Sabre: A Narrative Planner Supporting Intention and Deep Theory of Mind

Stephen G. Ware, Cory Siler 2021

Why narrative planners struggle

- Emergent simulations \rightarrow believable agents, weak plot control
- Classical planners \rightarrow strong plot control, wooden agents
- Calls for a system that hits author goals and keeps every character rational

Sabre in a nutshell

- Forward-chaining state-space planner
- Supports full ADL + numeric fluents
- Unlimited theory of mind (nested beliefs)
- Utility-driven intention model for author + all characters
- Every action must be explained in the actor's belief world
- Solves benchmark stories up to 836 actions / 896 triggers

Problem representation

- Characters: Entities that appear to reason and act
- Fluents: State variables
- Literals: Basic facts, belief literals
- Events: Character taking an action
- Pre-conditions & effect conditions: When an event can fire, what its branches look like
- Utility functions: Numeric preferences for the author and each character

Problem representation

- Characters: Tom, Merchant, Guard, Bandit
- Fluents: #coins, has sword
- Belief: b(Tom, loc(Merchant)=Market)
- Utility functions:

loc(Tom)=Cottage ^ loc(medicine)=Tom \rightarrow 2

alive(Tom)= $\bot \rightarrow 1$

Events

- Action: Chose by the planner
- Trigger: Fires instantly
- Surprise: Observe while not believing
- Explained Actions
 - When the character believes the action can lead to increasing their utility

Believed State

- Maintaining a believed state for each character
 - \circ $\beta(c,s)$: The state that **c** believes to be the case when real state is **s**
 - Triggers must be checked not only in the real world but in every $\beta(c,s)$ as well

Dealing with triggers and beliefs
 Original trigger (fires in real world)
 loc(guard)=market ∧ loc(bandit)=market ∧ b(guard,loc(bandit)≠market)
 Effect: ⊤ → b(guard,loc(bandit)=market)

Copied trigger (fires only in $\beta(Tom, s)$)

b(Tom,loc(guard)=market) ∧ b(Tom,loc(bandit)=market) ∧ b(Tom,b(guard,loc(bandit)≠market)) Effect: ⊤ → b(Tom, b(guard, loc(bandit)=market))

State Space

- Compact history-based representation
 - Sabre stores the sequence of events that led to the state
- $\sigma(e,s)$: Single-event transition
 - is defined only if the pre-condition PRE(e) holds in s
- α: Apply event and all mandatory triggers
 - \circ $\alpha(e,s)$ equals:
 - Undefined, if $\sigma(e,s)$ undefined
 - $\alpha(t,\sigma(e,s))$, if some trigger t now enabled
 - $\sigma(e,s)$, otherwise

Solution

- A plan is a solution iff
 - Executable from the initial state
 - Raises author utility
 - Every action is explained in the state where it occurs
 - No redundant actions included

Example: Get a potion for grandmother

1. Author starts in the initial state s0

2. Chooses the first action (Tom walks to the crossroads)

3. Runs a SABRE sub-call

4. Action passes \rightarrow it is appended; world becomes s1

5. Repeat for the second walk to the market

6. Third action is buy: two consent sub-calls

7. After both consent, buy is appended \rightarrow s3 8. Final walk home passes Tom's consent \rightarrow s4, author utility = 2

Evaluation

- No peer planner supports ADL + numeric + deep Theory of Mind
- Use benchmark narrative domains \rightarrow problem scale
- Problem sizes & performance
 - \circ 32 actions / 0 triggers \rightarrow solved in 6ms
 - \circ ~~ 836 actions / 896 triggers \rightarrow solved in 6.2h
- Ablation study
 - Why both intention and belief reasoning

Performance

Domain	Char.	Fluents	Actions	Triggers	Time	Visited	Generated
Raiders (1)	3	21	39	66	1.4 s	905	17,815
Space (1)	2	16	32	0	6 ms	18	192
Treasure (1)	3	4	34	0	1 ms	22	288
Hubris (1)	2	29	14	0	47 ms	58	831
BearBirdJr (1)	2	13	20	0	14.0 m	290,711	34,084,608
Lovers (9)	3	111.3	312.0	370.0	40.3 m	126,983	5,198,414
Grandma (2)	4	61.0	836.0	896.0	6.2 h	598,577	105,178,466

Ablation study

Domain	Full Sabre solutions	Intention-only	Intention-onl y 🗡	Belief-onl y ✔	Belief-onl y X
Raiders	3	0	110	0	110
BearBir dJr	6	0	110	0	110
Lovers (avg)	10	0	50.7	0	32.0