Detecting Duplicate States is Worth It in Narrative Planning with Belief

Fairoz Nower Khan, Nabuat Zaman Nahim, Stephen G. Ware, Judy Goldsmith

University of Kentucky
Lexington, Kentucky 40506 USA
fairoz.khan @uky.edu, nabuat.nahim @uky.edu, sgware @cs.uky.edu, goldsmit@cs.uky.edu

Abstract

Narrative planning algorithms generate stories as a sequence
of actions that align with an author-defined goal while
ensuring characters act believably, often requiring reasoning
over nested beliefs. When theory of mind is represented,
states include not only the factual world but also each
character’s beliefs about the world and other characters’ be-
liefs, potentially to infinite depth. In such planners, detecting
duplicate states can prune redundant paths in the search
space, but it is unclear whether it is too computationally
expensive to justify. This paper investigates the cost and
benefit of duplicate state detection using the Sabre planner,
which models infinitely nested beliefs deterministically. We
compare two approaches: tree search, which does not check
for duplicate states, and graph search, which uses a recursive
equivalence algorithm to detect and avoid duplicates. We
provide a polynomial-time algorithm for detecting duplicate
states and empirically show that using it significantly reduces
the number of nodes generated and the total planning time
across several benchmark problems. These findings suggest
that duplicate detection in epistemic narrative planning is
both feasible and beneficial.

1 Introduction

In narrative planning, a centralized storytelling algorithm
constructs a sequence of actions to tell a coherent story with
a specific end condition while ensuring characters act in
believable ways (Young 1999). Unlike classical planners,
which generate action sequences without considering in-
dividual agents, many narrative planners account for each
character’s possibly incorrect beliefs and their individual
goals, all while achieving an overarching author-defined
objective (Riedl and Young 2010).

Narrative planning has proven useful for creating in-
teractive stories with strict author requirements (Young
et al. 2013). However, planning is computationally expen-
sive (Helmert 2006), so there has been considerable research
on how to speed up the search for valid stories.

One of the most common approaches to planning is
forward state-space search (Bonet and Geffner 2001).
Search begins at the initial state. The planner considers
every state that can be reached by taking some number

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of actions in sequence. The search runs until a goal state
is found, and the sequence of actions that reaches that
goal state is the solution. In classical deterministic fully-
observable planning, a state is an assignment of values
to a fixed set of variables. States can be easily hashed,
so it is easy to detect when the search has discovered
two different action sequences that lead to the same state.
Many classical searches can be improved by detecting and
avoiding duplicate states.

When a narrative planner reasons about theory of mind—
what character x believes character y believes etc.—the
definition of a state becomes more complex, and it is no
longer obvious that detecting duplicate states is beneficial.
A node in the state space graph represents an assignment of
values to each variable along with pointers to the beliefs of
each character. To detect whether two nodes really represent
the same state, we not only need to check whether they
assign the same values to each variable, but we also need
to check whether character x’s beliefs are the same, and
whether x’s beliefs about y’s beliefs are the same, etc. We
have to check every node that is accessible via the belief
relation. This means that detecting whether a node is a
duplicate state is a subgraph isomorphism problem, because
we have to check whether the state represented by a node
and all accessible beliefs already exists as a subgraph in
the larger state space. Checking subgraph isomorphism is
NP-complete in the general case (Cook 1971), but when
character beliefs are deterministic, this check can be done
more efficiently. By deterministic beliefs, we mean that
each character commits to a specific belief about every
proposition, even though their beliefs may be wrong.

In this paper, we investigate this problem using the
Sabre narrative planner (Ware and Siler 2021), which allows
an infinitely nested theory of mind but has deterministic
beliefs. We compare two approaches. The first is the original
implementation of Sabre, which reduces overhead costs by
not detecting duplicate states but may visit more states
during search. We call this method tree search, since the
search space can be viewed as a tree rooted at the initial
state. The second method incurs the additional overhead of
detecting duplicate states but may visit fewer states during
search as a result. We call this method graph search, since
its search space can be viewed as a graph where each state
appears only once.

Our results show that graph search generates fewer nodes
and takes less time on a suite of benchmark narrative
planning problems. Based on these results, we conclude
that detecting duplicate states is worth it despite the added
overhead.

2 Related Work

Many researchers have used planning or planning-like
systems for story generation, especially during interactive
experiences where a story with a required structure needs
to be rewritten in response to a player’s actions. Young et.
al (2013) survey several narrative planning systems. For our
purposes, we broadly divide story planning systems into two
types: systems that use off-the-shelf planners for storytelling
and systems that use bespoke planning algorithms specifi-
cally designed to reason about story properties.

Existing general-purpose planning algorithms can be used
for storytelling by encoding the constraints for a valid story
into the planning problem. Examples include the use of
Hierarchical Task Network planning to generate plots for the
television show Friends (Cavazza, Charles, and Mead 2002)
and using the state trajectory constraints in PDDL 3 to create
an interactive version of The Merchant of Venice (Porteous,
Cavazza, and Charles 2010) which is guaranteed to reach
certain landmark states. The advantage of this approach
is that as planning researchers develop faster algorithms,
the scope of an interactive story that can be told also
increases. The disadvantage is increased author burden. The
story designer must anticipate the possible stories that can
occur and constrain actions and landmarks to produce only
the desired stories. As the scope of the problem increases,
anticipating the large number of possible stories becomes
more difficult.

The other approach is to design specialized story planning
algorithms that reason about important narrative phenom-
ena. Concepts like intention (Riedl and Young 2010; Teuten-
berg and Porteous 2013), conflict (Ware and Young 2014),
character beliefs (Teutenberg and Porteous 2015; Ware and
Siler 2021; Eger and Martens 2017), and emotion (Marsella
and Gratch 2009; Shirvani, Ware, and Baker 2023) have
received attention from multiple researchers. The advantage
of reasoning directly about these concepts is that authors
can offload this burden to the algorithm and no longer need
to encode these concepts as constraints into a traditional
planning problem. The disadvantage is that advances in
general-purpose planning are slow to make their way into
these bespoke algorithms.

Our paper is relevant to the second camp, which creates
specialized storytelling algorithms. Of particular interest is
the phenomenon of characters appearing to have limited ob-
servability and possibly wrong beliefs. The exact mechanics
of how beliefs work in Sabre do not need to be explained
here, but in short characters can observe actions happening
or not (Ware and Siler 2021). When a character observes an
action, they update their beliefs to incorporate the effects of
the action. When they do not observe an action, their beliefs
remain the same, unless the action explicitly defines changes
to their beliefs. The model provides an infinitely deep theory
of mind, which means it can always determine the truth

value of any belief proposition, no matter how many layers
of z believes y believes x believes, etc. it has. A series of
studies confirmed this model matches the expectations of a
human audience reading a story (Shirvani, Ware, and Farrell
2017; Shirvani, Farrell, and Ware 2018).

Built-in reasoning about beliefs is a case study in the
advantages and disadvantages of bespoke narrative planners.
Authors are free to define the actions that can occur in a story
without needing to pay much attention to beliefs. Characters
in the story will react to actions they observe and will not
react to actions they do not observe. They reason about
theory of mind when anticipating what other characters
will do. Only when an action causes specific changes to
a character’s beliefs not captured by the default reasoning
does the author need to encode specific propositions about
beliefs into the problem. For example, if a character can lie,
the author will need to explicitly define how the lie modifies
the beliefs of the character being lied to.

The disadvantage of this model of beliefs is that opti-
mizations frequently used in traditional planning algorithms
cannot be directly applied. States in a general-purpose
planner can usually be represented as an array of variable
values. Such a state can be easily hashed, which makes
detecting duplicate states easy, and avoiding duplicates often
speeds up planning. This optimization cannot be directly
ported to Sabre, since a state now includes not only the
values of all variables but also x’s beliefs, x’s beliefs about
y’s beliefs, and so on infinitely. This paper explores how
duplicate states can be detected in such a model and whether
it is worth it to do so.

Other story planners have dealt with this problem dif-
ferently. For example, Sanghrajka, Young, and Thorne’s
HeadSpace (2022) uses a 1-layer model of belief, meaning
it can reason about what is actually true and what x
believes, but not what = believes y believes. Teutenberg
and Porteous’s IMPRACTical planner (2015) does something
similar but also provides a default state that represents the
assumptions characters make when reasoning about belief
positions deeper than 1 layer. When the depth of belief
reasoning has a finite limit, it is again possible to simply
represent the state as an array of values or to compile belief
away entirely (Christensen, Nelson, and Cardona-Rivera
2020).

While Sabre allows an infinite theory of mind, it does
not allow uncertainty. In every state, characters have exactly
one state they believe the world to be in. Those beliefs
may be wrong, but they cannot be uncertain. For example,
x can believe y is at the store when y is actually at the
office, but z cannot believe y is at the store or at the office.
Some reasoning systems that have been used for games, like
Eger and Martens’s Ostari (2017), can represent epistemic
uncertainty, and while this is a richer model, it comes at the
cost of limiting the size of problems it can solve. Duplicate
state detection in a system like Ostari is even more complex,
and it is not clear to us whether it would be worth the cost.

3 Problem Definition

Sabre’s model of narrative planning is a state-space search
problem in which the goal is to identify a sequence of

actions (narrative events) that transition an initial state to a
desired goal state. Each state represents the narrative world
at a specific point, encoded with both factual and epistemic
information (the beliefs of agents).

In narrative planning, the constructed sequence of actions
must satisfy an overarching author-defined objective while
ensuring that the characters act believably and in accordance
with their individual goals and potentially incorrect beliefs.
Formally, we define a narrative planning problem as P =
(C,F, AU, sg), where:

¢ (' is a set of characters. Each character can have its own
beliefs and intentions.

e F'is a set of fluents, which are variables that describe the
state of the world. Each fluent has a domain of possible
values it can be assigned.

e A is a set of actions, similar to ADL actions (Pednault
1994). Each action has a precondition which must be
true before it can occur, an effect which modifies the
world state, and a set of consenting characters who must
have a reason to take the action. When actions occur,
they modify not only the actual world state but also the
beliefs of characters. The specific rules for how beliefs
are updated are described by Ware and Siler (2021), but
in short, when a character observes an action they update
their beliefs based on the effects, and when they do not
observe an action their beliefs do not change.

e U is a set of utility functions for the characters and
author. Utility is a numeric value that is a function of a
state. Characters seek to maximize their personal utility
values, and the planner itself seeks to maximize the
author’s utility value.

* s¢ is an initial state that specifies the starting values of
all the fluents F' and any wrong beliefs that character
initially hold.

Sabre’s State Graph

Sabre’s search space is a graph whose nodes represent states.
The graph has two kinds of edges: temporal edges that
represent taking actions and epistemic edges that represent
character beliefs.

Each state node stores a value for each fluent f € F' and a
belief for each character ¢ € C. We use the notation s(f) =
v to mean that in state node s fluent f has value v.

A temporal edge s, 2y 55 extends from state node s to
state node sy for action a € A when the precondition of
action ¢ holds in state s; and taking that action in that state
would result in state s;. A plan (or narrative) is a path of
temporal edges through the graph. A solution is a plan that
starts at so and ends in any state where the author’s utility is
higher and where every action is explained. The full details
of when actions are explained (Ware and Siler 2021) are not
necessary for this paper, but in short an action is explained
if it is the first step in a plan that a consenting character
believes will improve their utility.

An epistemic edge s, £ s5 extends from state node s, to
state node s, for character ¢ € C' when the world is in state
s1 but character ¢ believes the world is in state s5. We use

Input: States s; and sy and list P of unordered state pairs
Output: T if s; and s, are the same state; | otherwise
1: procedure SAME(s1, S2, P)

2: if <51,82> epP

3: return T

4 else if 3 fluent f such that s1(f) # sa(f)

5: return L

6: else

7: Add (s1,s2) to P

8: for character c € C

9: if “=SAME(5(c, s1), B(c, $2), P) return L
10: return T

Figure 1: Algorithm for detecting whether two nodes
represent the same state.

the notation 3(c, s1) to mean the state character ¢ believes
the world is in when it is in state s;. So when the graph
contains the edge s; — s, we say B(c,s1) = s2. Each
node has exactly one epistemic edge for each character ¢ €
C, even if that edge is a loop. Exactly one epistemic edge
per characters means that, while characters can have wrong
beliefs, they cannot be uncertain about their beliefs.

This graph allows for an infinitely nested theory of mind.
If the world is in state s and we want to know whether
character ¢; believes that character ¢, believes that some
proposition p holds, we would evaluate p in the state

5(627 5(017 8))
4 Detecting Duplicate States

While this graph makes it easy to represent theory of mind,
it makes it difficult to detect when two states are the same.
We want to say state nodes are the same if they would
evaluate every possible proposition the same way. Because
propositions might contain arbitrarily complex statements
about beliefs, this means that all fluents must have the same
value, but also that all beliefs must be the same, and that all
beliefs about beliefs must be the same, and so on.

Algorithm 1 detects when two state nodes s; and s, are
the same. It works by first assuming the nodes represent
equivalent states and then recursively comparing their
fluents and nested beliefs until it finds a counterexample
which proves they are not equivalent. If it never finds a
counterexample after checking every pair of nodes that
should be equivalent, it returns T.

Algorithm 1 first checks whether the nodes s; and so
assign a different value to the same fluent (line 4). If so,
those nodes clearly do not represent the same state and the
algorithm returns L. If all fluent values are the same, it
recursively compares the beliefs of each character (line 8).

After verifying that all fluents are the same, but before
checking character beliefs, the algorithm adds the unordered
pair (s1, s2) to P, a list of pairs of states that are assumed
to be the same (line 7). We do this so that, if the algorithm
again encounters the pair (s, $3) it can automatically return
T without creating infinite recursion (line 2).

When we return T for a previously seen pair in P, we
do so under the assumption that this pair has already been

Figure 2: An example state space graph showing actions and
beliefs.

verified (or is in the process of being verified) in a prior call.
In other words, we want to check every pair of nodes that
should be equivalent only once to avoid infinite recursion.

The set P of node pairs can be implemented as a hash
table. We can add a pair of nodes to P and check whether
P contains a pair of nodes in (amortized) constant time.
Note that, when checking whether P contains a pair, we are
checking for that exact unordered pair of nodes. The pair
(s1,82) and (sq, s1) are the same pair because order does not
matter, but the pair (sq, s2) and (s, s3) are different pairs,
even if it happens that s, and s3 are equivalent. In other
words, hashing a node or node pair, and comparing a pair
of nodes does not require checking if nodes are equivalent.
In programming terms, we are checking if a pair contains
exactly the same two node objects.

Two nodes are equivalent if there exists a one-to-one
correspondence between their epistemic structures. Even-
tually, Algorithm 1 will check all pairs of states that are
epistemically accessible from the original pair of states via
the same sequence of characters. It will check each pair
once and only once. If it finds a pair of states on the same
epistemic path with different values for the same fluent, it
returns L. If no such pair can be found, then the two original
states can be considered the same, and it returns T.

Example

Suppose Alice is at home, and Bob and Charlie are at the
office, but Alice wrongly believes that Bob and Charlie are
at the store. This initial state is illustrated by node sy in
Figure 2, where A = H means “Alice is at home,” B = O
means “Bob is at the offce,” etc. Epistemic edges are drawn
in red dotted lines. The actual state is sg (Bob and Charlie
are at the office), but Alice wrongly believes the state is
s1 (Bob and Charlie are at the store). This graph can be
used to evaluate epistemic propositions of any depth; for
example, it is true that “Bob believes Charlie believes Alice
believes Bob is at the store.” We evaluate this by starting at
node sq, then following the edge for B (back to node sg),
then following the edge for C' (back to node s(again), then
following the edge for A (to node s1), and then evaluating
where Bob is in node sy, which is the store.

The edge from sg to so is what Sabre calls a temporal
edge, and it represents an action occurring. After Bob goes
home, the new world state will be so. Now everyone agrees
Bob is home, but Alice still wrongly believes Charlie is at
the store when he is actually at the office (and Bob and
Charlie both know Alice wrongly believes this). We can see
that sg, s1, So, and sg are all different nodes because they
assign different values to their fluents.

Now suppose Charlie also comes home, changing the
world state from s, to s4. If we do not bother to detect
duplicate states in the graph, we could simply create states
s4 and s; and move on with solving the problem. However,
we can potentially make our search more efficient by
recognizing that nodes s; and ss are equivalent using
Algorithm 1.

We start by comparing the fluent values of s4 and s5. All
fluents have the value H in both nodes, so we add the pair
(84, s5) to P. Now we need to check whether Alice has the
same beliefs in both nodes. We follow the epistemic edge
labeled A from both nodes, and we now check where sy
and s5 are equivalent. Obviously they are, since they are
the same node. All other recursive checks also compare the
same node to itself. Since it is not possible to find a pair of
nodes which should be equivalent but are not, the algorithm
returns T.

Since nodes s4 and s5 are equivalent, we can delete node
s5 from the graph and change the temporal edge from s3 to
S5 to go from s3 to s4 instead.

In Sabre, each character has exactly one outgoing epis-
temic edge, meaning that epistemic uncertainty is not
allowed. Consequently, while duplicate state detection still
involves a form of subgraph isomorphism, the problem is
more structured. The constraints on epistemic edges place
it in a more computationally tractable subclass of subgraph
isomorphism, reducing the overhead compared to the fully
general case. Detecting duplicate states in systems like
Ostari (Eger and Martens 2017), which allow for epistemic
uncertainty, is likely more complex.

Duplicate Detection in Polynomial Time

We now prove that Algorithm 1 runs in time polynomial in
the size of the state graph produced by Sabre.

Let m be the number of nodes in the graph, and let n =
|C| be the number of characters. Since each node has exactly
one outgoing epistemic edge for each character (including
self-loops), the state graph has exactly mn epistemic edges.

We define two states s; and sa to be equivalent if and only
if they would evaluate every possible proposition identically.
Algorithm 1 checks this equivalence by first comparing the
values of fluents and then recursively comparing beliefs by
following the epistemic edges.

The algorithm uses a recursive depth-first strategy with
memoization. We maintain a set P of already-compared
state pairs. If (s1,s0) € P, the algorithm returns T
immediately. If any fluent differs, it returns L. Otherwise, it
recursively compares the states believed by each character,
again using memoization to prevent revisiting pairs. Since
every node has exactly one outgoing epistemic edge per
character, the structure formed by recursively traversing
beliefs from any state is a tree of bounded out-degree n and
depth at most m (since the maximum number of reachable
distinct nodes is m).

Theorem 1. Given any pair of states s; and Sy in
Sabre’s state graph, Algorithm 1 decides whether s1 and so
represent the same state in time polynomial in m and n.

Proof. Let us analyze the worst-case complexity of compar-
ing a single pair of states (s, s2) using Algorithm 1.

First, checking whether (s1, s2) is already in P (line 2)
can be done in amortized constant time assuming P is a
hash table. Comparing the fluent values of both states (line
4) takes O(|F|) time. Then, for each character ¢ € C, we
recursively compare the pair (3(c, s1), 5(c, s2)) (line 8).

Since the belief graph is deterministic and each node
has exactly one epistemic edge per character, the recursive
comparisons trace through trees rooted at s; and s, with
branching factor n and depth at most m (no pair of states
is visited more than once due to memoization). Hence, in
the worst case, the number of unique state pairs compared is
O(m?).

Each such comparison takes time O(|F| + n), and each
pair is visited at most once, so the total time is O(m?(|F| +
n)). If |F| and n are bounded by m, which they typically
are, the overall runtime becomes O(m?n). O

Thus, duplicate state detection via Algorithm 1 is tractable
for Sabre’s epistemic model and does not require full
general-purpose subgraph isomorphism checking. In the
theoretical worst case every pair of states will need to be
considered, though in practice the number of pairs checked
is typically much smaller. Having established that checking
for duplicates is theoretically tractable, we now consider
whether is practically useful by measuring whether and
how much it speeds up planning on a suite of benchmark
problems.

5 Search Methods

In this paper, we consider two methods for exploring the
state-space graph: tree search and graph search. Both begin
with the initial state sg and attempt to find a valid sequence

of actions leading to a goal state, but they differ in how they
manage state equivalence.

Tree Search In this approach, every new action creates
new nodes in the state space graph, regardless of whether
identical states might already exist. This avoids the com-
putational cost of checking state equivalence but can result
in a larger search space with many redundant nodes. Sabre
version 0.7 (the current release as of this writing) uses tree
search.

When using tree search, nodes are generated as needed,
and a limit is placed on epistemic depth. In other words,
when the state node s; is created and the beliefs of character
c would be some other state node so, the edge s; £ 55 and
the node s, are not actually created until they are needed
(i.e. until some proposition about c’s beliefs is evaluated in
state sq).

Sabre searches typically specify limits on the maximum
length of a plan, and a limit can also be placed on the
maximum epistemic depth. For example, if epistemic depth
is limited to 2, this means that when the planner tries to
explain an action, it may reason about what is actually true
(depth 0), what each character believes (depth 1), and what
each character believes every other character believes (depth
2). An epistemic limit helps to reduce the number of nodes
created during a search, but it also limits the complexity
of character behavior. For example, one character might
manipulate another by lying, but this requires the liar to
anticipate what the other character will do when lied to,
which requires a minimum epistemic depth of 2.

Graph Search This approach explicitly checks for state
equivalence to detect and eliminate duplicate states. After
an action creates new nodes the planner checks whether
identical nodes already exist. If so, the planner replaces
the new nodes with those identical nodes. This reduces the
overall size of the state space graph but incurs the overhead
of finding duplicate states.

When using graph search, imposing an epistemic limit
will not affect the number of nodes created. Checking
whether two nodes are equivalent (via Algorithm 1) requires
checking all possible node pairs until every relevant pair has
been checked, and this process could go to any epistemic
depth. So it is theoretically possible that, even though graph
search detects duplicate nodes, it could generate more nodes
than tree search, since it may have to go deeper than the tree
search’s epistemic limit when detecting duplicates.

6 Methods

We compare the Tree Search and Graph Search methods for
narrative planning with infinitely nested theory of mind but
no uncertainty. We want to compare these methods on two
criteria: how many nodes are generated in their respective
graphs and how long it takes to expand those graphs.

We tested both methods in Sabre on a suite of 14 nar-
rative planning benchmark problems compiled from several
authors (Ware and Farrell 2023). Each problem defines a set
of characters, actions, and utilities, with varying levels of
complexity in terms of nested beliefs. It specifies an initial

Aladdin: Nodes vs Depth Aladdin: Time (ms) vs Depth
1e8 i ‘ 1le7 i

2
2
1
O - { - —r 0 - + -
2 4 6 8 2 4 6 8

Bribery: Nodes vs Depth Bribery: Time (ms) vs Depth
le6 le5

le8

Basketball: Nodes vs Depth

2 4 6 8

Dleszrhunter: Nodes vs Depth
le

—a— Tree Search
—e— Graph Search

Balsk7etball: Time (ms) vs Depth
e

1

2 4 6 8

Decin.r?unter: Time (ms) vs Depth
le

4
5 2
2 2 1
0 MBS = caf o IR e 0 e [o | E—— M S
10 20 10 20 5 10 15 5 10 15
Fantasy: Nodes vs Depth Fantasy: Time (ms) vs Depth Gramma: Nodes vs Depth Gramma: Time (ms) vs Depth
le7 le6 le8 le7
/ 1.0 1.0/
5.0
5
J 2.5 i 0.5 0.5
% rd
o . —d . . . 00 . — . . . 00 - 4 — . 00 . ! S—
5 10 5 10 2 4 6 8 2 4 6 8
Hospital: Nodes vs Depth HostitaI: Time (ms) vs Depth Jailbreak: Nodes vs Depth Jailbreak: Time (ms) vs Depth
le8 le . 1e9 . le7 .
5.0
1 1 2
2.5
0 - —_— 0.0 - —_— ol ot
2 4 6 2 4 6 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Lovers: Nodes vs Depth Lovers: Time (ms) vs Depth Raiders: Nodes vs Depth Raiders: Time (ms) vs Depth
1e8 le7 1le8 le7
2 : . ;
1.
0 R 4
1 0.5 2
= L ‘ + — ’ 0.0l - } - [s e e [e e .
2 4 6 8 2 4 6 8 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Seic:raet Agent: Nodes vs Depth Secret Agent: Time (ms) vs Dep X gpace: Nodes vs Depth ?p7ace: Time (ms) vs Depth
: e e
§ = 100 o r
1 | 5.0
- 50 A< A 1 2.5
ol T T o - : , ol v 0.0l = v :
2 4 6 8 10 12 2 4 6 8 10 12 0 50 100 0 50 100
Treasure: Nodes vs Depth Treasure: Time (ms) vs Depth Western: Nodes vs Depth Western: Time (ms) vs Depth
led - le4d - le7 le7
———————————————————————— 1 | ,.«'“’""//‘Nr 2
2l . 5
) 1
0/ O,
i . 0 - | S | S 1 0 - I . | S 1
0 50 100 0 50 100 2 4 6 2 4 6

Figure 3: Comparison of Tree Search and Graph Search across 14 narrative planning benchmark problems. For each problem,
two subplots are shown side by side: the left graph plots the number of nodes generated against depth (Nodes vs. Depth), and
the right graph plots execution time in milliseconds against depth (Time (ms) vs. Depth). In each subplot, the x-axis represents
the search depth limit, while the y-axis represents either the number of nodes generated or the time taken.

state sg, a set of possible story actions, and a utility function
for each story and character. The detailed report cited above
provides background and historical context for each domain,
including their origins in prior narrative planning research.
This report serves as a useful reference for understanding the
design and motivation behind these domains.

Experiment Design For each of the benchmark problems,
we performed a breadth-first search starting at the problem’s
initial state. After the search, we measured the total number
of nodes in the state graph and the time taken to create
the graph. Below, we describe the limits placed on these
searches.

There are three relevant limits that can be placed on a
Sabre search. The author temporal limit is a limit on the
number of actions in a story. The character temporal limit is
a limit on the length of an explanation—a plan imagined by
a character to justify taking an action. The epistemic limit is
the maximum depth of theory of mind that can be used when
building an explanation. The epistemic limit is discussed
above in Section 5.

For each problem, we set the author temporal limit to the
depth that a breadth-first search could fully expand in 24
hours when running on a computer with 4.1 GHz Intel Xeon
processor and 500 GB of RAM. For the character temporal
limit and epistemic limit, we used the values recommended
for each problem in the benchmark suite (Ware and Farrell
2023). These values are the minimum needed to allow
certain known solutions to each problem to be generated.
Note that the epistemic limit only applies to tree search, as
discussed above in Section 5.

The 24-hour benchmark duration and use of high-memory
machines were not meant to reflect player-facing scenarios,
but rather to ensure we collected as much data as we possibly
could on the hardware available to us in the time we had to
collect our results. We wanted to ensure results for as many
benchmark problems as we could, in the hopes that these
results will continue to be relevant as consumer hardware
improves in future years.

7 Results

For each benchmark problem, we compared two metrics for
tree search and graph search:

1. Nodes vs. Depth — the total number of nodes generated
as a function of plan depth (x-axis: depth, y-axis: nodes
generated).

2. Time vs. Depth — the total runtime needed to reach a
given plan depth (x-axis: depth, y-axis: time in millisec-
onds).

The results are visualized in Figure 3. In all subplots,
smaller values indicate better performance because they
correspond to fewer states explored or less time spent.

Across all benchmark problems, graph search consis-
tently generated fewer nodes than tree search for each
of the depths. This result confirms our hypothesis that
duplicate states are common in the Sabre search space due
to the recursive and deterministic structure of character
beliefs. By detecting and eliminating these duplicates, the

search avoids redundant exploration of equivalent epistemic
configurations and provides substantial savings.

The Time vs. Depth plots show that, despite the additional
overhead of checking for duplicate states, graph search
achieved shorter runtimes for each depth. The cost of
duplicate detection was outweighed by the savings in node
generation and search depth. For the same reasons, graph
search was also able to reach greater depths within the
specified time limit of 24 hours for all 14 problems.

The results demonstrate that, in the context of Sabre’s
structured epistemic graphs, detecting duplicate states is not
only theoretically tractable but also practically beneficial.
In this setting, fewer nodes directly translate into faster
runtimes and deeper achievable searches, suggesting that the
overhead of duplicate detection is more than offset by the
pruning of redundant search paths.

While results may differ in more complex epistemic
settings (e.g., those with uncertainty or multiple possible
beliefs per character), within Sabre’s framework, graph
search clearly outperforms tree search in both efficiency and
scalability.

8 Limitations

While our results suggest that detecting duplicate states
improves performance in narrative planning with nested
theory of mind, the following limitations should be consid-
ered when interpreting our findings. The primary limitation
is that our algorithm depends on the assumption that
the model is deterministic. In our model, every action
has exactly one outcome and beliefs are deterministic, so
characters can have wrong beliefs, but every character has
exactly one belief state. This assumption excludes epistemic
uncertainty and stochastic outcomes, which simplifies the
structure of the belief graph and makes duplicate detection
more tractable. Extending the model to handle stochastic
outcomes, as in a Markov Decision Process, where actions
could have multiple outcomes, or allowing characters to
maintain uncertain beliefs would complicate state compar-
ison, making the duplicate detection harder and increasing
computational costs.

Furthermore, our evaluation is conducted on a specific
suite of benchmark narrative planning problems. While
these benchmarks are representative of common storytelling
scenarios, they may not capture the full range of complexity
encountered in broader narrative domains, especially those
with large character sets, complex action dependencies,
or deeper nesting of beliefs. It remains an open question
whether the performance benefits of graph search hold
consistently as problem complexity scales. These limitations
point to promising directions for future work.

9 Conclusion

Our experiments show that in Sabre’s deterministic, in-
finitely nested theory-of-mind framework, graph search with
duplicate state detection consistently generates few nodes
and takes less time than tree search without duplicate
detection across all tested benchmarks. By avoiding re-
dundant exploration of equivalent epistemic configurations,

graph search achieves substantial efficiency gains despite
the added overhead of equivalence checking. These findings
demonstrate that, at least for deterministic narrative planners
like Sabre, the benefits of duplicate detection outweigh
its costs, suggesting that similar techniques could improve
scalability in other structured epistemic planning systems.

10 Acknowledgments

This material is based upon work supported by the U.S.
National Science Foundation under Grant No. 2145153
and the U.S. Army Research Office under Grant No.
WO11NF-24-1-0195. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
National Science Foundation or the Army Research Office.

References

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1): 5-33.

Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems
special issue on Al in Interactive Entertainment, 17(4): 17—
24,

Christensen, M.; Nelson, J.; and Cardona-Rivera, R. 2020.
Using domain compilation to add belief to narrative plan-
ners. In Proceedings of the 16th AAAI conference on
Artificial Intelligence and Interactive Digital Entertainment,
38-44.

Cook, S. A. 1971. The complexity of theorem-proving
procedures. In Proceedings of the Third Annual ACM
Symposium on Theory of Computing, 151-158.

Eger, M.; and Martens, C. 2017. Practical specification of
belief manipulation in games. In Proceedings of the 13th
AAAI conference on Artificial Intelligence and Interactive
Digital Entertainment, 30-36.

Helmert, M. 2006. New complexity results for classical
planning benchmarks. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling,

52-62.

Marsella, S. C.; and Gratch, J. 2009. EMA: A process model
of appraisal dynamics. Cognitive Systems Research, 10(1):
70-90.

Pednault, E. P. D. 1994. ADL and the state-transition model
of action. Journal of Logic and Computation, 4(5): 467-512.

Porteous, J.; Cavazza, M.; and Charles, F. 2010. Applying
planning to interactive storytelling: Narrative control using
state constraints. ACM Transactions on Intelligent Systems
and Technology, 1(2): 1-21.

Riedl, M. O.; and Young, R. M. 2010. Narrative planning:
balancing plot and character. Journal of Artificial Intelli-
gence Research, 39(1): 217-268.

Sanghrajka, R.; Young, R. M.; and Thorne, B. 2022.
Headspace: incorporating action failure and character be-
liefs into narrative planning. In Proceedings of the 18th
AAAI conference on Artificial Intelligence and Interactive
Digital Entertainment, 171-178.

Shirvani, A.; Farrell, R.; and Ware, S. G. 2018. Combining
intentionality and belief: revisiting believable character
plans. In Proceedings of the 14th AAAI international
conference on Artificial Intelligence and Interactive Digital
Entertainment, 222-228.

Shirvani, A.; Ware, S. G.; and Baker, L. J. 2023. Personality
and emotion in strong-story narrative planning. [EEE
Transactions on Games, 15(4): 669-682.

Shirvani, A.; Ware, S. G.; and Farrell, R. 2017. A possible
worlds model of belief for state-space narrative planning. In
Proceedings of the 13th AAAI international conference on
Artificial Intelligence and Interactive Digital Entertainment,
101-107.

Teutenberg, J.; and Porteous, J. 2013. Efficient intent-
based narrative generation using multiple planning agents.
In Proceedings of the 2013 international conference on
Autonomous Agents and Multiagent Systems, 603—-610.

Teutenberg, J.; and Porteous, J. 2015. Incorporating
global and local knowledge in intentional narrative planning.
In Proceedings of the 2015 international conference on
Autonomous Agents and Multiagent Systems, 1539—1546.

Ware, S. G.; and Farrell, R. 2023. A Collection of Bench-
mark Problems for the Sabre Narrative Planner. Technical
report, Narrative Intelligence Lab, University of Kentucky.

Ware, S. G.; and Siler, C. 2021. Sabre: a narrative
planner supporting intention and deep theory of mind. In
Proceedings of the 17th AAAI International Conference on
Artificial Intelligence and Interactive Digital Entertainment,
99-106.

Ware, S. G.; and Young, R. M. 2014. Glaive: a state-space
narrative planner supporting intentionality and conflict. In
Proceedings of the 10th AAAI international conference on

Artificial Intelligence and Interactive Digital Entertainment,
80-86.

Young, R. M. 1999. Notes on the use of plan structures in
the creation of interactive plot. In Proceedings of the AAAI
Fall Symposium on Narrative Intelligence, 164—167.

Young, R. M.; Ware, S. G.; Cassell, B. A.; and Robertson, J.
2013. Plans and planning in narrative generation: a review of
plan-based approaches to the generation of story, discourse
and interactivity in narratives. Sprache und Datenverar-

beitung, Special Issue on Formal and Computational Models
of Narrative, 37(1-2): 41-64.

