
Planning through Stochastic 

Local Search and Temporal 

Action Graphs in LPG
By Alfonso Gervini, Alessandro Saetti, Ivan Serina

Presented by Evan Damron



Overview

 LPG is a planning graph-based planner, capable of solving plans where 

actions take time (temporal), and consume resources (numerical). 

 LPG locally searches the space of linear action graphs by adapting the 

SAT solver called Walk-SAT to the problem, calling it Walkplan.

 LPG was the best planner in the 3rd International Planning Competition 

(IPC-3) in 2002.



Action Graphs

 Action graphs are subgraphs of the planning graph, representing 

partially ordered plans.

 Action graphs contain a dummy start and end step.

 If an action is in an action graph, then so are it’s preconditions and 

effects.

 Action graphs can contain inconsistencies:

 Fact nodes not supported by an action. 

 Mutexed actions.

 A solution graph is an action graph without inconsistencies. 



Persistent Mutexes

 Mutexes decrease monotonically as the levels of the planning graph 

increase. i.e. all mutexes are guaranteed to be in all previous levels if 

the facts/actions involved in that mutex are in these levels.

 The fixed-point level of the graph is the point where nodes and

mutexes will remain the same at all further levels.

 Mutexes at the fixed-point level are called persistent mutexes.

 In Graphplan, mutexes are computed a level at a time, which can be 

computationally very expensive.

 LPG speeds this up by only computing persistent mutexes.



Calculating Persistent Mutexes
Check if F1 is a positive 

effect for a and F2 is a 

negative effect for a.

Check if F1 is a positive 

effect for a and F2 is 

mutexed with a precondition 

of a.

F1 and F2 both belong to the 

add effects of an action.

F1 is an add effect of a, F2 is 

not deleted by a, and F2 

isn’t mutexed with any 

precondition of a.



Calculating Persistent Mutexes

Check if any preconditions of 

two actions are mutexed.

Check if one action deletes a 

precondition of another.

Check if one action deletes 

an add effect of another.



Walkplan
 Walkplan first computes the planning graph and persistent mutexes.

 Walkplan then creates an initial action graph. The default contains 

only the no-ops of the facts in the initial state until the fixed-point 

level (with the start and end actions).

 At each step, Walkplan will choose an inconsistency and attempt to 

resolve it. 

 If the inconsistency is an unsupported fact:

 Remove an action that needs this fact, OR

 Add an action to produce this fact.

 If the inconsistency is a mutex, remove one of the actions in the mutex 

relationship.

 Walkplan has a noise parameter p to prevent getting stuck in local optima.

 The neighborhood of an inconsistency in an action plan are all the possible 

action plans that can result from fixing the inconsistency.



Walkplan pseudocode



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 1

Selected Inconsistency: eaten(cake) is unsupported

Neighborhood: Add supporting action eat(cake) or no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 2
Selected Inconsistency: eat(cake) mutex with ¬eaten(cake) no-op

Neighborhood: Remove eat(cake) or ¬eaten(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 1
Selected Inconsistency: eat(cake) mutex with have(cake) no-op

Neighborhood: Remove eat(cake) or ¬have(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 1

Selected Inconsistency: unsupported fact have(cake)

Neighborhood: add bake(cake) action or no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 2
Selected Inconsistency: unsupported fact ¬ have(cake)

Neighborhood: add bake(cake) action



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 3
Selected Inconsistency: mutex between eat(cake) and ¬ eaten(cake) no-op

Neighborhood: remove eat(cake) or ¬ eaten(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 2
Selected Inconsistency: mutex between eat(cake) and have(cake) no-op

Neighborhood: remove eat(cake) or have(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 2

Selected Inconsistency: unsupported fact have(cake)
Neighborhood: remove eat(cake) or add have(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 1

Selected Inconsistency: unsupported fact eaten(cake)
Neighborhood: add eat(cake) or add eaten(cake) no-op



Walkplan Example

have(cake)

¬have(cake)

eaten(cake)

¬eaten(cake)

eat(cake)

bake(cake)

start end

have(cake)have(cake)

¬have(cake)

eat(cake)

eaten(cake)

¬eaten(cake)¬eaten(cake)

Inconsistency count: 0

Return finished plan



Takeaways

 Local search through the space of planning graphs can be more 

effective and scalable than depth-first search.

 Calculating persisting mutexes is more efficient.

 Local search allows for plan refinement if you have an initial plan to 

start with. 


	Slide 1: Planning through Stochastic Local Search and Temporal Action Graphs in LPG
	Slide 2: Overview
	Slide 3: Action Graphs
	Slide 4: Persistent Mutexes
	Slide 5: Calculating Persistent Mutexes 
	Slide 6: Calculating Persistent Mutexes
	Slide 7: Walkplan
	Slide 8: Walkplan pseudocode
	Slide 9: Walkplan Example
	Slide 10: Walkplan Example
	Slide 11: Walkplan Example
	Slide 12: Walkplan Example
	Slide 13: Walkplan Example
	Slide 14: Walkplan Example
	Slide 15: Walkplan Example
	Slide 16: Walkplan Example
	Slide 17: Walkplan Example
	Slide 18: Walkplan Example
	Slide 19: Walkplan Example
	Slide 20: Takeaways

