
Experiments in Paired Storytelling:
2024 Dataset Description

Introduction
This document describes a dataset was collected from an interactive narrative game
played by 25 University of Kentucky students in an undergraduate game development class
exercise who signed a consent form to release their data. The dataset includes 1005
actions across 34 game sessions (some incomplete).

The dataset was collected as follows. At the beginning of the class period, each student
was given a sticky note with a unique ID to log into the game anonymously. The instructor
described the game to the class, including a brief backstory: Just before the coronation of a
kingdom’s future ruler, a bandit stole the enchanted crown that can magically grant anyone
the status of monarch; now, the would-be heir is offering a bounty to the player character
to bring the crown back, although the player is free to choose whether to pursue that quest
or to help someone else usurp the throne instead. The instructor led a tutorial where the
class played an example session (not included in the dataset) with a presupplied sequence
of actions. Then students played until the end of the class period; the server paired them
together for each game session, ensuring that nobody was placed in the same role or with
the same partner twice in a row. At the end, the instructor tied the exercise into the course
with a discussion about how a game master or game designer can implicitly communicate
about intentions with the player. Then, students were given the option to volunteer their
game data for research by signing a consent form.

The next two sections describe the game itself to provide context for the data, and the last
section describes the format of the dataset itself in this archive.

Game Interface
Each game session had two users, one taking the role of the game master and one taking
the role of the player. Both users played through a browser interface like the one in the
image below.

The left pane showed the current properties of game objects such as characters; for the
game master, this included all game information, while for the player, it was restricted to
characters visible in the player character’s current location.

The middle pane showed game narration and a menu for selecting actions. Actions were
the means by which properties of game objects were updated and new narration was
produced. Only one user had action menus available at any given time; by default, the
menus were available to the game master, who could allow the player to choose actions by
selecting “Let the player act”. After the player chose an action, the game master could
continue ceding control by clicking “Let the player keep acting” or resume choosing
actions by clicking “Take back control”.

The right pane had a scrollable reference guide with short descriptions of characters,
locations, items, and actions.

A box like the one below appeared at the bottom of each user’s screen periodically, upon
the other user gaining control and no more than once per minute. Before gameplay
continued, the user was required to submit ratings on a five-point Likert scale for two
qualities: “Every action in this story is important and well-integrated into narrative [sic]”
and “I feel free to make meaningful choices that will influence this story”.

After the game session ended, each user was given a post-game interview illustrated below
where they were asked to explain their own and their partner’s action choices by selecting
one or more checkboxes, and in the case of the “Other” checkbox, typing additional
details.

Game Mechanics
This section explains the actions that appear in the game logs. Each action operated on
game objects from among the following types.

• Locations have adjacent locations.
o The Town Square location is adjacent to all other locations.
o The Alchemy Shop, Palace, and Wilderness locations are adjacent only

to the Town Square.
• Characters have a controlling user from among the player and game master and

a current location. Characters also have a status: normal is the default; invisible
characters cannot be seen by other characters; and dead or detained characters
cannot take actions unless otherwise specified. By default, when a character
takes an action that targets another character, the target must be a character of
normal status in the same location.

o The Adventurer character is controlled by the player and starts in the
Town Square.

o The Alchemist character is controlled by the game master and starts in
the Alchemy Shop.

o The Bandit character is controlled by the game master and starts in the
Wilderness.

o The Guard character is controlled by the game master and starts in the
Town Square.

o The Heir character is controlled by the game master and starts in the
Palace.

• Items have a possessing character or container. Weapons, Consumables, and
Currency are subtypes.

o The Coin currency and Food consumable start with the Adventurer.
o The Invisibility Potion consumable and Poison item start with the

Alchemist.
o The Crown item, Cutlass weapon, and Lockpick item start with the

Bandit.
o The Key to the Stocks item and Longsword weapon start with the Guard.
o The Royal Treasure currency starts with the Heir.

Although actions were communicated to users in the form of natural-language flavor text,
they are represented in the logs as action signatures consisting of the action name and list
of parameters. Spaces are included for clarity in this document but all whitespace is
removed in the log itself. The actions in the game were as follows:

• applyPoison([character], [consumable]): Available to the character when they
have the consumable and the Poison item. The Poison is destroyed and the
consumable gains a hidden poisoned property.

• attack([character], [character]): Available to first character when that character
has a weapon. The game master chooses whether the action succeeds; if so, the
second character’s status becomes dead.

• becomeMonarch([character]): Available to the character when they have the
Crown item and are at the Palace. The game ends with the character announced as
the monarch.

• buy([character], [character], [currency], [item]): Available to the controller of the
first character when they have the currency, the second character has the other
item, and the other item is not a currency. The second character chooses whether to
allow the action; if so, the characters exchange possession of the items.

• consume([character], [consumable]): Available to the character when they have
the consumable. The consumable is destroyed. If the consumable is poisoned, the
character becomes dead. Otherwise, if the consumable is the Invisibility Potion, the
character becomes invisible.

• detain([character], [character]): Available to the first character when they have the
Key to the Stocks item. Both characters’ location becomes the Town Square and the
second character’s status becomes detained.

• endInvisibility([character]): Available to the game master when the character’s
status is invisible. The character’s status becomes normal.

• give([character], [character], [item]): Available to the controller of the first
character when they have the item. The second character gains the item.

• hunger([character]): Available to the game master. Has no functional effect on the
game state; only displays flavor text that the character’s stomach growls.

• loot([character], [character], [item]): Available to the controller of the first
character when the second character possesses the item and has status dead or
detained. The first character gains the item.

• playerDiedEnding(): Available to the game master when the Player character is
dead. The game ends with no character as the monarch.

• release([character], [character]): Available to the first character when they have
the Lockpick or Key to the Stocks item and the second character’s status is
detained. The second character’s status becomes normal. May be used by a
detained character with themself as the target.

• sell([character], [character], [item], [currency]): Available to the controller of the
first character when they have the first item, the first item is not a currency, and the
second character has the other item. The second character chooses whether to
allow the action; if so, the characters exchange possession of the items.

• take([character], [character], [item]): Available to the controller of the first
character when the second character has the item. The second character chooses
whether to allow the action; if they do not, the game master may choose to force the
action to succeed anyways. If the action succeeds, the first character gains the
item.

• timePasses(): Available to the game master. Has no functional effect on the game
state; only displays flavor text that some time has passed.

• travel([character], [location]): Available to the controller of the character when the
character is at an adjacent location. The character’s location becomes the chosen
location.

• wait([character]): Available only to the Adventurer character. Has no functional
effect on the game state; only displays flavor text that the Adventurer waits for a
while..

Data Contents
Each time a user took an action in the game session, a corresponding row was added to the
game logs in the dataset. Entries in gameEvents.csv, after an initial header row, have the
following columns in order:

• sessionID: Assigned uniquely to each game session.
• eventID: Within a game session, assigned uniquely to an instance of an in-game

action; i.e., each combination of a sessionID and an eventID is unique across the
whole dataset.

• timestamp: The real-world date and time (EST) of the event.
• gmID: The user ID of the session’s game master.
• playerID: The user ID of the session’s player.
• action: The action signature for the action taken.
• userWhoChose: The user ID of the user who selected the action (either the gmID or

the playerID).
• targetResponse: allow if the action elicited a target character’s consent and the

character allowed the action; deny if the character tried to prevent the action; blank
if no response was elicited from a target character. (For instance, for a buy action,
this field is allow if the target character accepted the trade offer and deny if they
declined the trade.)

• gmRuling: success if the action elicited the game master’s decision about action
success and the game master allowed the action; failure if the game master denied
the action; blank if no response was elicited from the game master. (For instance,

for a take action where the target tried to deny the character taking the item, this
field is success if the game master ruled that the taker’s attempt succeeded
anyways, and failure if the game master ruled that the original owner managed to
keep the item.)

• outcome: The result if the current action prompted further choices (e.g., the
decision to accept or decline a trade offer). Blank if no such choices were
prompted.

• gmStructureRating: The game master’s Likert scale rating for structure from 1 for
“Completely Disagree” to 5 for “Completely Agree”. Present only if the game master
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

• gmAgencyRating: The game master’s Likert scale rating for agency from 1 for
“Completely Disagree” to 5 for “Completely Agree”. Present only if the game master
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

• playerStructureRating: The player’s Likert scale rating for structure from 1 for
“Completely Disagree” to 5 for “Completely Agree”. Present only if the player
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

• playerAgencyRating: The player’s Likert scale rating for agency from 1 for
“Completely Disagree” to 5 for “Completely Agree”. Present only if the player
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

• gmExplanation_AdventurerMonarch: Boolean for whether the game master
selected the “To help the Adventurer become the new monarch” checkbox when the
post-game interview asked to explain the choice of action. Blank if the post-game
interview did not ask about the current action or if the interview was not completed
because the user exited the game prematurely.

• gmExplanation_AlchemistMonarch: Boolean for whether the game master
selected the “To help the Alchemist become the new monarch” checkbox when the
post-game interview asked to explain the choice of action. Blank if the post-game
interview did not ask about the current action or if the interview was not completed
because the user exited the game prematurely.

• gmExplanation_BanditMonarch: Boolean for whether the game master selected
the “To help the Bandit become the new monarch” checkbox when the post-game
interview asked to explain the choice of action. Blank if the post-game interview did

not ask about the current action or if the interview was not completed because the
user exited the game prematurely.

• gmExplanation_GuardMonarch: Boolean for whether the game master selected
the “To help the Guard become the new monarch” checkbox when the post-game
interview asked to explain the choice of action. Blank if the post-game interview did
not ask about the current action or if the interview was not completed because the
user exited the game prematurely.

• gmExplanation_HeirMonarch: Boolean for whether the game master selected the
“To help the Heir become the new monarch” checkbox when the post-game
interview asked to explain the choice of action. Blank if the post-game interview did
not ask about the current action or if the interview was not completed because the
user exited the game prematurely.

• gmExplanation_Characterization: Boolean for whether the game master selected
the “To make the [character] feel realistic” checkbox when the post-game interview
asked to explain the choice of action, where [character] was replaced with the
character who took the action. Blank if the post-game interview did not ask about
the current action or if the interview was not completed because the user exited the
game prematurely.

• gmExplanation_Conflict: Boolean for whether the game master selected the “To
add conflict or suspense to the story” checkbox when the post-game interview
asked to explain the choice of action. Blank if the post-game interview did not ask
about the current action or if the interview was not completed because the user
exited the game prematurely.

• gmExplanation_Other: The text entered by the game master if they selected the
“Other (please elaborate)” checkbox when the post-game interview asked to explain
the choice of action. Blank if the user did not select this checkbox, if the post-game
interview did not ask about the current action, or if the interview was not completed
because the user exited the game prematurely.

• playerExplanation_AdventurerMonarch: Boolean for whether the player selected
the “To help the Adventurer become the new monarch” checkbox when the post-
game interview asked to explain the choice of action. Blank if the post-game
interview did not ask about the current action or if the interview was not completed
because the user exited the game prematurely.

• playerExplanation_AlchemistMonarch: Boolean for whether the player selected
the “To help the Alchemist become the new monarch” checkbox when the post-
game interview asked to explain the choice of action. Blank if the post-game

interview did not ask about the current action or if the interview was not completed
because the user exited the game prematurely.

• playerExplanation_BanditMonarch: Boolean for whether the player selected the
“To help the Bandit become the new monarch” checkbox when the post-game
interview asked to explain the choice of action. Blank if the post-game interview did
not ask about the current action or if the interview was not completed because the
user exited the game prematurely.

• playerExplanation_GuardMonarch: Boolean for whether the player selected the
“To help the Guard become the new monarch” checkbox when the post-game
interview asked to explain the choice of action. Blank if the post-game interview did
not ask about the current action or if the interview was not completed because the
user exited the game prematurely.

• playerExplanation_HeirMonarch: Boolean for whether the player selected the “To
help the Heir become the new monarch” checkbox when the post-game interview
asked to explain the choice of action. Blank if the post-game interview did not ask
about the current action or if the interview was not completed because the user
exited the game prematurely.

• playerExplanation_Characterization: Boolean for whether the player selected the
“To make the [character] feel realistic” checkbox when the post-game interview
asked to explain the choice of action, where [character] was replaced with the
character who took the action. Blank if the post-game interview did not ask about
the current action or if the interview was not completed because the user exited the
game prematurely.

• playerExplanation_Conflict: Boolean for whether the player selected the “To add
conflict or suspense to the story” checkbox when the post-game interview asked to
explain the choice of action. Blank if the post-game interview did not ask about the
current action or if the interview was not completed because the user exited the
game prematurely.

• playerExplanation_Other: The text entered by the player if they selected the “Other
(please elaborate)” checkbox when the post-game interview asked to explain the
choice of action. Blank if the user did not select this checkbox, if the post-game
interview did not ask about the current action, or if the interview was not completed
because the user exited the game prematurely.

