Experiments in Paired Storytelling:
2023 Dataset Description

Introduction

This document describes a dataset was collected from an interactive narrative game
played by 18 University of Kentucky students in an undergraduate game development class
exercise. Not all game sessions from the exercise are included in the dataset; consent
forms were offered to the participants, and the logs for any session with a non-consent-
form-signing participant were deleted. The dataset includes 509 actions across 22 game
sessions. The next two sections describe the game itself to provide context for the data,
and the last section describes the format of the dataset itself in this archive.

Game Interface

Each game session had two users, one taking the role of the game master and one taking
the role of the player. Both users played through a browser interface like the one in the
image below.



The left pane showed the properties of game objects such as characters; for the game
master, this included all game information, while for the player, it was restricted to objects
in the player character’s location.

The middle pane showed game narration and a menu for selecting actions. Actions were
the means by which properties of game objects were updated and new narration was
produced. Only one user had action menus available at any given time; by default, the
menus were available to the game master, who could allow the player to choose actions by
selecting “Let the player act”.

The right pane had a tool for player to submit ratings, between 1 and 5 stars, for two
qualities of the story, structure and agency.

After the game session ended, each user was given a post-game interview where they were
asked to explain their own and their partner’s action choices one-by-one as illustrated
below.



Review the story and answer these questions.

* Player goes to the Crossroads.
* Player goes to the Market.
* Merchant offers Potion to Player in exchange for a Coin.

Why do you think your partner chose this action?

Submit

Game Mechanics

This section explains the actions that appear in the game logs. Each action operated on
game objects from among the following types.

e Locations have adjacent locations.

o

o

The Crossroads location is adjacent to all other locations.
The Camp, Cottage, and Market locations are adjacent only to the
Crossroads.

e Characters have a controlling user from among the player and game master; a
current status from among alive and dead; and a current location.

o

The Player character is controlled by the player and starts alive at the
Cottage.

The Bandit character is controlled by the game master and starts alive at
the Camp.

The Guard character is controlled by the game master and starts alive at
the Camp.

The Merchant character is controlled by the game master and starts alive
at the Camp.

The Grandma character is at the Cottage with a special comatose status
and does not participate in actions or otherwise have a functional effect
on the game state.

e Containers have a location.

©)

The Chest container is at the Camp.

e Items have a possessing character or container. Weapons are a subtype.

o O O O

The Coin item starts with the Player.

The Dagger weapon starts with the Bandit.

The Halberd weapon starts with the Guard.

The Jewel item starts in the Chest.

The Potion item and Sword weapon start with the Merchant.



Although actions were communicated to users in the form of natural-language flavor text,
they are represented in the logs as action signatures consisting of the action name and list
of parameters. The actions in the game were as follows:

attack([character], [character], [weapon or None]): Available to the controller of
the first character when both characters are alive at the same location and the first
character has the weapon (if applicable). The choice or lack of weapon has no
functional effect on the game state and affects only the narration text. The game
master chooses the outcome:
o attackKill: The second character becomes dead.
o attackMiss: The action has no effect.
badEnding(): Available to the game master when the Player character is dead. The
game ends.
goodEnding(): Available to the game master when the Player character is at the
Cottage and has the Potion. The game ends.
loot([character], [character or container], [item]): Available to the controller of
the first character when the first character is alive, the other character or container
is at the same location and has the item, and the other character (if applicable) is
dead. The first character gains the item.
report([character], [character], [location]): Available to the controller of the first
character when the first character and the Guard character are alive at the same
location. Has no functional effect on the game state; only displays flavor text that
the first character tells the Guard that the second character has committed a crime
at the specified location.
rob([character], [character], [item], [weapon or None]): Available to the
controller of the first character when both characters are alive at the same location,
the second character has the item, the first character has the weapon (if
applicable). The choice or lack of weapon has no functional effect on the game
state and affects only the narration text. The controller of the second character
chooses from the following:
o robSuccess: The first character gains the item.
o The choice passes to the game master who selects from the following
outcomes:
= robDie: The second character dies.
= robEscape: The action has no effect.
= robForced: The first character gains the item.
tradeOffer([character], [character], [item], [item]): Available to the controller of
the first character when both characters are alive at the same location, one of the



characters is the Merchant and the first character has the first item. The controller
of the second character chooses from the following:

o tradeAccept: The first character gains the second item and the second
character gains the first item. Available only when the second character has
the second item.
tradeDecline: The action has no effect.
tradelnterest: The action has no effect but the flavor text indicates the
second character’s desire for the trade. Available only when the second
character does not have the second item.

e travel([character], [location]): Available to the controller of the character when the
character is at an adjacent location. The character’s location becomes the chosen
location.

Data Contents

Each time a user took an action in the game session, a corresponding row was added to the
game logs in the dataset. Entries in original.csv, after an initial header row, have the
following columns in order:

e sessionlD: Assigned uniquely to each game session.

e eventlD: Within a game session, assigned uniquely to an instance of an in-game
action; i.e., each combination of a sessionID and an eventID is unique across the
whole dataset.

e timestamp: A timestamp showing the minutes:seconds after the start of the class
session at 11am Eastern on November 21, 2023.

e gmlD: The user ID of the session’s game master.

e playerlID: The user ID of the session’s player.

e action: The action signature for the action taken.

e userWhoChose: The user ID of the user who selected the action (either the gmID or
the playerlID).

e outcome: The result if the current action prompted further choices (e.g., the
decision to accept or decline a trade offer). Blank if no such choices were
prompted.

e gmExplanation: The game master’s response to the post-game interview question
about the current action. Blank if the user was not prompted to explain the action.

e playerExplanation: The player’s response to the post-game interview question
about the current action. Blank if the user was not prompted to explain the action.



gmStructureRating: The game master’s star rating for structure, if the game master
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

gmAgencyRating: The game master’s star rating for structure, if the game master
submitted a rating after the current action and before any other action. Blank if the
user did not submit a rating during that timeframe.

playerStructureRating: The player’s star rating for structure, if the player submitted
a rating after the current action and before any other action. Blank if the user did not
submit a rating during that timeframe.

playerAgencyRating: The player’s star rating for agency, if the player submitted a
rating after the current action and before any other action. Blank if the user did not
submit a rating during that timeframe.

finalGMStructure: The game master’s rating for structure at the end of the entire
game session. Within a single game session, all entries for this column are the
same.

finalGMAgency: The game master’s rating for agency at the end of the entire game
session. Within a single game session, all entries for this column are the same.
finalPlayerStructure: The player’s rating for structure at the end of the entire game
session. Within a single game session, all entries for this column are the same.
finalPlayerAgency: The player’s rating for agency at the end of the entire game
session. Within a single game session, all entries for this column are the same.

The labeled.csv file contains additional data that we generated for our analysis rather than

being directly part of the data collected from the users. Entries have the same contents as

in original.csv, followed by these additional columns in order:

labellntentMatching: A label assigned manually by the authors. Assesses the
agreement between the gmExplanation and playerExplanation, with higher numbers
indicating stronger agreement. Blank if the explanations were not elicited for the
current action. See Section 5.2 of the INT publication for a full explanation.
causallyConnectedToEnding: A label computed as follows: In a Sabre-based
representation of the game session (see below), we determined whether the current
action is part of a sequence of events that enable each other such that the ending of
the story is the final event on the chain. The label is TRUE if so, FALSE otherwise, or
blank for the final event itself. See Section 5.5 of the INT publication for a full
explanation.

gminterventionTaken: A label computed as follows: If the current action is a player
action and the game master chose the outcome such that the action had no effect,



the labelis TRUE. If the outcome is a player action and the game master could have
made the action have no effect, but instead the game master allowed the action to
have an effect, the labelis FALSE. Blank otherwise. See Section 5.3 of the INT
publication for a full explanation.

The sabre folder contains files used in the analysis to represent game logs as plans in the
Sabre narrative planner: gramma-game.txt is a Sabre problem file that represents the game
flow as planning operators. Each file in the solutions subfolder corresponds to one game
session in the dataset and represents the user decisions from the game session as a
Sabre-readable plan.



