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Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Sockets Interface 
 Set of system-level functions used in conjunction with 

Unix I/O to build network applications.  
 

 Created in the early 80’s as part of the original Berkeley 
distribution of Unix that contained an early version of the 
Internet protocols. 
 

 Available on all modern systems  
 Unix variants, Windows, OS X, IOS, Android, ARM 

 

http://csapp.cs.cmu.edu/3e/instructors.html
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Client Server 

Sockets 
 What is a socket? 
 To the kernel, a socket is an endpoint of communication 
 To an application, a socket is a file descriptor that lets the 

application read/write from/to the network 
 Remember: All Unix I/O devices, including networks, are 

modeled as files 

 Clients and servers communicate with each other by 
reading from and writing to socket descriptors 

 
 

 
 The main distinction between regular file I/O and socket 

I/O is how the application “opens” the socket descriptors 

clientfd serverfd 

http://csapp.cs.cmu.edu/3e/instructors.html
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Socket Address Structures 
 Generic socket address: 
 For address arguments to connect, bind, and accept 
 Necessary only because C did not have generic (void *) pointers when 

the sockets interface was designed 
 For casting convenience, we adopt the Stevens convention:  
     typedef struct sockaddr SA; 

 
 
 
 

 

struct sockaddr {  
  uint16_t  sa_family;    /* Protocol family */  
  char      sa_data[14];  /* Address data.  */  
};        

sa_family 

Family Specific 

http://csapp.cs.cmu.edu/3e/instructors.html
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Socket Address Structures 
 Internet-specific socket address: 
 Must cast (struct sockaddr_in *) to (struct sockaddr *) 

for functions that take socket address arguments.  

0 0 0 0 0 0 0 0 
sa_family 

Family Specific 

struct sockaddr_in  {  
  uint16_t        sin_family;  /* Protocol family (always AF_INET) */  
  uint16_t        sin_port;    /* Port num in network byte order */  
  struct in_addr  sin_addr;    /* IP addr in network byte order */  
  unsigned char   sin_zero[8]; /* Pad to sizeof(struct sockaddr) */  
};  

sin_port 

AF_INET 

sin_addr 

sin_family 

http://csapp.cs.cmu.edu/3e/instructors.html
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Host and Service Conversion: getaddrinfo 

 getaddrinfo is the modern way to convert string 
representations of hostnames, host addresses, ports, and 
service names to socket address structures.  
 Replaces obsolete gethostbyname and getservbyname funcs. 

 
 Advantages: 
 Reentrant (can be safely used by threaded programs). 
 Allows us to write portable protocol-independent code 

 Works with both IPv4 and IPv6 
 

 Disadvantages 
 Somewhat complex 
 Fortunately, a small number of usage patterns suffice in most cases. 

http://csapp.cs.cmu.edu/3e/instructors.html
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Host and Service Conversion: getaddrinfo 

 
 
 
 
 
 

 Given host and service, getaddrinfo returns result 
that points to a linked list of addrinfo structs, each of which 
points to a corresponding socket address struct, and which 
contains arguments for the sockets interface functions. 

 Helper functions: 
 freeadderinfo frees the entire linked list. 
 gai_strerror converts error code to an error message.  

 
 
 
 

int getaddrinfo(const char *host,            /* Hostname or address */ 
                const char *service,         /* Port or service name 
*/ 
                const struct addrinfo *hints,/* Input parameters */ 
                struct addrinfo **result);   /* Output linked list */ 
 
void freeaddrinfo(struct addrinfo *result);  /* Free linked list */ 
 
const char *gai_strerror(int errcode);       /* Return error msg */ 

http://csapp.cs.cmu.edu/3e/instructors.html
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Linked List Returned by getaddrinfo 

ai_canonname 

result 

ai_addr 
ai_next 

addrinfo structs 

Socket address structs 

NULL 
ai_addr 
ai_next 

NULL 
ai_addr 
NULL 

 Clients: walk this list, trying each socket address in turn, until 
the calls to socket and connect succeed. 

 Servers: walk the list until calls to socket and bind succeed. 
 
 

http://csapp.cs.cmu.edu/3e/instructors.html
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addrinfo Struct 

 Each addrinfo struct returned by getaddrinfo contains 
arguments that can be passed directly to socket function. 

 Also points to a socket address struct that can be passed 
directly to connect and bind functions. 

struct addrinfo { 
    int              ai_flags;     /* Hints argument flags */ 
    int              ai_family;    /* First arg to socket function */ 
    int              ai_socktype;  /* Second arg to socket function */ 
    int              ai_protocol;  /* Third arg to socket function  */ 
    char            *ai_canonname; /* Canonical host name */ 
    size_t           ai_addrlen;   /* Size of ai_addr struct */ 
    struct sockaddr *ai_addr;      /* Ptr to socket address structure */ 
    struct addrinfo *ai_next;      /* Ptr to next item in linked list */ 
}; 

http://csapp.cs.cmu.edu/3e/instructors.html
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Host and Service Conversion: getnameinfo 

 getnameinfo is the inverse of getaddrinfo, converting a 
socket address to the corresponding host and service.  
 Replaces obsolete gethostbyaddr and getservbyport funcs. 
 Reentrant and protocol independent.  

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */ 
                char *host, size_t hostlen,    /* Out: host */ 
                char *serv, size_t servlen,    /* Out: service */ 
                int flags);                    /* optional flags */ 

http://csapp.cs.cmu.edu/3e/instructors.html


12 

CS 485: Systems Programming 

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Conversion Example 

#include "csapp.h" 
 
int main(int argc, char **argv) 
{ 
    struct addrinfo *p, *listp, hints; 
    char buf[MAXLINE]; 
    int rc, flags; 
 
    /* Get a list of addrinfo records */ 
    memset(&hints, 0, sizeof(struct addrinfo)); 
    hints.ai_family = AF_INET;       /* IPv4 only */ 
    hints.ai_socktype = SOCK_STREAM; /* Connections only */ 
    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) { 
        fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc)); 
        exit(1); 
    } 
 hostinfo.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Conversion Example (cont) 

    /* Walk the list and display each IP address */ 
    flags = NI_NUMERICHOST; /* Display address instead of name */ 
    for (p = listp; p; p = p->ai_next) { 
        Getnameinfo(p->ai_addr, p->ai_addrlen,  
                    buf, MAXLINE, NULL, 0, flags); 
        printf("%s\n", buf); 
    } 
 
    /* Clean up */ 
    Freeaddrinfo(listp); 
 
    exit(0); 
} hostinfo.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Running hostinfo 

whaleshark> ./hostinfo localhost 
127.0.0.1 
 
whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu 
128.2.210.175 
 
whaleshark> ./hostinfo twitter.com 
199.16.156.230 
199.16.156.38 
199.16.156.102 
199.16.156.198 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Interface: socket 

 Clients and servers use the socket function to create a 
socket descriptor: 
 

 Example: 
 
 

 
 

 
Protocol specific! Best practice is to use getaddrinfo to 
generate the parameters automatically, so that code is 
protocol independent. 
 

 
 
 
 
 

 

int socket(int domain, int type, int protocol) 

int clientfd = Socket(AF_INET, SOCK_STREAM, 0); 

Indicates that we are using 
32-bit IPV4 addresses 

Indicates that the socket 
will be the end point of a 

connection 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Interface: bind 

 A server uses  bind to ask the kernel to associate the 
server’s socket address with a socket descriptor: 
 
 

 The process can read bytes that arrive on the connection 
whose endpoint is addr by reading from descriptor 
sockfd. 

 Similarly, writes to sockfd are transferred along 
connection whose endpoint is addr. 
 

Best practice is to use getaddrinfo to supply the 
arguments addr and addrlen.  

 

 
 
 
 
 
 
 

 

int bind(int sockfd, SA *addr, socklen_t addrlen); 

http://csapp.cs.cmu.edu/3e/instructors.html


19 

CS 485: Systems Programming 

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Client / 
Server 
Session 

Sockets 
Interface 

Client Server 

socket socket 

bind 

listen 

rio_readlineb 

rio_writen rio_readlineb 

rio_writen 

Connection 
request 

rio_readlineb 

close 

close EOF 

Await connection 
request from 
next client 

open_listenfd 

open_clientfd 

accept connect 

getaddrinfo getaddrinfo 

http://csapp.cs.cmu.edu/3e/instructors.html


20 

CS 485: Systems Programming 

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Sockets Interface: listen 

 By default, kernel assumes that descriptor from socket 
function is an active socket that will be on the client end 
of a connection. 

 A server calls the listen function to tell the kernel that a 
descriptor will be used by a server rather than a client: 
 

 
 Converts sockfd from an active socket to a listening 

socket that can accept connection requests from clients.  
 

 backlog is a hint about the number of outstanding 
connection requests that the kernel should queue up 
before starting to refuse requests.  
 
 
 
 
 
 

 

int listen(int sockfd, int backlog); 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Interface: accept 

 Servers wait for connection requests from clients by 
calling accept: 

 
 

 Waits for connection request to arrive on the connection 
bound to listenfd, then fills in client’s socket address 
in addr and size of the socket address in addrlen.  

 Returns a connected descriptor that can be used to 
communicate with the client via Unix I/O routines.  

 
 
 
 
 
 
 

 

int accept(int listenfd, SA *addr, int *addrlen); 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Interface: connect 

 A client establishes a connection with a server by calling 
connect: 
 

 Attempts to establish a connection with server at socket 
address addr 
 If successful, then clientfd is now ready for reading and 

writing.  
 Resulting connection is  characterized by socket pair 
 (x:y, addr.sin_addr:addr.sin_port) 

 x is client address 
 y is ephemeral port that uniquely identifies client process on 

client host 
 

Best practice is to use getaddrinfo to supply the 
arguments addr and addrlen.  

 
 
 
 
 

 

int connect(int clientfd, SA *addr, socklen_t addrlen); 

http://csapp.cs.cmu.edu/3e/instructors.html
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accept Illustrated 
listenfd(3) 
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Connected vs. Listening Descriptors 
 Listening descriptor 
 End point for client connection requests 
 Created once and exists for lifetime of the server 

 
 Connected descriptor 
 End point of the connection between client and server 
 A new descriptor is created each time the server accepts a 

connection request from a client 
 Exists only as long as it takes to service client 

 
 Why the distinction? 
 Allows for concurrent servers that can communicate over many 

client connections simultaneously 
 E.g., Each time we receive a new request, we fork a child to 

handle the request 
 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Helper: open_clientfd 

int open_clientfd(char *hostname, char *port) { 
  int clientfd; 
  struct addrinfo hints, *listp, *p; 
 
  /* Get a list of potential server addresses */ 
  memset(&hints, 0, sizeof(struct addrinfo)); 
  hints.ai_socktype = SOCK_STREAM;  /* Open a connection */ 
  hints.ai_flags = AI_NUMERICSERV;  /* …using numeric port arg. */ 
  hints.ai_flags |= AI_ADDRCONFIG;  /* Recommended for connections */ 
  Getaddrinfo(hostname, port, &hints, &listp); 
 csapp.c 

 Establish a connection with a server 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Helper: open_clientfd (cont) 

    /* Walk the list for one that we can successfully connect to */ 
    for (p = listp; p; p = p->ai_next) { 
        /* Create a socket descriptor */ 
        if ((clientfd = socket(p->ai_family, p->ai_socktype,  
                               p->ai_protocol)) < 0) 
            continue; /* Socket failed, try the next */ 
 
        /* Connect to the server */ 
        if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1) 
            break; /* Success */ 
        Close(clientfd); /* Connect failed, try another */ 
    } 
 
    /* Clean up */ 
    Freeaddrinfo(listp); 
    if (!p) /* All connects failed */ 
        return -1; 
    else    /* The last connect succeeded */ 
        return clientfd; 
} csapp.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Helper: open_listenfd 

 int open_listenfd(char *port) 
{ 
    struct addrinfo hints, *listp, *p; 
    int listenfd, optval=1; 
 
    /* Get a list of potential server addresses */ 
    memset(&hints, 0, sizeof(struct addrinfo)); 
    hints.ai_socktype = SOCK_STREAM;             /* Accept connect. */ 
    hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */ 
    hints.ai_flags |= AI_NUMERICSERV;            /* …using port no. */ 
    Getaddrinfo(NULL, port, &hints, &listp); 
 
 csapp.c 

 Create a listening descriptor that can be used to accept 
connection requests from clients. 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Helper: open_listenfd (cont) 

    /* Walk the list for one that we can bind to */ 
    for (p = listp; p; p = p->ai_next) { 
        /* Create a socket descriptor */ 
        if ((listenfd = socket(p->ai_family, p->ai_socktype,  
                               p->ai_protocol)) < 0) 
            continue;  /* Socket failed, try the next */ 
 
        /* Eliminates "Address already in use" error from bind */ 
        Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,  
                   (const void *)&optval , sizeof(int)); 
 
        /* Bind the descriptor to the address */ 
        if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0) 
            break; /* Success */ 
        Close(listenfd); /* Bind failed, try the next */ 
    } csapp.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Sockets Helper: open_listenfd (cont) 

    /* Clean up */ 
    Freeaddrinfo(listp); 
    if (!p) /* No address worked */ 
        return -1; 
 
    /* Make it a listening socket ready to accept conn. requests */ 
    if (listen(listenfd, LISTENQ) < 0) { 
        Close(listenfd); 
        return -1; 
    } 
    return listenfd; 
} csapp.c 

 Key point: open_clientfd and open_listenfd are 
both independent of any particular version of IP. 

http://csapp.cs.cmu.edu/3e/instructors.html
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Echo Client: Main Routine 
#include "csapp.h" 
 
int main(int argc, char **argv) 
{ 
    int clientfd; 
    char *host, *port, buf[MAXLINE]; 
    rio_t rio; 
 
    host = argv[1]; 
    port = argv[2]; 
 
    clientfd = Open_clientfd(host, port); 
    Rio_readinitb(&rio, clientfd); 
 
    while (Fgets(buf, MAXLINE, stdin) != NULL) { 
 Rio_writen(clientfd, buf, strlen(buf)); 
 Rio_readlineb(&rio, buf, MAXLINE); 
 Fputs(buf, stdout); 
    } 
    Close(clientfd);  
    exit(0); 
} echoclient.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Iterative Echo Server: Main Routine 
#include "csapp.h” 
void echo(int connfd); 
 
int main(int argc, char **argv) 
{ 
    int listenfd, connfd; 
    socklen_t clientlen; 
    struct sockaddr_storage clientaddr; /* Enough room for any addr */                                                                                                                
    char client_hostname[MAXLINE], client_port[MAXLINE]; 
 
    listenfd = Open_listenfd(argv[1]); 
    while (1) { 
 clientlen = sizeof(struct sockaddr_storage); /* Important! */ 
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen); 
 Getnameinfo((SA *) &clientaddr, clientlen,  
                    client_hostname, MAXLINE, client_port, MAXLINE, 0); 
 printf("Connected to (%s, %s)\n", client_hostname, client_port); 
 echo(connfd); 
 Close(connfd); 
    } 
    exit(0); 
} echoserveri.c 

http://csapp.cs.cmu.edu/3e/instructors.html
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Echo Server: echo function 

void echo(int connfd) 
{ 
    size_t n; 
    char buf[MAXLINE]; 
    rio_t rio; 
 
    Rio_readinitb(&rio, connfd); 
    while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {  
        printf("server received %d bytes\n", (int)n); 
 Rio_writen(connfd, buf, n); 
    } 
} 

 The server uses RIO to read and echo text lines until EOF 
(end-of-file) condition is encountered. 
 EOF condition caused by client calling  close(clientfd) 

echo.c 
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38 

CS 485: Systems Programming 

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Testing Servers Using telnet 
 The telnet program is invaluable for testing servers 

that transmit ASCII strings over Internet connections 
 Our simple echo server 
 Web servers 
 Mail servers 

 
 Usage:  
 linux> telnet <host> <portnumber> 
 Creates a connection with a server running on <host> and  

listening on port <portnumber> 
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Testing the Echo Server With telnet 
whaleshark> ./echoserveri 15213 
Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280) 
server received 11 bytes 
server received 8 bytes 
 
 
 
makoshark> telnet whaleshark.ics.cs.cmu.edu 15213 
Trying 128.2.210.175... 
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175). 
Escape character is '^]'. 
Hi there! 
Hi there! 
Howdy! 
Howdy! 
^] 
telnet> quit 
Connection closed. 
makoshark> 

http://csapp.cs.cmu.edu/3e/instructors.html
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Web Server Basics 

Web 
server 

HTTP request 

HTTP response 
(content) 

 Clients and servers communicate 
using  the HyperText Transfer 
Protocol (HTTP) 
 Client and server establish TCP 

connection 
 Client requests content 
 Server responds with requested 

content 
 Client and server close connection 

(eventually) 
 Current version is HTTP/1.1 

 RFC 2616, June, 1999.  

Web 
client 

(browser)  

http://www.w3.org/Protocols/rfc2616/rfc2616.html 

IP 

TCP 

HTTP 

Datagrams 

Streams 

Web content 
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Web Content 
 Web servers return content to clients 
 content: a sequence of bytes with an associated MIME (Multipurpose 

Internet Mail Extensions) type 

 
 Example MIME types 
 text/html HTML document 
 text/plain Unformatted text 
 image/gif Binary image encoded in GIF format 
 image/png Binar image encoded in PNG format 
 image/jpeg Binary image encoded in JPEG format 

 

You can find the complete list of MIME types at: 
http://www.iana.org/assignments/media-types/media-types.xhtml 

http://csapp.cs.cmu.edu/3e/instructors.html
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Static and Dynamic Content 

 The content returned in HTTP responses can be either 
static or dynamic 
 Static content: content stored in files and retrieved in response to 

an HTTP request 
 Examples: HTML files, images, audio clips 
 Request identifies which content file 

 Dynamic content: content produced on-the-fly in response to an 
HTTP request 
 Example: content produced by a program executed by the 

server on behalf of the client 
 Request identifies file containing executable code 

 Bottom line: Web content is associated with a file that is 
managed by the server 

http://csapp.cs.cmu.edu/3e/instructors.html
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URLs and how clients and servers use them 
 Unique name for a file: URL (Universal Resource Locator) 
 Example URL: http://www.cmu.edu:80/index.html 
 Clients use prefix (http://www.cmu.edu:80) to infer: 
 What kind (protocol) of server to contact (HTTP) 
 Where the server is (www.cmu.edu) 
 What port it is listening on (80) 

 Servers use suffix (/index.html) to: 
 Determine if request is for static or dynamic content. 

 No hard and fast rules for this 
 One convention: executables reside in cgi-bin directory 

 Find file on file system 
 Initial “/” in suffix denotes home directory for requested content. 
 Minimal suffix is “/”, which server expands to configured default 

filename (usually, index.html)  
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HTTP Requests 

 HTTP request is a request line, followed by zero or more 
request headers 
 

 Request line: <method> <uri> <version> 
 <method> is one of  GET, POST, OPTIONS, HEAD, PUT, 
DELETE, or TRACE 

 <uri> is typically URL for proxies, URL suffix for servers 
 A URL is a type of URI (Uniform Resource Identifier) 
 See http://www.ietf.org/rfc/rfc2396.txt 

 <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1) 

 
 Request headers: <header name>: <header data> 
 Provide additional information to the server 
 

http://csapp.cs.cmu.edu/3e/instructors.html
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HTTP Responses 
 HTTP response is a response line followed by zero or more 

response headers, possibly followed by content, with blank line 
(“\r\n”) separating headers from content.  
 

 Response line:  
  <version> <status code> <status msg> 
 <version> is HTTP version of the response 
 <status code> is numeric status 
 <status msg> is corresponding English text 

 200  OK  Request was handled without error 
 301 Moved  Provide alternate URL 
 404 Not found Server couldn’t find the file 

 Response headers: <header name>: <header data> 
 Provide additional information about response 
 Content-Type: MIME type of content in response body 
 Content-Length: Length of content in response body 
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Example HTTP Transaction 
whaleshark> telnet www.cmu.edu 80       Client: open connection to server  
Trying 128.2.42.52...                   Telnet prints 3 lines to terminal 
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu. 
Escape character is '^]'. 
GET / HTTP/1.1                          Client: request line 
Host: www.cmu.edu                       Client: required HTTP/1.1 header 
                                        Client: empty line terminates headers 
HTTP/1.1 301 Moved Permanently          Server: response line 
Date: Wed, 05 Nov 2014 17:05:11 GMT     Server: followed by 5 response headers 
Server: Apache/1.3.42 (Unix)            Server: this is an Apache server 
Location: http://www.cmu.edu/index.shtml Server: page has moved here 
Transfer-Encoding: chunked              Server: response body will be chunked 
Content-Type: text/html; charset=...    Server: expect HTML in response body 
                                        Server: empty line terminates headers 
15c                                     Server: first line in response body 
<HTML><HEAD>                            Server: start of HTML content 
… 
</BODY></HTML>                          Server: end of HTML content 
0                                       Server: last line in response body 
Connection closed by foreign host.      Server: closes connection 

 HTTP standard requires that each text line end with “\r\n” 
 Blank line (“\r\n”) terminates request and response headers 

http://csapp.cs.cmu.edu/3e/instructors.html
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Example HTTP Transaction, Take 2 
whaleshark> telnet www.cmu.edu 80       Client: open connection to server  
Trying 128.2.42.52...                   Telnet prints 3 lines to terminal 
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu. 
Escape character is '^]'. 
GET /index.shtml HTTP/1.1               Client: request line 
Host: www.cmu.edu                       Client: required HTTP/1.1 header 
                                        Client: empty line terminates headers 
HTTP/1.1 200 OK                         Server: response line 
Date: Wed, 05 Nov 2014 17:37:26 GMT     Server: followed by 4 response headers 
Server: Apache/1.3.42 (Unix) 
Transfer-Encoding: chunked 
Content-Type: text/html; charset=...  
                                        Server: empty line terminates headers 
1000                                    Server: begin response body 
<html ..>                               Server: first line of HTML content 
… 
</html> 
0                                       Server: end response body 
Connection closed by foreign host.      Server: close connection 

http://csapp.cs.cmu.edu/3e/instructors.html
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Tiny Web Server 

 Tiny Web server described in text 
 Tiny is a sequential Web server 
 Serves static and dynamic content to real browsers 

 text files, HTML files, GIF, PNG, and JPEG images 
 239 lines of commented C code 
 Not as complete or robust as a real Web server 

 You can break it with poorly-formed HTTP requests (e.g., 
terminate lines with “\n” instead of “\r\n”) 

http://csapp.cs.cmu.edu/3e/instructors.html
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Tiny Operation 

 Accept connection from client 
 Read request from client (via connected socket) 
 Split into <method>  <uri> <version> 
 If method not GET, then return error 

 If URI contains “cgi-bin” then serve dynamic content 
 (Would do wrong thing if had file “abcgi-bingo.html”) 
 Fork process to execute program 

 Otherwise serve static content 
 Copy file to output 
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Tiny Serving Static Content 
void serve_static(int fd, char *filename, int filesize) 
{ 
    int srcfd; 
    char *srcp, filetype[MAXLINE], buf[MAXBUF]; 
 
    /* Send response headers to client */ 
    get_filetype(filename, filetype);        
    sprintf(buf, "HTTP/1.0 200 OK\r\n");     
    sprintf(buf, "%sServer: Tiny Web Server\r\n", buf); 
    sprintf(buf, "%sConnection: close\r\n", buf); 
    sprintf(buf, "%sContent-length: %d\r\n", buf, filesize); 
    sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype); 
    Rio_writen(fd, buf, strlen(buf));        
    
    /* Send response body to client */ 
    srcfd = Open(filename, O_RDONLY, 0);     
    srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0); 
    Close(srcfd);                            
    Rio_writen(fd, srcp, filesize);          
    Munmap(srcp, filesize);                  
} tiny.c 

http://csapp.cs.cmu.edu/3e/instructors.html


51 

CS 485: Systems Programming 

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 

Serving Dynamic Content 

Client Server 

 Client sends request to server 
 

 If request URI contains the 
string “/cgi-bin”, the Tiny 
server assumes that the 
request is for dynamic content  

GET /cgi-bin/env.pl HTTP/1.1 

http://csapp.cs.cmu.edu/3e/instructors.html
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Serving Dynamic Content (cont) 

Client Server 
 The server creates a child 

process and runs the 
program identified by the 
URI in that process 

env.pl 

fork/exec 
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Serving Dynamic Content (cont) 

Client Server  The child runs and generates 
the dynamic content 
 

 The server captures the 
content of the child and 
forwards it without 
modification to the client 
 
 

env.pl 

Content 

Content 
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Issues in Serving Dynamic Content 

 How does the client pass program 
arguments to the server? 

 How does the server pass these 
arguments to the child? 

 How does the server pass other info 
relevant to the request to the child? 

 How does the server capture the 
content produced by the child? 

 These issues are addressed by the 
Common Gateway Interface (CGI) 
specification. 
 

Client Server 

Content 

Content 

Request 

Create 

env.pl 
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CGI 

 Because the children are written according to the CGI 
spec, they are often called CGI programs. 

 
 However, CGI really defines a simple standard for 

transferring information between the client (browser), 
the server, and the child process. 
 

 CGI is the original standard for generating dynamic 
content. Has been largely replaced by other, faster 
techniques:  
 E.g., fastCGI, Apache modules, Java servlets, Rails controllers 
 Avoid having to create process on the fly (expensive and slow).  

http://csapp.cs.cmu.edu/3e/instructors.html
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The add.com Experience 

Output page 

host port CGI program 

arguments 
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Serving Dynamic Content With GET 
 Question: How does the client pass arguments to the server? 
 Answer: The arguments are appended to the URI 

 
 Can be encoded directly in a URL typed to a browser or a URL 

in an HTML link   
 http://add.com/cgi-bin/adder?15213&18213 

 adder is the CGI program on the server that will do the addition. 
 argument list starts with “?” 
 arguments separated by “&”  
 spaces represented by  “+” or “%20” 
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Serving Dynamic Content With GET 

 URL suffix:  
 cgi-bin/adder?15213&18213 

 
 Result displayed on browser:  

Welcome to add.com: THE Internet 
addition portal.  
 
The answer is: 15213 + 18213 = 33426 
 
Thanks for visiting!  

http://csapp.cs.cmu.edu/3e/instructors.html
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Serving Dynamic Content With GET 

 Question: How does the server pass these arguments to 
the child? 

 Answer: In environment variable QUERY_STRING 
 A single string containing everything after the “?” 
 For add: QUERY_STRING = “15213&18213” 

    /* Extract the two arguments */ 
    if ((buf = getenv("QUERY_STRING")) != NULL) { 
        p = strchr(buf, '&'); 
  *p = '\0'; 
        strcpy(arg1, buf); 
        strcpy(arg2, p+1); 
        n1 = atoi(arg1); 
        n2 = atoi(arg2); 
    } adder.c 
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void serve_dynamic(int fd, char *filename, char *cgiargs) 
{ 
    char buf[MAXLINE], *emptylist[] = { NULL }; 
 
    /* Return first part of HTTP response */ 
    sprintf(buf, "HTTP/1.0 200 OK\r\n"); 
    Rio_writen(fd, buf, strlen(buf)); 
    sprintf(buf, "Server: Tiny Web Server\r\n"); 
    Rio_writen(fd, buf, strlen(buf)); 
 
    if (Fork() == 0) { /* Child */ 
        /* Real server would set all CGI vars here */ 
        setenv("QUERY_STRING", cgiargs, 1);  
        Dup2(fd, STDOUT_FILENO);         /* Redirect stdout to client */           
        Execve(filename, emptylist, environ); /* Run CGI program */  
    } 
    Wait(NULL); /* Parent waits for and reaps child */ 
} 

Serving Dynamic Content with GET 
 Question: How does the server capture the content produced by the child? 
 Answer: The child generates its output on stdout.  Server uses dup2 to 

redirect stdout to its connected socket.  

tiny.c 
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Serving Dynamic Content with GET 

    /* Make the response body */ 
    sprintf(content, "Welcome to add.com: "); 
    sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content); 
    sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>", 
            content, n1, n2, n1 + n2); 
    sprintf(content, "%sThanks for visiting!\r\n", content); 
 
    /* Generate the HTTP response */ 
    printf("Content-length: %d\r\n", (int)strlen(content)); 
    printf("Content-type: text/html\r\n\r\n"); 
    printf("%s", content); 
    fflush(stdout); 
 
    exit(0); adder.c 

 Notice that only the CGI child process knows the content 
type and length, so it must generate those headers. 
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bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213 
Trying 128.2.210.175... 
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175). 
Escape character is '^]'. 
GET /cgi-bin/adder?15213&18213 HTTP/1.0 
 
HTTP/1.0 200 OK 
Server: Tiny Web Server 
Connection: close 
Content-length: 117 
Content-type: text/html 
 
Welcome to add.com: THE Internet addition portal. 
<p>The answer is: 15213 + 18213 = 33426 
<p>Thanks for visiting! 
Connection closed by foreign host. 
bash:makoshark>  

Serving Dynamic Content With GET  

HTTP request sent by client 

HTTP response generated  
by the server 

HTTP response generated  
by the CGI program 
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For More Information 
 W. Richard Stevens et. al. “Unix Network Programming: 

The Sockets Networking API”, Volume 1, Third Edition, 
Prentice Hall, 2003 
 THE network programming bible. 

 Michael Kerrisk, “The Linux Programming Interface”, No 
Starch Press, 2010 
 THE Linux programming bible.  

http://csapp.cs.cmu.edu/3e/instructors.html
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