

Narrative Planning: Balancing Plot and Character

Written by: Mark O. Riedl, R. Michael Young Published: September 2010 Presented by: Tyler Ferry

Introduction

- Planning systems generally focus on the quickest way to achieve a set of goals
- However, planners don't consider the generation of a narrative. Specifically, they don't consider character believability
- Example: Romeo and Juliet
 - Given: Montagues and Capulets fighting
 - Want: Montagues and Capulets to not feud
 - Likely solution: Kill all characters in feud

Narrative and Planning

- **<u>Narrative</u>**: The recounting of a sequence of events that have a continuant subject and constitute a whole
- Story: A narrative that has a plot
- Narratologists break narrative down into two layers of interpretation:
 - **Fabula** List of all the events that occur in the story world between the time the story begins and the time the story ends.
 - **Sjuzet** A subset of the fabula that is presented via narration to the audience.

General Planners

- **POCL** <u>Partial</u> <u>Order</u> <u>Causal</u> <u>Link</u> planning.
 - STRIPS-like construction consisting of an operation with a precondition and an effect
- Fabula Planning Problem: Given a domain theory, find a sound and believable sequence of character actions that transforms an initial world state I into a world state in which goal propositions G hold.

I. Termination. If O or B is inconsistent, fail. Otherwise, if F is empty, return $\langle S, B, O, L \rangle$.

II. Plan Refinement.

- 1. Goal selection. Select an open condition flaw $f = \langle s_{\text{need}}, p \rangle$ from F. Let $F' = F \{f\}$.
- 2. **Operator selection.** Let s_{add} be a step that adds an effect e that can be unified with p (to create s_{add} , non-deterministically choose a step s_{old} already in S or instantiate an action schema in Λ). If no such step exists, backtrack. Otherwise, let $S' = S \cup \{s_{add}\}, O' = O \cup \{s_{add} < s_{need}\}, B' = B \cup B_{new}$ where B_{new} are bindings (e.g., assignments of ground symbols to variables) needed to make s_{add} add e, including the bindings of s_{add} itself, and $L' = L \cup \{\langle s_{add}, e, p, s_{need} \rangle\}$. If $s_{add} \neq s_{old}$, add new open condition flaws to F' for every precondition of s_{add} .
- 3. Threat resolution. A step s_{threat} threatens a causal link $\langle s_j, e, p, s_k \rangle$ when it occurs between s_j and s_k and it asserts $\neg e$. For every used step s_{threat} that might threaten a causal link $\langle s_j, e, p, s_k \rangle \in L'$, non-deterministically do one of the following.
 - **Promotion.** If s_k possibly precedes s_{threat} , let $O' = O' \cup \{s_k < s_{\text{threat}}\}$.
 - Demotion. If s_{threat} possibly precedes s_j , let $O' = O' \cup \{s_{\text{threat}} < s_j\}$.
 - Separation. Let $O' = O' \cup \{s_j < s_{\text{threat}}, s_{\text{threat}} < s_k\}$ and let $B' = B' \cup$ the set of variable constraints needed to ensure that s_{threat} won't assert $\neg e$.

III. Recursive invocation. Call POCL $(\langle S', B', O', L' \rangle, F', \Lambda)$.

Figure 1: The POCL algorithm.

IPOCL Planner

• **IPOCL** - <u>Intent-based</u> <u>Partial</u> <u>Order</u> <u>Causal</u> <u>Link</u> planning.

ACTION ::= ACTION-NAME (VARIABLE*) actors: VARIABLE* happening: BOOLEAN constraints: LITERAL* precondition: LITERAL* effect: LITERAL* LITERAL := PREDICATE ([VARIABLE | SYMBOL]*)

- An IPOCL planning problem is a tuple, <I, A, G,Λ>, s.t. I is the initial state, A is a set of symbols that refer to character agents, G is the goal situation, and Λ is a set of action schemata.
- Extension of traditional POCL planning and works by generating fabula plans in which characters act <u>intentionally</u>
- Tracks and differentiates between author goals (overall plot objectives) and character goals (what the character wants)

Frames of commitment

- Frames of commitment: structures representing a character's plan to achieve a goal
 - A tuple $\langle S', P, a, g_a, s_f \rangle$ s.t. S' is a proper subset of plan steps in a plan, P is a plan, a is a symbolic reference to a character agent, g_a is a goal that agent a is pursuing, and $s_f \in S'$ is the final step and has g_a for one of its effects
- Balances causal coherence of events with character intentionality.
- Links actions to the character's internal motivations and creates intentional, believable characters.

Figure 4: An IPOCL plan with a single frame of commitment and motivating step.

New Flaw Types

• Open Motivation Flaw:

A tuple, <c, p>, s.t. c is a frame of commitment in P and p is the sentence intends(a, g_a) such that a is the character of c and g_a is the internal character goal of c.

• Intent Flaw:

• A tuple <s, c> where s is a step in P and c is a frame of commitment in P such that $s - P - s_j$ is a causal link in the plan, s is not part of c, and s_j is a step in P, is part of c, and the character of s is the same as the character of s_j and c.

Intentional Threat Flaw:

• A tuple, $<c_k, c_i>$, such that frame of commitment c_k has an internal character goal that negates the internal character goal of another frame of commitment c_i

7

Example

- Initial:
 - o has(hero, \$)
 - intends(vil, control(vil, prez)
- Goal:
 - o corrupt(President)

- Actions:
 - \circ bribe(x, y, z)
 - Preconditions:
 - has(x, z)
 - Effects
 - corrupt(y)
 - controls(x,y)
 - has(y,z)
 - ¬has(x,z)

Example cont.

- New character called "villain/vill" created
- Bribe chosen because it has corrupt(president) effect, but requires explicit intention to do an action
 - We add open motivation flaw

- Add intention, removes motivation flaw.
- However, villain doesn't have money which is prerequisite, opening a general flaw

Figure 8: Example narrative plan after discovering the one action and corresponding frame of commitment.

Example

cont.

Figure 9: Solution IPOCL plan graph for the example narrative.

Complexity

- The computational complexity of the IPOCL algorithm is **O(c(b(e + 1)^a)ⁿ)** s.t.
 - n is the depth of the search space
 - b is the number of ways that an action can be instantiated (e.g., the number of permutations of legal parameter bindings)
 - e is the number of effects of an instantiated action
 - a is the number of actors in an instantiated action

Conclusion

- Traditional planning algorithms are not sufficient for generating narratives with character intentionality with multiple agents who aren't necessarily cooperating to achieve a singular goal state.
- IPOCL bridges gap between story causality and character believability which produces more coherent and believable stories.
- IPOCL isn't perfect and could be extended with richer emotional models or interactive storytelling.

13

References

- Narrative Planning: Balancing Plot and Character <u>https://cs.uky.edu/~sgware/reading/papers/riedl2010narrative.pdf</u>
- Romeo and Juliet storyboard: <u>https://www.bbc.co.uk/bitesize/guides/zxrjfrd/revision/1</u>

