Planning through Stochastic Local Search and Temporal Action Graphs in LPG

By Alfonso Gervini, Alessandro Saetti, Ivan Serina

Presented by Evan Damron

Overview

- LPG is a planning graph-based planner, capable of solving plans where actions take time (temporal), and consume resources (numerical).
- LPG locally searches the space of linear action graphs by adapting the SAT solver called Walk-SAT to the problem, calling it Walkplan.
- LPG was the best planner in the 3rd International Planning Competition (IPC-3) in 2002.

Action Graphs

- Action graphs are subgraphs of the planning graph, representing partially ordered plans.
- Action graphs contain a dummy start and end step.
- If an action is in an action graph, then so are it's preconditions and effects.
- Action graphs can contain inconsistencies:
 - Fact nodes not supported by an action.
 - Mutexed actions.
- A solution graph is an action graph without inconsistencies.

Persistent Mutexes

- Mutexes decrease monotonically as the levels of the planning graph increase. i.e. all mutexes are guaranteed to be in all previous levels if the facts/actions involved in that mutex are in these levels.
- The *fixed-point* level of the graph is the point where nodes and mutexes will remain the same at all further levels.
- Mutexes at the fixed-point level are called *persistent mutexes*.
- In Graphplan, mutexes are computed a level at a time, which can be computationally very expensive.
- LPG speeds this up by only computing persistent mutexes.

Calculating Persistent Mutexes

$\mathsf{ComputeMutexFacts}(I,\mathcal{O})$

Input: An initial state (I) and all ground operator instances (\mathcal{O}) ; Output: A set of persistent mutex relations between facts (M).

1 $F^* \leftarrow I; F \leftarrow \emptyset;$ 2. $M \leftarrow \emptyset; M^* \leftarrow \emptyset; A \leftarrow \emptyset;$ 3. while $F^* \neq F \lor M^* \neq M$ 4. $F \leftarrow F^*: M \leftarrow M^*:$ forall $a \in \mathcal{O}$ such that $Pre(a) \subseteq F^*$ and $\neg(\exists p, q \in Pre(a) \land (p, q) \in M^*)$ 5. $New(a) \leftarrow Add(a) - F^*$: 6. forall $f \in New(a)$ 7. 8. forall $h \in Del(a)$ $M^* \leftarrow M^* \cup \{(f, h), (h, f)\};$ /* Potential mutex relation */ 9. forall $(p, q) \in M^*$ such that $p \in Pre(a)$ and $q \notin Del(a)$ 10. $M^* \leftarrow M^* \cup \{(f, q), (q, f)\};$ /* Potential mutex relation * 11. 12.if $a \notin A$ then 13.forall $p, q \in Add(a)$ such that $(p, q) \in M^*$ $M^* \leftarrow M^* - \{(p, q), (q, p)\};$ /* Invalid mutex relation * 14. 15. $L \leftarrow Add(a) - New(a);$ forall $(i, q) \in M^*$ such that $i \in L$ 16.if $q \notin Del(a) \land \neg(\exists p \in Pre(a) \land (p, q) \in M^*)$ then 17. $M^* \leftarrow M^* - \{(i, q), (q, i)\};$ /* Invalid mutex relation * 18. $F^* \leftarrow F^* \cup New(a);$ 19.20. $A \leftarrow A \cup \{a\};$ 21. return M.

Check if F1 is a positive effect for *a* and F2 is a negative effect for *a*.

Check if F1 is a positive effect for *a* and F2 is mutexed with a precondition of *a*.

F1 and F2 both belong to the add effects of an action.

F1 is an add effect of *a*, F2 is not deleted by *a*, and F2 isn't mutexed with any precondition of *a*.

Calculating Persistent Mutexes

$\mathsf{ComputeMutexActions}(M, \mathcal{O})$

Input: A set of mutex relations between facts (M) and all ground operator instances (\mathcal{O}) ; Output: A set of persistent mutex relations between actions (N).

1. $N \leftarrow \emptyset; \mathcal{O}^* \leftarrow \mathcal{O}$ extended with the no-op of every fact; Check if any preconditions of 2. forall $(p, q) \in M$ two actions are mutexed. forall $a \in \mathcal{O}^*$ such that $p \in Pre(a)$ 3. forall $b \in \mathcal{O}^*$ such that $q \in Pre(b)$ 4. $N \leftarrow N \cup \{(a, b), (b, a)\};$ /* Competing needs */ 5.forall $a \in \mathcal{O}^*$ 6. Check if one action deletes a forall $p \in Pre(a)$ 7. precondition of another. 8. forall $b \in \mathcal{O}$ such that $p \in Del(b)$ $N \leftarrow N \cup \{(a, b), (b, a)\};$ /* Interference * 9. Check if one action deletes forall $p \in Add(a)$ 10.an add effect of another. forall $b \in \mathcal{O}$ such that $p \in Del(b)$ 11. $N \leftarrow N \cup \{(a, b), (b, a)\};$ /* Inconsistent effects 12.return N. 13.

Walkplan

- Walkplan first computes the planning graph and persistent mutexes.
- Walkplan then creates an initial action graph. The default contains only the no-ops of the facts in the initial state until the fixed-point level (with the start and end actions).
- At each step, Walkplan will choose an inconsistency and attempt to resolve it.
 - If the inconsistency is an unsupported fact:
 - Remove an action that needs this fact, OR
 - Add an action to produce this fact.
 - If the inconsistency is a mutex, remove one of the actions in the mutex relationship.
- Walkplan has a noise parameter p to prevent getting stuck in local optima.
- The neighborhood of an inconsistency in an action plan are all the possible action plans that can result from fixing the inconsistency.

Walkplan pseudocode

 $\mathsf{Walkplan}(\Pi, max_steps, max_restarts, p)$

Input: A planning problem Π , the maximum number of search steps max_steps , the maximum number of search restarts $max_restarts$, a noise factor $p \ (0 \le p \le 1)$. Output: A solution graph representing a plan solving Π or fail.

for $i \leftarrow 1$ to max_restarts do 1. 2. $\mathcal{A} \leftarrow$ an initial A-graph derived from the planning graph of Π ; for $j \leftarrow 1$ to max_steps do 3. if \mathcal{A} is a solution graph then 4. 5. return \mathcal{A} $\sigma \leftarrow$ an inconsistency in \mathcal{A} ; 6. 7. $N(\sigma, \mathcal{A}) \leftarrow$ neighborhood of \mathcal{A} for σ ; if $\exists \mathcal{A}' \in N(\sigma, \mathcal{A})$ such that the quality of \mathcal{A}' is not worse than the quality of \mathcal{A} 8. **then** $\mathcal{A} \leftarrow \mathcal{A}'$ (if there is more than one \mathcal{A}' -graph, choose randomly one) 9. 10.else if random < p then 11. $\mathcal{A} \leftarrow$ an element of $N(\sigma, \mathcal{A})$ randomly chosen 12.else $\mathcal{A} \leftarrow$ best element in $N(\sigma, \mathcal{A})$; 13. return fail.

Inconsistency count: 1 Selected Inconsistency: *eaten(cake)* is unsupported Neighborhood: Add supporting action *eat(cake)* or no-op

Inconsistency count: 2 Selected Inconsistency: *eat(cake)* mutex with ¬*eaten(cake)* no-op Neighborhood: Remove *eat(cake)* or ¬*eaten(cake)* no-op

Inconsistency count: 1 Selected Inconsistency: *eat(cake)* mutex with *have(cake)* no-op Neighborhood: Remove *eat(cake)* or ¬*have(cake)* no-op

Inconsistency count: 1 Selected Inconsistency: unsupported fact *have(cake)* Neighborhood: add *bake(cake)* action or no-op

Inconsistency count: 2 Selected Inconsistency: unsupported fact - have(cake) Neighborhood: add bake(cake) action

Inconsistency count: 3

Selected Inconsistency: mutex between *eat(cake)* and ¬ *eaten(cake) no-op* Neighborhood: remove *eat(cake)* or ¬ *eaten(cake) no-op*

Inconsistency count: 2

Selected Inconsistency: mutex between *eat(cake)* and *have(cake)* no-op Neighborhood: remove *eat(cake)* or *have(cake)* no-op

Inconsistency count: 2 Selected Inconsistency: unsupported fact have(cake) Neighborhood: remove eat(cake) or add have(cake) no-op

Inconsistency count: 1 Selected Inconsistency: unsupported fact *eaten(cake)* Neighborhood: add *eat(cake)* or add *eaten(cake)* no-op

Inconsistency count: 0 Return finished plan

Takeaways

- Local search through the space of planning graphs can be more effective and scalable than depth-first search.
- Calculating persisting mutexes is more efficient.
- Local search allows for plan refinement if you have an initial plan to start with.