Planning through Stochastic
Local Search and Temporal
Action Graphs in LPG

By Alfonso Gervini, Alessandro Saetti, lvan Serina

Presented by Evan Damron

Overview

» LPG is a planning graph-based planner, capable of solving plans where
actions take time (temporal), and consume resources (numerical).

» LPG locally searches the space of linear action graphs by adapting the
SAT solver called Walk-SAT to the problem, calling it Walkplan.

» LPG was the best planner in the 3 International Planning Competition
(IPC-3) in 2002.

Action Graphs

» Action graphs are subgraphs of the planning graph, representing
partially ordered plans.

» Action graphs contain a dummy start and end step.

» If an action is in an action graph, then so are it’s preconditions and
effects.

» Action graphs can contain inconsistencies:
» Fact nodes not supported by an action.

» Mutexed actions.

» Asolution graph is an action graph without inconsistencies.

Persistent Mutexes

» Mutexes decrease monotonically as the levels of the planning graph
increase. i.e. all mutexes are guaranteed to be in all previous levels if
the facts/actions involved in that mutex are in these levels.

» The fixed-point level of the graph is the point where nodes and
mutexes will remain the same at all further levels.

» Mutexes at the fixed-point level are called persistent mutexes.

» In Graphplan, mutexes are computed a level at a time, which can be
computationally very expensive.

» LPG speeds this up by only computing persistent mutexes.

Calculating Persistent Mutexes

Check if F1 is a positive

ComputeMutexFacts(Z, O) effect for a and F2 is a

Input: An initial state (/) and all ground operator instances (Q); :
Output: A set of persistent mutex relations between facts (M). negative effect for a.

1 F* — 1, F —

2. M —0; M* —0; A «— 0 . . . B
3. while F* o Fv M* £ M Check if F1is a posi
4 F e P M e M effect for a and F2 is
5. forall a € O such that Pre(a) C F* and —~(3p, g € Pre(a) A (p, q) € M*) mutexed with a pr

6. New(a) «— Add(a) — F*; of a.

7. forall f € New(a)

8. forall h € Del(a)

9. M* — M*U{(f, h),(h, f)}: /* Potential mutex relation */

10. forall (p, q) € M* such that p € Pre(a) and g & Del(a) F1 and F2 both belong ta
11. M* — M*U{(f, q),(q, f)}; /* Potential mutex relation */ add effects of an action
12. if a € A then

13. forall p, ¢ € Add(a) such that (p, ¢q) € M*

14. M* — M*—{(p, q),(q, p)}; /* Invalid mutex relation */

15. L « Add(a) -~ New(a); F1 is an add effect of a, F
16. forall (i, g) € M* such that i € L

17. if ¢ ¢ Del(a) N—(Ip € Pre(a) A (p, q) € M*) then / nhot deleted by a, and F

18. M* — M*—{(i, ¢),(g, 71)}; /* Invalid mutex relation */ isn’t mutexed with an

19. F* — F* U New(a); precondition of a.

20. A — AU{a};

21. return M.

Calculating Persistent Mutexes

ComputeMutexActions(M, O)

Input: A set of mutex relations between facts (M) and all ground operator instances (O);
Output: A set of persistent mutex relations between actions (N).

1. N «0; O — O extended with the no-op of every fact; Check if any preconditions of
2. forall (p,q)e M two actions are mutexed.
3. forall a € O such that p € Pre(a)

4. forall b € O* such that g € Pre(b) /

5. N — NU{(a, b), (b, a)}; /* Competing needs */

6. foralla € O7 Check if one action deletes
r forall p € Pre(a) precondition of another

8. forall b € O such that p € Del(b) '

9. N «— NU{(a, b),(b, a)}; /* Interference */ / . .

10. forall p € Add(a) Check if one action
1. forall b € O such that p € Del(b) an add effect of a
12. N — NU{(a, b),(b, a)}; /* Inconsistent effects */ /

13. return N.

Walkplan

» Walkplan first computes the planning graph and persistent mutexes.

» Walkplan then creates an initial action graph. The default contains
only the no-ops of the facts in the initial state until the fixed-point
level (with the start and end actions).

» At each step, Walkplan will choose an inconsistency and attempt to
resolve it.

» If the inconsistency is an unsupported fact:
» Remove an action that needs this fact, OR

» Add an action to produce this fact.

» If the inconsistency is a mutex, remove one of the actions in the mutex
relationship.

» Walkplan has a noise parameter p to prevent getting stuck in local optima.

» The neighborhood of an inconsistency in an action plan are all the possible
action plans that can result from fixing the inconsistency.

Walkplan pseudocode

Walkplan(II, max_steps, max_restarts, p)

Input: A planning problem II, the maximum number of search steps max_steps,
the maximum number of search restarts max_restarts, a noise factor p (0 < p < 1).
Output: A solution graph representing a plan solving II or fail.

1. for i+« 1 tomax_restarts do

2 A < an initial A-graph derived from the planning graph of II;

3 for j «— 1 to max_steps do

4. if A is a solution graph then

5. return A

6 o «— an inconsistency in A;

7 N(o, A) «— neighborhood of A for o;

8 if 3 A4’ € N(o, A) such that the quality of A’ is not worse than the quality of A
9. then A — A’ (if there is more than one A’-graph, choose randomly one)
10. else if random < p then

11. A — an element of N(o,.4) randomly chosen

12. else A « best element in N(o, A);

13. return fail.

Walkplan Example

bake(cake)

have(cake) “ have(cake)

. -have(cake) ﬁhave(cake)

eat(cake) eat(cake)

‘ eaten(cake) I eaten(cake)
-eaten(cake)

eaten(cake) -eaten(cake)

have(cake)

start

Walkplan Example

bake(cake)

vb-\\
-have(cake) l ' -have(cake)

start eat(cake) - ‘ eat(cake) -
eaten(cake) m I eaten(cake)

-eaten(cake) — -eaten(cake) -eaten(cake)

have(cake) have(cake) have(cake)

Inconsistency count: 1
Selected Inconsistency: eaten(cake) is unsupported
Neighborhood: Add supporting action eat(cake) or no-op

Walkplan Example

bake(cake)

vb-\\
-have(cake) l ' -have(cake)

start eat(cake) - ‘ eat(cake) -
eaten(cake) m I eaten(cake)

-eaten(cake) — -eaten(cake) -eaten(cake)

have(cake) have(cake) have(cake)

Inconsistency count: 2
Selected Inconsistency: eat(cake) mutex with -eaten(cake) no-op
Neighborhood: Remove eat(cake) or -eaten(cake) no-op

Walkplan Example

bake(cake)

vb-\\
-have(cake) l ' -have(cake)

start eat(cake) - ‘ eat(cake) -
eaten(cake) m I eaten(cake)

-eaten(cake) — -eaten(cake) -eaten(cake)

have(cake) have(cake) have(cake)

Inconsistency count: 1
Selected Inconsistency: eat(cake) mutex with have(cake) no-op
Neighborhood: Remove eat(cake) or -have(cake) no-op

Walkplan Example

bake(cake)

vb-\\
-have(cake) l ' -have(cake)

start eat(cake) - ‘ eat(cake) -
eaten(cake) m I eaten(cake)

-eaten(cake) — -eaten(cake) -eaten(cake)

have(cake) have(cake) have(cake)

Inconsistency count: 1
Selected Inconsistency: unsupported fact have(cake)
Neighborhood: add bake(cake) action or no-op

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

~have(cake) ﬁhave(cake)
start eat(cake) eat(cake)
eaten(cake) I eaten(cake)
-eaten(cake) -eaten(cake) -eaten(cake)

Inconsistency count: 2
Selected Inconsistency: unsupported fact - have(cake)
Neighborhood: add bake(cake) action

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

ﬂhave(cake) ﬁhave(cake)

start eat(cake) eat(cake) end
eaten(cake) I eaten(cake)
-eaten(cake) -eaten(Cake) -eaten(cake)

Inconsistency count: 3
Selected Inconsistency: mutex between eat(cake) and - eaten(cake) no-
Neighborhood: remove eat(cake) or - eaten(cake) no-op

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

-have(cake) ﬁhave(cake)
start eat(cake) eat(cake) end
eaten(cake) l 'I eaten(cake)
-eaten(cake) -eaten(cake) -eaten(cake)

Inconsistency count: 2
Selected Inconsistency: mutex between eat(cake) and have(cake) no-op
Neighborhood: remove eat(cake) or have(cake) no-op

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

-have(cake) ﬁhave(cake)
start eat(cake) eat(cake)
eaten(cake) I eaten(cake)
-eaten(cake) eaten(cake) -eaten(cake)

Inconsistency count: 2
Selected Inconsistency: unsupported fact have(cake)
Neighborhood: remove eat(cake) or add have(cake) no-op

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

ﬂhave(cake) ﬁhave(cake)
start eat(cake) eat(cake)
eaten(cake) l 'I eaten(cake)
-eaten(cake) -eaten(cake) -eaten(cake)

Inconsistency count: 1
Selected Inconsistency: unsupported fact eaten(cake)
Neighborhood: add eat(cake) or add eaten(cake) no-op

Walkplan Example

bake(cake)

have(cake) have(cake) have(cake)

-have(cake) ﬁhave(cake)
start eat(cake) eat(cake)
eaten(cake) l 'I eaten(cake)i
-eaten(cake) -eaten(cake) -eaten(cake)

Inconsistency count: O
Return finished plan

Takeaways

» Local search through the space of planning graphs can be more
effective and scalable than depth-first search.

» Calculating persisting mutexes is more efficient.

» Local search allows for plan refinement if you have an initial plan to
start with.

	Slide 1: Planning through Stochastic Local Search and Temporal Action Graphs in LPG
	Slide 2: Overview
	Slide 3: Action Graphs
	Slide 4: Persistent Mutexes
	Slide 5: Calculating Persistent Mutexes
	Slide 6: Calculating Persistent Mutexes
	Slide 7: Walkplan
	Slide 8: Walkplan pseudocode
	Slide 9: Walkplan Example
	Slide 10: Walkplan Example
	Slide 11: Walkplan Example
	Slide 12: Walkplan Example
	Slide 13: Walkplan Example
	Slide 14: Walkplan Example
	Slide 15: Walkplan Example
	Slide 16: Walkplan Example
	Slide 17: Walkplan Example
	Slide 18: Walkplan Example
	Slide 19: Walkplan Example
	Slide 20: Takeaways

