5 additional
planners now find solutions. In some problems, these gains
come with dramatic speed-ups. Deer Hunter Both cuts the
node expansion by 65% and runtime is reduced by 98% in
comparable runs. In problems like Lovers, Hospital Any, and
Gramma Win, Fog of War Pruning raises the success rate by
10-20% while decreasing visited nodes and runtime.

Several problems that were already solved in the baseline
(e.g., Fantasy and in several Space problems) see no change
in coverage but yield noticeable efficiency gains.

Some problems display the opposite behavior. The two
Basketball problems and Space All lose 25–40 successful
runs with Fog of War Pruning. The single successful
baseline search method in Western (which was solved only 1
time out of 10 by only one planner) disappears with pruning.
These problems suggest that certain problem structures rely
on “off screen” events the protagonist has not yet witnessed
and pruning those branches may make it more difficult or
impossible to find solutions.

These results by problem further confirm that Fog of War
Pruning can benefit a wide variety of narrative planning
problems.

Success Rate
Table 4 breaks down how often Fog of War Pruning affects
the success rate of a planner on a problem. We consider 12
planners on 26 problems, which provides a total of 12×26 =
312 opportunities to observe a change in success rate. Of
those, pruning changes the success rate 39 times (12.5%). In
the other 273 cases (87.5%), the success rate of that planner
on that problem stayed the same.

For the 39 affected cases:

• In 24 cases, Fog of War Pruning improves the success
rate, and in 18 cases problems that were unsolvable
without pruning are now 100% solvable with pruning.

• In 15 cases, success rate decreased, and in 7 cases, fully
solvable problems became unsolvable.

In other words (as summarized in Table 5), Fog of War
Pruning improves success rate in 7.7% of the total cases, and
reduces success rate 4.8% of the total cases. In most cases,
success rate is not affected.

Plan Length
Sometimes Fog of War Pruning affects the length of
solutions that a planner finds. All things being equal, we
prefer shorter plans over longer plans.

Recall that we shuffle the order of actions in the problem
between each of the 10 times that we tested the same planner

on the same problem. In some cases, the same planner might
find a solution of a different length to the same problem.
For example, the first time a planner is tested on a problem
it might find a solution with 5 actions. Then, after actions
have been shuffled, the same planner might find a different
solution with 6 actions to the same problem. This means that
we can measure the minimum plan length, maximum plan
length, and average plan length for each planner/problem
pair, and there are 312 such cases.

Table 6 summarizes how Fog of War Pruning affected
the min, max, and average plan length in cases that could
be solved both with and without pruning. In 3 cases, the
minimum plan length decreased (which is good). In 20
cases, the minimum plan length increased (which is bad).
In 5 cases, the maximum plan length decreased. In 20 cases,
the maximum plan length increased. In 5 cases the average
plan length decreased. In 24 cases, the average plan length
increased. Fog of War Pruning rarely affects the length
of solutions found, but when it does, it is more likely to
increase the plan length.

Runtime
Table 7 summarizes how often Fog of War Pruning affected
runtime. Again, we consider 12 planners on 26 test problems
for 312 opportunities to observe a change in runtime. To
make a controlled comparison, we will only consider cases
where the success rate was the same with and without
pruning, which was 212 cases.

In the 212 cases where Fog of War Pruning did not affect
the success rate of a planner, it improved runtime 75.5%
of the time. This indicates that our pruning method usually
speeds up a planner.

Overall Performance
Table 8 summarizes the performance of Fog of War Pruning
in all 312 cases. Pruning raises performance (by either
improving success rate or visiting fewer nodes) far more
often than it lowers performance (by either reducing success
rate or visiting more nodes). It raises performance in 172
cases, or 55.1% of the total. It only lowers performance in
43 cases, or 13.8% of the total.

Since there are 82 cases where the planner found no
solutions with or without pruning, we can remove those
cases from consideration and reconsider these results. From
this perspective, pruning raises performance 74.5% of the
time and only lowers it 18.7% of the time.

Limitations
As mentioned previously, perhaps the most significant
limitation of Fog of War Pruning is that it can cause a
solvable problem to become unsolvable. This happens when,
for example, a story requires an important but unobserved
event to happen at the start of the story.

Consider the Space domain, where protagonist Zoe starts
in her starship and wants to explore a nearby but geologi-
cally unstable planet. The shortest solution to this problem
(that achieves author utility 1) is:

begin_erupt(Surface)
erupt(Surface)



Table 4: Changes in solvability when applying Fog of War Pruning, compared with a no pruning baseline, across 312 tests.

Outcome
# comparisons % of total (312)

Unsolvable→ fully solvable (now 100 %) 18 5.8
Partly solvable→ fully solvable 3 1.0
Unsolvable→ partly solvable (<100%) 3 1.0
Still partly solvable, success rate increased 0 0.0
Still partly solvable, success rate decreased 1 0.3
Fully solvable→ partly solvable 4 1.3
Fully solvable→ unsolvable 7 2.2
Partly solvable→ unsolvable 3 1.0
No change in solvability 273 87.5

†Fully solvable: planner succeeds on all 10 test runs. Partly solvable: planner succeeds on at least one but not all runs (1–9 / 10).
Unsolvable: planner fails on every run (0 / 10).

Table 5: Effect of Fog of War Pruning on success rate,
compared with a no pruning baseline, across 312 tests.

Outcome
# of comparisons % of total (312)

Success rate
increased1

24 7.7%

Success rate
decreased2

15 4.8%

Success rate
unchanged

273 87.5%

1 Example: Baseline solves 2 times out of 10 runs, but with
pruning, planner solves 7 out of 10 runs.

2 Example: Baseline solves 9 times out of 10 runs, but with
pruning, planner only solves 6 out of 10 runs.

Table 6: Change in plan length when applying Fog of War
Pruning, evaluated only on tests where both pruning and
non-pruning planners produced at least one solution.

Outcome category
Min Max Avg

# of comparisons where the plan
length decreased with pruning

3 5 5

# of comparisons where the plan
length increased with pruning

20 20 24

†Min: shortest plan length among the 10 runs. Max: longest plan
length among the 10 runs. Avg: mean over all successful runs

(failed runs excluded).

It seems like this solution cannot be found by Fog of War
Pruning because it does not involve Zoe. However, we were
pleasantly surprised to discover that this limitation is not as
problematic as we first suspected.

While the above 2 action solution would indeed get
pruned, the following 3 action solution can still be found:

teleport_from_ship(Zoe, Ship, Surface)
begin_erupt(Surface)
erupt(Surface)

This plan achieves an author utility of 2, so it can be used as
a solution to both Space Any and Space Two. In addition,
Sabre has a feature which requires that every action in a
solution be non-redundant (meaning no actions can be left
out). To check this requirement, Sabre will expand every
strict subsequence of the solution. This means that Sabre
will expand the original 2 action solution in the process of
checking the 3 action solution, so Sabre is actually still able
to find both solutions, even with Fog of War Pruning (though
it will need to expand more nodes when pruning).

This means that Fog of War Pruning only prevents Sabre
from finding a solution when the planner would prune not
only that solution but also every plan that contains the
solution as strict subsequence. In practice, this seems to
happen rarely. When it does happen, those solutions can
again be found by simply expanding the initial seen set for a
domain, though this will reduce the effectiveness of pruning.

Fog of War Pruning can also hinder proactive media-
tion. Because the pruning selects actions that intersect the
player’s current seen set, setup steps that would prevent
future problems (e.g., staging an item, relocating an agent,
or triggering a environment change) are usually pruned.

Conclusion
Fog of War Pruning is a simple technique for ruling
out stories that include actions composed only of unseen
elements. We believe our results demonstrate that it typically
improves narrative planner performance across most planner
configurations and most problems.

Across all planners, the total number of nodes visited
dropped from about 11.8 million in the baseline with no



Table 7: Runtime impact of Fog of War Pruning versus a no-pruning baseline on 312 tests. “Adjusted %” is computed over the
212 cases where runtime was measured in both configurations.

Outcome
# of tests % of total (312) Adjusted % (of 212)

Pruning finished faster than the baseline. 160 51.3% 75.5%
Pruning finished slower than the baseline. 52 16.7% 24.5%

Runtime was not measured for 100 comparisons (32.1%) because the success rate differed between configurations or both searches failed.

Table 8: Summary of the overall effect of Fog of War Pruning versus a no-pruning baseline on 312 tests. “Adjusted %” is
computed over the 230 cases where at least one configuration produced a solution.

Outcome
# of tests % of total (312) Adjusted % (of 230)

Higher success rate or fewer nodes visited with pruning. 172 55.1% 74.8%
Lower success rate or more nodes visited with pruning. 43 13.8% 18.7%
No change in performance 15 4.8% 6.5%
No solution in either configuration 82 26.3% —

pruning to 7.5 million with pruning, and total runtime
roughly halved (from 9.42 × 105 ms to 4.88 × 105

ms). Pruning allowed planners to solve more problems.
Cumulatively, pruning solved 220 of 312 unique tasks (2152
successful runs), versus the baseline’s 209 (2059 runs).

In many cases, Fog of War Pruning reduced search effort
on solved instances (fewer nodes visited in less time) while
often increasing coverage (more “Solved” and “Unique”
tasks). For example, Breadth-first search succeeded on 182
tests with pruning (vs. 180 without) and expanded only
∼25% as many nodes (≈248k vs. ≈992k), running in
∼23% of the original time. Goal-first searches all benefited;
GFS with the hmax heuristic saw the largest gains (210
tests solved vs. 160, and only ∼17% of the original nodes
visited), and other GFS variants also solved more problems
while cutting runtime roughly in half.

All of the A* planners likewise improved. A* hmax

solved 210 problems (vs. 190) with about 75% fewer node
expansions and time, and A* with a relaxed plan heuristic
solved 206 (vs. 200) with roughly 50% less runtime. In
short, Fog of War Pruning allowed most planners to reach
goals that were previously unreachable, and to do so faster.

While pruning was generally beneficial, it had some
limitations. In a few cases, pruning was too aggressive and
reduced completeness. Notably, Explanation-first Search
lost coverage; it succeeded on only 150 tests with pruning
(vs. 161 without). EFS hmax saw a larger drop (180 vs. 210
tests). This suggests that Fog of War Pruning sometimes
prunes paths leading to valid solutions in these planners.

Aside from EFS search cases, no planner became worse
and every planner either maintained or increased its number
of tests solved, and for the tasks it did solve Fog of War
Pruning never increased effort, except for A* with h+.

Future Work
We believe Fog of War Pruning not only accelerates
planning but also does a better job of simulating the mental

model of a player in an interactive story game. We think
it produces more salient stories by pruning any action that
involves a person, place, or object outside the player’s
known set. The planner naturally produces plans that are
better explained from the protagonist’s viewpoint.

For instance, consider a scene where Tom (the protag-
onist) has not yet seen a bandit lurking at a crossroads.
Without pruning, the planner might direct the bandit to move
to the crossroads before Tom arrives. With pruning, that plan
is rejected, and instead the bandit’s appearance is delayed
until after Tom reaches the crossroads. In the second plan,
every action is consistent with what Tom knows at the time
it occurs. We believe that this alignment between plan steps
and character knowledge is a promising step toward more
coherent story generation.

In future work, we aim to test whether Fog of War Pruning
improves narrative quality and whether it leads to more
believable character behavior in games and simulations.

Code
To enable replication and to encourage other researchers
to build on this work, we have made our code, evaluation
scripts, and other materials available on GitHub, allowing
others to repeat our experiments or test different planners.

https://github.com/lazzy07/fog of war pruning
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