Who Said we Need to Relax All Variables?

Michael Katz, et al. 2013

Red-Black Planning

- Only relax some variables (colored red)
 - Accumulate values monotonically (delete-relaxed)
- Keep other variables unrelaxed (colored black)
 - Their values change back and forth
- Balancing computational complexity and heuristic accuracy

Achieving computational efficiency

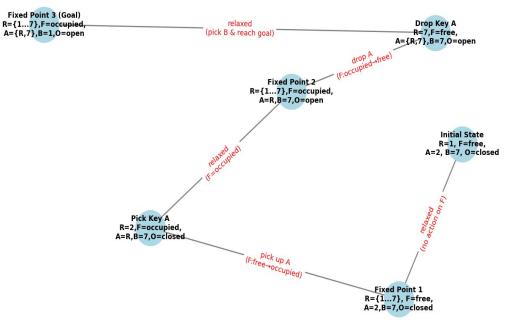
- Number of black variables
 - Limit the number of black variables to a fixed number
- Domain size of black variables
 - Limit the size of the domain for each black variable
- Fewer realistic constraints that must be maintained explicitly

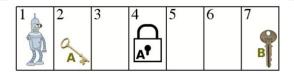
Polynomial-Time Result

Theorem 1:

Planning for RB tasks with a fixed number of black variables, each having a fixed-size domain, is solvable in polynomial time.

Single Black Variable Case





Hand status F is the only black variable

Algorithm : RB2-PLANGEN(Π) main $/\!/ \Pi = \langle \{v_0\}, V^{\mathsf{R}}, A, I, G \rangle$ $R \leftarrow I$ $R \leftarrow R \cup \text{RelaxedFixedPoint}(A_{\emptyset} \cup A_{I[v_0]})$ if $G \subseteq R$ then return "solvable" for $I[v_0] \neq d \in \mathcal{D}(v_0), a_1 \in A_{I[v_0] \rightarrow d}$ s.t. $\mathsf{pre}(a_1) \subseteq R$ $R \leftarrow R[a_1]$ $R \leftarrow R \cup R$ ELAXEDFIXEDPOINT $(A_{\emptyset} \cup A_d)$ if $G \subset R$ then return "solvable" for $a_2 \in A_{d \to I[v_0]}$ s.t. $\operatorname{pre}(a_2) \subseteq R$ (everywhere in Π and R, do do $\left\{ \begin{array}{l} \text{replace } I[v_0] \text{ and } d \text{ with a new value } d_{\{I[v_0],d\}} \\ R \leftarrow R \cup \text{RELAXEDFIXEDPOINT}(A) \end{array} \right.$ if $G \subset R$ then return "solvable" return "unsolvable"

Limitations of Polynomial-Time Result

- **Theorem 2**: Plan existence for RB tasks with a fixed number of black variables is NP-complete
 - Fixed number of black variables, unbounded domains -> NP-complete

- **Theorem 3**: Plan existence for RB tasks where all black variables have fixed-size domains is PSPACE-complete
 - Unbounded number of black variables, fixed-size domains -> PSPACE-complete

Practical Heuristic Computation

- Full delete-relaxation heuristics **underestimate** true planning costs
- Red-Black heuristics substantially improve heuristic accuracy
 - Directly computing the optimal RB heuristic is NP-hard
 - Focus only on tractable fragments

Perfect Red-Black Heuristics

- Identifying useful, tractable fragments
 - **rSCC** (Reversible Strongly Connected Components)
 - Solvable in polynomial-time
- A Simple Condition for Perfect Red-Black Heuristics
 - **Lemma 4**: If the chosen red variables have no influence on other variables, the RB heuristic will produce perfect estimates.

How the perfect heuristic condition applies to IPC Benchmarks

- LOGISTICS, MICONIC: Relaxing variables representing object/passenger locations
- SATELLITE: Relaxing variables for capturing image-taking tasks, while leaving satellite status variables black
- VISIT-ALL: Choose visited variables to be red

Conclusion

- Benefit of Red-Black heuristics
- Identifying which variables to relax Lemma 4
- Exploiting selective relaxations is a promising direction