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Abstract
Narrative planning is the process of generating sequences of ac-
tions that form coherent and goal-oriented narratives. Classical
implementations of narrative planning rely on heuristic search
techniques to offer structured story generation but face challenges
with scalability due to large branching factors and deep search
requirements. Large Language Models (LLMs), with their extensive
training on diverse linguistic datasets, excel in understanding and
generating coherent narratives. However, their planning ability
lacks the precision and structure needed for effective narrative
planning. This paper explores a hybrid approach that uses LLMs as
heuristic guides within classical search frameworks for narrative
planning. We compare various prompt designs to generate LLM
heuristic predictions and evaluate their performance against ℎ+,
ℎ𝑚𝑎𝑥 , and relaxed plan heuristics. Additionally, we analyze the abil-
ity of relaxed plans to predict the next action correctly, comparing
it to the LLMs’ ability to make the same prediction. Our findings
indicate that LLMs rarely exceed the accuracy of classical planning
heuristics.
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Introduction
Interactive narrative environments, such as games and training
simulations, often need to maintain a coherent storyline while
adapting to user choices. Narrative planning is one tool to generate
and regenerate structured stories during runtime [31].

Sabre [27] is a narrative planner developed to address the com-
plexities of multi-agent storytelling in virtual environments. It is a
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narrative planning system that models both the intentions of the
author and the intentions and beliefs of each virtual character. This
allows Sabre to generate plans that improve the author’s utility
while ensuring that every action taken by a character can be ex-
plained by that character’s own goals and beliefs. This makes it
particularly suitable for generating interactive narratives where
character realism and coherent story progression are crucial.

Sabre, and other systems based on classical planning, provides an
approach to story generation that reasons about the preconditions
and effects of events using formal reasoning similar to predicate
logic [30]. Unlike reactive systems that select individual actions
with minimal foresight, planning-based systems explore many pos-
sible story paths to ensure both quality and structure. However,
planning is P-SPACE hard [9] and does not scale to long stories.
Heuristic search can improve scalability. For example, the Glaive
heuristic [28] has been specifically designed for narrative search.
However, deep searches will always become intractable eventually.

LLMs, such as GPT-4o mini [3], are neural transformers trained
on various natural language datasets. They can capture story struc-
ture, character development patterns, and genre expectations in
their latent space. While LLMs are proficient at understanding and
generating natural language, they are not inherently structured
in their approach to maintaining narrative coherence over long
sequences of actions.

This paper lays the groundwork for leveraging the strengths
of both LLMs and classical heuristic search methods in narrative
planning. Our long-term goal is to use LLMs as heuristics within a
search framework, combining the narrative understanding of LLMs
with the formal structure of classical planning methods. This hybrid
approach has the potential to generate coherent and compelling
stories more efficiently. This paper presents a study that investigates
whether LLMs can provide accurate estimates of story size and
content, serving as an initial step toward our objective.

Our findings indicate that LLMs can sometimes achieve accuracy
comparable to classical planning heuristics, but the results were
mixed. For some settings in some scenarios, LLMs matched or
slightly exceeded the ability of heuristics to estimate the number
of actions remaining in a story and which next actions can lead to
solutions. In others, their predictions deviated significantly. These
results suggest that, while LLMs have potential as heuristic tools
in narrative planning, their performance is not yet reliable enough
to replace existing heuristics.

Related Work
Planning algorithms have a long history in the games industry, from
Orkin’s Goal-Oriented Action Planning (GOAP) framework [15] to
multi-agent tactics planning [5], to automated game testing [20].
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Planning is popular for generating interactive stories in games
because it provides a formal, generative framework that reasons
about causality and event ordering [30]. Planning has been used
to make playable interactive versions of Friends [4], Madame Bo-
vary [17], and The Merchant of Venice [19]. It has been used in
interactive training simulations [8]. Young et. al provide a survey
of other story planning systems [31].

In interactive narrative research, ensuring structured and coher-
ent story generation has led to the development of various story-
telling algorithms. Early systems such as Tale-Spin [14], Universe
[12], and Façade [13], employed symbolic models using predicate
logic to represent characters, locations, objects, and conditions.
These systems shared a common approach of using preconditions
to limit when actions could occur and effects to describe how ac-
tions change the narrative state, but they did not perform extensive
searches for plans that meet structural requirements. Tale-Spin and
Universe are not true planning systems, and Façade has limited
planning capabilities.

Advancements in narrative planning have seen a focus on inte-
grating characters’ goals and intentions. Systems such as IPOCL
[21] emphasize character intentions to drive the plot while main-
taining coherence. Glaive [28] and IMPACTical [24] extend that
model to allow for conflict and failed plans. HeadSpace [23], Ostari
[6], and Sabre [27] generate stories where characters can operate
under mistaken beliefs, leading them to attempt actions that fail.

Recent efforts have explored the integration of LLMs and narra-
tive planning. In Neural Story Planning [29] Ye et al. use a technique
similar to partial-order planning to keep an LLM goal-oriented
during story generation. In Planning Stories Neurally [7] Farrell
and Ware used an LLM as a cost function during planning, giving
next actions suggested by the LLM lower weight to ensure they are
visited sooner in the search. Our method is similar to theirs because
we are using an LLM to guide a narrative planner, but whereas they
only used the LLM to suggest the immediate next action, we ask the
LLM to fully complete the story so that it can serve as a heuristic
that measures the remaining distance to the goal.

On the Planning Abilities of Large Language Models [25] evaluates
the use of LLMs as heuristic guides in the Blocksworld planning
domain, demonstrating their potential to drive sound plans. Al-
though not specifically focused on narrative problems, the tech-
niques employed are transferable to narrative contexts, showcasing
the versatility of LLMs in planning tasks.

Background
In forward state-space planning [22], actions are sequentially added
to the end of a plan until a goal state is achieved. A plan that
successfully reaches a goal state is a solution. However, narrative
planners have extra constraints on solutions to ensure that they
meet desired narrative criteria, such as characters acting believably.
To address this, narrative planners can define characters as specific
entities with their own goals, who can only engage in actions that
help achieve these goals.

We use the Sabre narrative planner [27], which incorporates
character beliefs and intentions so that the plans characters form
align with their beliefs and make them appear to have limited
observability. In the case of Sabre, a plan is considered a solution

if it achieves the author’s goal and includes only actions that are
explained.

The detailed definition of action explainability in Sabre is pro-
vided by Ware and Siler [27], but a brief summary is as follows: an
action is explained if it is explained for each consenting character
involved. For a consenting character, an action is explained if it
is the first step in a plan which can be executed in the state that
character believes they are in to improve that character’s utility.

During the search process, the planner monitors when character
goals are met and propagates explanations backward, marking
previous actions as explained if they contributed to achieving the
goals. To plan efficiently in large spaces, it is crucial for a planner
to prioritize actions that are likely to lead to a solution.

For some given state, a classical planning heuristic estimates the
number of actions that need to be taken to reach a goal state. In
narrative planning, simply reaching the goal state is insufficient;
actions must also be explained for the characters who take them.
The intuition behind this paper is that asking an LLM to complete
a story will serve as a better heuristic than those used by classical
planners because the actions suggested by the LLM are more likely
to be explained actions. In other words, an LLM’s suggestions are
more likely to account for each character’s beliefs and motivations.

We compare LLM suggestions to three popular planning heuris-
tics on a suite of benchmark narrative planning tasks. All three
heuristics share a common approach of solving a relaxed version
of the planning problem and using the size of a relaxed solution as
an approximation for the distance to the goal. The relaxed problem
assumes that once a proposition is true is can never become false
again. This is sometimes referred to as “ignoring delete lists.”

The ℎ+ and ℎmax heuristics [2] define the cost of any proposition
that is true in the given state as 0. The cost of all other propositions
is 1 plus the cost of the lowest cost precondition of any action which
has that proposition as an effect. The ℎ+ heuristic defines the cost
of a conjunction as the sum of the costs of its conjuncts. The ℎmax

heuristic defines the cost of a conjunction as the maximum cost of
its conjuncts.

The ℎrp heuristic is based on Fast Forward [10]. It behaves simi-
larly to ℎmax, but while calculating its cost it uses a plan graph [1]
to build a solution to the relaxed planning problem. Ideally, that
relaxed plan will be similar to the actual solution in both length
and content.

Problem Definition
A Sabre narrative planning problem has several components:

• Characters: Special entities that exhibit beliefs and inten-
tions.

• State Fluents: Properties that change over time, which can
be Boolean, nominal, or numeric. Sabre allows for a range of
logical operators on these fluents and supports the believes
modality so the planner can reason about what characters
believe, what they believe others believe, etc.

• Actions: Modeled similarly to ADL operators [16], actions
specify preconditions for their execution and effects that
alter the world state. Each action includes a set of consent-
ing characters who willingly participate in the action and
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an observation function to determine which characters are
aware of the action when it occurs.

• Triggers: These operate like actions but occur automatically.
Once their preconditions are met within the state, their ef-
fects are applied immediately without requiring consenting
characters or observation functions.

• Utility Functions: These define preferences over different
states. This includes the author utility function, which repre-
sents the desired states the planner aims to achieve (the story
goal), and individual utility functions for each character to
represent their personal goals.

• Initial State: Gives initial values for all state fluents and
details any incorrect beliefs that characters initially hold.

The objective is to transition from the initial state to a state
where the author utility is increased by only taking actions which
are explained for all of the consenting characters who take them.
For some given state, a heuristic estimates the number of actions
that need to be taken before the goal is reached.

Method
State Distance Data Collection
To evaluate whether a language model can be used as a narrative
planning heuristic, we first need a dataset of states from narrative
planning where the distance to a solution is known. To collect
this set of states, we conducted breadth-first searches on a suite
of benchmark narrative planning problems collected from various
sources [26].

Table 1 shows the size of each benchmark problem, represented
by the number of characters |𝐶 |, fluents |𝐹 |, actions |𝐴|, and triggers
|𝑇 | after grounding. It also lists three relevant parameters for the
breadth-first search of that problem. ATL is the Author Temporal
Limit and defines howmany actions may appear in a solution to the
problem. The ATL for each problemwas determined experimentally.
Each search was allowed to run up to three days on a computer
with an Intel Xeon 4.1 GHz processor and 512GB RAM. The ATL
for each search was limited to the depth it could fully explore in
that time. CTL is the Character Temporal Limit and defines the
number of actions that can appear in a character’s plan when they
explain why they took an action. The CTL for each search was
chosen based on known values for each problem explained in the
benchmark suite [26]. EL is the Epistemic Limit and defines how
deeply the characters reason about theory of mind. An EL of 1
means the planner reasons only about what characters believe; an
EL of 2 means characters reason about what they believe and what
they believe others believe, and so on. EL was also chosen based
on known values from the benchmark suite.

It is possible to run deeper searches and to generate more solu-
tions by using heuristic search, however, we feared this would bias
the set of states collected toward states where classical heuristic es-
timates are more accurate. Breadth-first search also has the benefit
of ensuring we find shortest solutions.

Three benchmark problems were not able to reach a depth that
contained any solutions, so those have been excluded from our
experiments.

Table 1: Details for Narrative Planning Benchmark Problems

Problem Problem Size Configuration
|𝐶 | |𝐹 | |𝐴| |𝑇 | ATL CTL EL

Bribery 3 16 27 0 5 5 2
Deer Hunter 3 35 28 76 10 6 1
Fantasy 4 68 76 136 8 3 2
Gramma 4 61 812 896 7 5 2
Hospital 4 57 102 196 4 5 3
Jailbreak 3 26 106 54 7 6 1
Lovers 3 40 312 375 7 5 2
Raiders 3 21 39 66 8 4 1
Secret Agent 2 14 44 75 9 8 1
Space 2 23 29 62 9 3 1
Treasure 2 4 5 0 4 4 3

After each search, we recorded every state which has a known
distance to a solution that could be found under the above con-
straints. We recorded both author and character states. For example,
the shortest solution to improve the author’s utility in the Gramma
problem is: Tom walks to the crossroads. The bandit walks to the
crossroads. The bandit kills Tom. The initial state of the problem
and the state after each of these actions was recorded. The state
after the first action has a distance to the goal of 2. The state after
the second action has a distance to the goal of 1, and so on. We also
recorded the Bandit’s plan to improve her utility: The bandit walks
to the crossroads. The bandit kills Tom. The bandit loots Tom’s coin.
We recorded each of these states and their distance to the Bandit’s
goal, and so on for Tom and all other characters.

Comparing LLM Predictions with Classical
Heuristics
For each of the states collected above, we describe the story so
far and the goal to an LLM and ask it to complete the story. We
compare the plans returned by the LLM to the classical heuristics
ℎ+, ℎmax, and ℎrp. For all states, we compare:

• The ground truth minimum number of explained actions that
need to be taken to reach a state where utility is higher for
the author (or where utility is higher for the character who
is planning, if this is a character belief state), as discovered
by the breadth-first search above

• The number of actions that each heuristic estimates need to
be taken to reach a state where utility is higher

• The number of actions in the plan returned by the LLM after
it was asked to complete the story

Recall that ℎrp generates a relaxed plan. Heuristics that generate
a plan are especially useful, since heuristic searches often face
many ties. Planners like Fast Forward bias their searches toward
the actions that appear in relaxed plans.

When evaluating ℎrp, we can compare both the length of its
relaxed plans and the content of those plans to the plan generated
by the LLM. Using the states recorded above, we can determine
which actions are known to lead to solutions. To continue the
previous example, after Tom walks to the crossroads, the action
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where the bandit walks to the crossroads is known to lead to a
solution. There may be multiple such actions.

If the plan generated by a heuristic contains an action that is
known to lead to a solution then it is an especially good plan because
it can be used to bias the search toward solutions. When comparing
ℎrp to the LLM, we also measure how frequently the plans they
returned contained at least one action known to lead to a solution.
Note this is a conservative metric because other actions might lead
to solutions that were out of reach for breadth-first search.

Prompt Design
To use an LLM (specifically GPT-4o mini [3]) as a narrative planning
heuristic, we created a prompt template that provides context about
the story so far and asks for the next actions to achieve the author’s
goal or the goal of the character who is planning. An example
prompt is given in Figure 1. The text colors in that figure correspond
to each part of the template:

• Task: We tell the LLM its purpose is to complete a story. This
text was the same for every prompt across every problem.

• Problem: We list all of the objects that exist in the problem
and the properties they can have. We introduce each charac-
ter and explain their goals. We describe each kind of action
that can occur, explaining any preconditions or effects that
might be non-obvious. This text was written by hand for
each problem and was the same for every prompt for that
problem.

• Previous Actions: We list any actions that have occurred
so far, translating each into a natural language sentence.
The story so far is described from the perspective of the
character who is planning. Since Hawkins is the character
who is planning in this example, we list only actions that
Hawkins has observed. This text was different and generated
automatically for each prompt.

• Current State: We fully describe the current state, giving the
value for each fluent (including beliefs) as a natural language
sentence. The current state is described from the perspective
of the character who is planning; e.g. we describe the state
that Hawkins believes to be the case. This text was different
and generated automatically for each prompt.

• Instructions: We instruct the LLM to complete the story
using as few actions as possible and without adding new
elements or actions to the problem. This text was the same
for every prompt across every problem.

• Goal: We tell the LLM which of the character’s goals to
complete. Because Hawkins is the character who is planning,
we tell the LLM to achieve Hawkins’ goal. If we are planning
for the author’s goal, the author’s goal is described instead,
e.g. “Give me the shortest story that ends with Hawkins
having the treasure.” This text was different and generated
automatically for each prompt.

• Formating Instructions: We tell the LLM to format its
answer as a JSON object for easy parsing of the result. This
text was the same for every prompt across all problems.

We used Zero-Shot Chain-of-Thought (CoT) prompting [11] to
construct this template prompt. Zero-Shot CoT prompting allows

the LLM to break down its reasoning step by step without prior
examples, enhancing the clarity and structure of the response.

Problem Translation. Text describing the objects, fluents, characters,
and actions in each problem are, in most cases, directly based on
the problem descriptions [26]. However, for the Hospital and Lovers
problems we translated some symbols into specific objects. For
example, the agents in the original Lovers problem are named 𝐶1,
𝐶2, etc. A planner can easily treat these as unique symbols, but
to make this problem more suitable for an LLM, we named the
agents Alex, Blake, etc. Similarly, we renamed the items from 𝐼1, 𝐼2,
etc. to flowers, chocolate, etc. In the Hospital problem, we gave the
diseases specific fictional names and described specific symptoms.

Known Problems. At least two problems, Treasure and Raiders, are
based on the well-known stories Treasure Island and Raiders of
the Lost Ark respectively. Summaries of these stories likely appear
in the LLM’s training data. This may have influenced the LLM’s
performance on these problems.

Prompt Variations
We experimented with several variations on our prompt template.
Four were of particular interest and are evaluated in this paper.

Prompt with Natural Language. This variant converts the objects,
characters, fluents, and actions from Sabre into natural language.
For instance:

• location(Gargax) = Cave becomes Gargax is at the Cave.
• believes(Talia, alive(Gargax)) = True becomes Talia
believes Gargax is alive.

• travel(Talia, Village, Cave) becomes Talia travels
from the Village to the Cave.

This method, which is reflected in Figure 1, is referred to as
LLM Natural. It ensures that the input and expected output are in a
format easily understood by the LLM.

Prompt with Syntax. In the second method, we constructed the
prompt using the original Sabre syntax, maintaining the initial state,
action, and plan format. Instead of translating location(Gargax)
= Cave into natural language, we simply expressed propositions
in that format. The special text explaining the problem in natu-
ral language (the red text in Figure 1) was still used at the start
of the prompt. To our surprise, the LLM was often able to inter-
pret Sabre syntax correctly, and this prompt design requires less
special-purpose code for translation. This method, referred to as
LLM Syntax, tests whether LLM can understand and provide pre-
dictions directly in Sabre language.

Handling Lengthy Outputs. To address the tendency of LLMs to pro-
duce verbose responses, we devised two additional prompt types to
help limit the length of the response. We implemented a method to
calculate the remaining number of steps needed to reach a solution
by subtracting the number of actions that have occurred already
from a predefined maximum plan length. This predefined maximum
is based on the depth reached during that problem’s breadth-first
search.
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I will describe a setting and the first part of a story. Your job is to complete the story to ensure it has a specific ending. 

There are two locations in this story: the port and the island. There is one item in this story: some treasure. There are two characters in 
this story. Hawkins is a boy who wants the treasure. Silver is a pirate who wants the treasure. There are four kinds of actions 
characters can take in the story. If the treasure is buried on the island, Hawkins can spread a rumor that will make Silver believe the 
treasure is buried on the island. Hawkins and Silver can work together to sail a ship from the port to the island. If the treasure is buried 
on the island, Hawkins can dig up the treasure. A character can take the treasure once it has been dug up.

These events have already happened in the story: Hawkins spreads a rumor that the treasure is buried on the island. Hawkins and 
Silver sail from Port Royal to the island. Hawkins digs up the treasure.

This is the current situation after those events: Hawkins is at the island. Silver is at the island. The treasure is at the island. Silver 
believes that the treasure is at the island.

Complete the story using only these locations, items, characters, and actions. Do not invent new locations, items, characters, or actions. 
Characters should only take actions that help to achieve their goals, and the story should only include actions which are necessary to 
achieve the ending.

Give me the shortest story where Hawkins achieves their goal.

Explain why each action is in the story. After the explanation of the whole story, give a JSON object with the final plan. The JSON should 
include an array called 'plan' with the sequence of actions (as a string) taken to achieve the goal. Example format: {plan: ['action1', 
'action2', 'action3’]}.

Figure 1: An example natural language prompt for the Treasure problem, with key sections colored.

• LLM Natural with Limits: This prompt type uses natu-
ral language but specifies the maximum number of actions
expected in the response.

• LLM Syntax with Limits: This prompt type uses Sabre
syntax but but specifies the maximum number of actions
expected in the response.

For both limited prompt types, the final prompt question was
modified to specify the preferred plan length. An example of the
prompt question with limits is as follows:

“While keeping the plan complete, a smaller plan is preferred. Sug-
gested maximum length of the plan: {SUGGESTED_PLAN_LENGTH}.”

State Sampling
In some problems, the exhaustive breadth-first search produced
10,000+ or 100,000+ states. To limit the cost of querying GPT-4o
mini, we sampled 1000 states uniformly at random for each problem
(or all states if a problem generated fewer than 1000). We sampled
only states that had a verified non-zero distance to a goal.

Most LLMs have a temperature setting that controls the level of
randomness used when generating their output. To ensure replica-
bility, we used a temperature of 0 for all queries. In addition, we set
a token limit of 3000 to control the length of responses generated
by the LLM.

Parsing Responses
The LLM gives its response to each prompt formatted as a JSON
object for easy parsing. However, actions were expressed as natural
language sentences (for the Natural prompts) or occasionally as
incorrectly formatted Sabre actions (for the Syntax prompts). In
both cases, we need to translate the LLM’s plan back into a Sabre
plan. We use the same method as Farrell and Ware [7]. As a pre-
processing step, we embed every possible action from the problem

using text-embedding-ada-002 model. When we receive a plan from
the LLM, we embed each action in the same way and translate each
action it into the action from the problem whose embedding has
the lowest cosine distance.

Comparison to Heuristic Predictions. For each state, we obtained
four different suggested plans to reach the goal using our four
prompts: LLM Natural, LLM Syntax, LLM Natural with Limits, and
LLM Syntax with Limits. The length of these plans were compared
against the length estimates of three classical heuristics ℎ+, ℎmax,
and ℎrp when evaluated on the same states for the same goals.
In addition to evaluating the length of the predictions, we also
measured whether the relaxed plans generated by ℎrp and the plans
generated by the LLM contained actions that were known to lead
to a solution.

Heuristic Weighting. Some heuristic search strategies, likeWeighted
A* [18], multiply the value returned by the heuristic by some con-
stant factor 𝜖 to improve performance. For example, if a heuristic
consistently underestimates, multiplying it by 𝜖 > 1 may improve
its overall accuracy. When presenting the accuracy of each heuris-
tic, we will consider every 𝜖 weight between 0.1 and 2 (inclusive) in
increments of 0.1 so as to capture ideal versions of each heuristic.

Results
Heuristic Accuracy
First, we compare the accuracy of classical planning heuristics
to our LLM heuristics, considering many possible values of the
weight 𝜖 . The error of a heuristic on a given state is the absolute
value of the difference between the known number of explained
actions that needs to be taken until the goal can be achieved and
the value estimated by the heuristic. We analyze the Mean Squared
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Table 2: MinimumMean Squared Error Values Fine-Tuning 𝜖 for Each Problem

Problem ℎmax ℎ+ ℎrp hSyntax hSyntaxLimit hNatural hNaturalLimit
Bribery 0.0000 0.0000 0.0000 0.8789 0.4537 0.7486 0.7066
Deer Hunter 0.0511 0.2685 0.5022 0.6235 0.6020 0.6021 0.6868
Fantasy 0.0070 0.4770 0.2648 0.4922 0.5147 0.3768 0.5605
Gramma 0.1396 0.0750 0.4787 0.6527 0.5070 0.6229 0.5360
Hospital 0.0926 0.0380 0.5365 0.6539 0.5638 0.6298 0.5941
Jailbreak 0.3118 0.1520 0.2935 1.7975 1.7661 1.8149 1.9105
Lovers 0.1127 0.1333 0.3651 0.6428 0.7306 0.4924 0.6858
Raiders 0.7329 0.1648 0.4981 1.9185 1.5562 1.6951 0.9366
Secret Agent 1.3323 1.4759 2.5128 5.2686 0.7517 3.6071 0.7959
Space 0.0968 0.0661 0.4546 0.3425 0.4160 0.3706 0.4302
Treasure 0.0685 0.0846 0.2692 0.2000 0.4042 1.4905 0.2778

Error (MSE) values for each each heuristic on every state for each
benchmark problem.

Figure 2 illustrates how the MSE changes across different prob-
lems and 𝜖 weights. The 𝑥-axis shows the epsilon values, and the
𝑦-axis represents the Mean Squared Error (MSE) between the pre-
dicted and actual distances to the goal. A lower MSE means that
the heuristic is more accurate. The graphs highlight that the best
epsilon values can vary from one problem to another.

As seen in Figure 2, LLM-based heuristic predictions without
response limits tend to give overly long plans, which results in
higher MSE values. This behavior highlights the verbosity of LLMs,
necessitating the use of smaller 𝜖 values to reduce MSE. In contrast,
LLM heuristics with response limits remain more consistent, show-
ing MSE values that are more comparable to classical heuristics,
though they only surpass them on one problem.

Table 2 gives the best MSE values for each heuristic on each
problem—i.e. the lowest error that can be achieved when using the
best possible value of 𝜖 . Here are some key observations:

• Classical Heuristics: The classical planning heuristics gen-
erally have lower MSE values compared to the heuristics
derived from LLMs, though different heuristics performed
better on different problems. ℎ+ shows competitive perfor-
mance with the lowest MSE in several problems.

• LLM-BasedHeuristics: The performance of the LLM-based
heuristics varies significantly across problems. Inmany cases,
they do not achieve the same level of accuracy as the sim-
pler classical planning heuristics. For example, LLM Syntax
and LLM Syntax with Limits often have higher MSE values,
particularly in problems like Secret Agent and Raiders. This
inconsistency suggests that the LLM-based heuristics may
require further fine-tuning for specific contexts.

Heuristic Predictions of Plan Content
Next, we compare howwellℎrp and the LLM heuristics do at predict-
ing plans that contain actions that are known to lead to solutions.
We performed two variations of this analysis.

First, Table 3 shows the percentage of times that the first action
in the plan returned by a heuristic was an action that is known to
lead to a solution. Second, since the order of actions in the relaxed
plans returned by ℎrp can be nondeterministic, Table 4 shows the

Table 3: Percent Accuracy of Heuristics in Predicting the First
Correct Action

Problem ℎrp hSyn hSynLim hNat hNatLim
Bribery 45.7 17.1 37.1 14.3 14.3
Deer Hunter 87.1 69.3 64.3 35.7 30.3
Fantasy 66.9 45.4 41.7 26.8 30.3
Gramma 19.2 24.9 22.9 16 8.7
Hospital 49.6 1.5 2.1 8.7 9.2
Jailbreak 61.5 35.8 41.6 29.5 23.8
Lovers 36.6 9.1 12.7 11 13.6
Raiders 41.5 24.5 28.3 13.2 18.9
Secret Agent 61.2 34.7 49.0 26.5 30.6
Space 34.4 46.1 52.9 41.4 45.2
Treasure 36.8 42.1 36.8 36.8 42.1

Table 4: Frequency of Correct Actions Appearing Anywhere
in Heuristic-Generated Plans

Problem ℎrp hSyn hSynLim hNat hNatLim
Bribery 45.7 25.7 37.1 14.3 14.3
Deer Hunter 92.6 78.3 67.9 55.1 39.1
Fantasy 68.1 57.5 44.8 39.3 37.1
Gramma 30.0 29.1 24.1 24.3 11.9
Hospital 66.1 3.3 5.0 16.1 14.0
Jailbreak 69.9 64.5 53.1 48.6 33.6
Lovers 39.4 14.4 13 20.3 17.2
Raiders 49.1 35.9 37.7 24.5 18.9
Secret Agent 69.4 42.9 49.0 28.6 30.6
Space 59.2 82.6 69.9 80 60.2
Treasure 36.8 42.1 47.4 42.1 42.1

percentage of times the plan returned by a heuristic contained any
actions that are known to lead to a solution.

Overall, according to the data we present in Tables 3 and 4,
the baseline ℎrp heuristic consistently outperforms LLM-based ap-
proaches in most problems, with notable exceptions in the Space,
Gramma, and Treasure problems. In Space and Treasure, every LLM
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Figure 2: Impact of Epsilon Value on Heuristic Prediction Accuracy Across Problems

(a) Bribery (b) Deer Hunter (c) Fantasy

(d) Gramma (e) Hospital (f) Jailbreak

(g) Lovers (h) Raiders (i) Secret Agent

(j) Space (k) Treasure

heuristic beats or ties ℎrp on both first action and any action predic-
tion. In Gramma, the LLM Syntax heuristics beat ℎrp on first action
prediction but not any action prediction.

In the Deer Hunter and Fantasy problems, while the baseline ℎrp
retains a higher accuracy, the LLM-based predictions—especially
the syntax-based ones—show promise. The LLM Syntax heuristic
achieves 69.3% accuracy at first action prediction in Deer Hunter,
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coming closer to the baseline’s 87.1%, and similarly, in the Fantasy
problem, LLM syntax demonstrates a reasonable approximation to
the ℎrp baseline (45.4% for LLM Syntax versus 66.9% for ℎrp).

However, in other problems, such as Hospital, LLM-based predic-
tions perform poorly and demonstrate significantly lower accuracy
compared to ℎrp. The best LLM heuristic in this problem, LLM Nat-
ural with Limits, only achieves an accuracy of 9.2% compared to the
baseline’s 49.6%. The LLM heuristics also had poor accuracy in pre-
dicting the length of plans for Hospital and Jailbreak. This suggests
a correlation between a heuristic’s ability to predict distance to the
goal and to predict next actions.

One major issue in the Hospital domain is that, in the Sabre syn-
tax versions, the LLM often misinterprets the structure of actions. It
tends to treat actions as functions and tries to nest them incorrectly.
For example, in the plan:

assess(Hathaway, Ross, symptom(Ross), PatientRoomB);
treat(Hathaway, Ross, treatment, PatientRoomB);

the LLM does not understand that symptom(Ross) is a fluent
with a value rather than a function that can be nested. This misun-
derstanding leads to many incorrect plans. In the natural language
versions, the problem is that the LLM often provides vague or incom-
plete actions. Instead of specifying treatment details, it generates
actions like "Treat Jones" or "Treat Ross" without indicating the
required treatment or location, such as "Treat Jones with Steroids
at PatientRoomA." This lack of specificity significantly reduces
accuracy.

In the Lovers domain, the poor performance appears to be due
to the complexity of tracking multiple characters and objects, as
well as their locations. Many actions require characters to be in
the same room to interact, such as giving an item to another char-
acter. However, the LLM often forgets or disregards these spatial
constraints, leading to unrealistic plans where characters exchange
items or perform actions without being in the correct location. This
suggests that the LLM struggles to maintain an accurate world state,
which is crucial for effective planning in this domain.

In summary, while LLM-based heuristics offer competitive accu-
racy in select problems and demonstrate some potential as narrative
planning heuristics, their performance is inconsistent. They excel
in problems like Space and Gramma, yet struggle in problems like
Hospital. This suggests that further refinement in prompt design
and problem translation is necessary to improve the reliability of
LLM-based heuristics across a broader range of problems.

Limitations
Our approach has several limitations. One significant limitation is
the time it takes to call the GPT-4o mini API and receive a response
from the LLM. This latency is currently a prohibitive bottleneck
to any kind of online search, but we expect this to improve as
LLMs become smaller and faster and once state-of-the-art language
models can be run locally.

LLMs, including GPT-4o mini used in this study, can sometimes
produce unpredictable outputs. This unpredictability can manifest
in the length of the plan or the content, where the generated plans
can be either excessively verbose or nonsensical.

Another limitation is related to prompt engineering. The effec-
tiveness of the LLM’s predictions depends havily on the quality

of the prompts. The crafting of these prompts requires significant
effort and expertise from the author and will be difficult for other
scientists to replicate reliably. This process is also time-consuming
and is prone to human error, which can impact the overall accuracy
and efficiency of the approach.

Addressing these limitations will be crucial for improving the
reliability and efficiency of using LLMs in narrative planning.

Conclusion
In this study, we evaluated the performance of LLM-based heuris-
tics compared to traditional planning heuristics at completing par-
tial stories. Our analysis revealed that, while LLM-based methods
demonstrate potential in certain problems, they often fall short in
consistently outperforming classical heuristics, especially in struc-
tured and complex problems like Hospital and Jailbreak. The results
suggest that LLM-based approaches require careful prompt engi-
neering and fine-tuning to optimize accuracy.

Fine-tuning 𝜖 values showed that specific adjustments could
enhance prediction accuracy, but also highlighted the challenge of
domain-specific optimization. LLM-based heuristics show varied
performance across different problems, indicating that no single
heuristic is universally effective for all narrative planning problems.
This suggests a need for adaptive strategies that take into account
problem characteristics.

Overall, our findings emphasize the potential of LLM-based
heuristics, while also underscoring the importance of continued
research in prompt design and hybrid heuristic methods to achieve
consistent and reliable performance in narrative planning.

Code
To enable replication and to encourage other researchers to build
on this work, we have made our prompts, evaluation scripts, and
other materials available on GitHub, allowing others to repeat our
experiments or test different LLMs.

https://github.com/lazzy07/llm_as_np_heuristic
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