
1

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Networking part II:
Programming with sockets

CS 485G-006: Systems Programming
Lectures 30–31: 11–13 Apr 2016

http://csapp.cs.cmu.edu/3e/instructors.html

2

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface
 Set of system-level functions used in conjunction with

Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

http://csapp.cs.cmu.edu/3e/instructors.html

3

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client Server

Sockets
 What is a socket?
 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Remember: All Unix I/O devices, including networks, are

modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket

I/O is how the application “opens” the socket descriptors

clientfd serverfd

http://csapp.cs.cmu.edu/3e/instructors.html

4

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Socket Address Structures
 Generic socket address:
 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data. */
};

sa_family

Family Specific

http://csapp.cs.cmu.edu/3e/instructors.html

5

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Socket Address Structures
 Internet-specific socket address:
 Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

sin_family

http://csapp.cs.cmu.edu/3e/instructors.html

6

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

7

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most cases.

http://csapp.cs.cmu.edu/3e/instructors.html

8

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name
*/
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

http://csapp.cs.cmu.edu/3e/instructors.html

9

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

http://csapp.cs.cmu.edu/3e/instructors.html

10

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

http://csapp.cs.cmu.edu/3e/instructors.html

11

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

http://csapp.cs.cmu.edu/3e/instructors.html

12

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* Connections only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }
 hostinfo.c

http://csapp.cs.cmu.edu/3e/instructors.html

13

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Conversion Example (cont)

 /* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */
 for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
 }

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

http://csapp.cs.cmu.edu/3e/instructors.html

14

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

http://csapp.cs.cmu.edu/3e/instructors.html

15

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

16

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

http://csapp.cs.cmu.edu/3e/instructors.html

17

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

18

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

http://csapp.cs.cmu.edu/3e/instructors.html

19

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

20

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface: listen

 By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening

socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

http://csapp.cs.cmu.edu/3e/instructors.html

21

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

22

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

http://csapp.cs.cmu.edu/3e/instructors.html

23

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

24

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
 If successful, then clientfd is now ready for reading and

writing.
 Resulting connection is characterized by socket pair
 (x:y, addr.sin_addr:addr.sin_port)

 x is client address
 y is ephemeral port that uniquely identifies client process on

client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

http://csapp.cs.cmu.edu/3e/instructors.html

25

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

http://csapp.cs.cmu.edu/3e/instructors.html

26

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Connected vs. Listening Descriptors
 Listening descriptor
 End point for client connection requests
 Created once and exists for lifetime of the server

 Connected descriptor
 End point of the connection between client and server
 A new descriptor is created each time the server accepts a

connection request from a client
 Exists only as long as it takes to service client

 Why the distinction?
 Allows for concurrent servers that can communicate over many

client connections simultaneously
 E.g., Each time we receive a new request, we fork a child to

handle the request

http://csapp.cs.cmu.edu/3e/instructors.html

27

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

28

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

29

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {
 int clientfd;
 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_socktype = SOCK_STREAM; /* Open a connection */
 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */
 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */
 Getaddrinfo(hostname, port, &hints, &listp);
 csapp.c

 Establish a connection with a server

http://csapp.cs.cmu.edu/3e/instructors.html

30

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Helper: open_clientfd (cont)

 /* Walk the list for one that we can successfully connect to */
 for (p = listp; p; p = p->ai_next) {
 /* Create a socket descriptor */
 if ((clientfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) < 0)
 continue; /* Socket failed, try the next */

 /* Connect to the server */
 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)
 break; /* Success */
 Close(clientfd); /* Connect failed, try another */
 }

 /* Clean up */
 Freeaddrinfo(listp);
 if (!p) /* All connects failed */
 return -1;
 else /* The last connect succeeded */
 return clientfd;
} csapp.c

http://csapp.cs.cmu.edu/3e/instructors.html

31

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

http://csapp.cs.cmu.edu/3e/instructors.html

32

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Helper: open_listenfd

 int open_listenfd(char *port)
{
 struct addrinfo hints, *listp, *p;
 int listenfd, optval=1;

 /* Get a list of potential server addresses */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */
 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */
 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */
 Getaddrinfo(NULL, port, &hints, &listp);

 csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

http://csapp.cs.cmu.edu/3e/instructors.html

33

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Helper: open_listenfd (cont)

 /* Walk the list for one that we can bind to */
 for (p = listp; p; p = p->ai_next) {
 /* Create a socket descriptor */
 if ((listenfd = socket(p->ai_family, p->ai_socktype,
 p->ai_protocol)) < 0)
 continue; /* Socket failed, try the next */

 /* Eliminates "Address already in use" error from bind */
 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int));

 /* Bind the descriptor to the address */
 if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)
 break; /* Success */
 Close(listenfd); /* Bind failed, try the next */
 } csapp.c

http://csapp.cs.cmu.edu/3e/instructors.html

34

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Sockets Helper: open_listenfd (cont)

 /* Clean up */
 Freeaddrinfo(listp);
 if (!p) /* No address worked */
 return -1;

 /* Make it a listening socket ready to accept conn. requests */
 if (listen(listenfd, LISTENQ) < 0) {
 Close(listenfd);
 return -1;
 }
 return listenfd;
} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

http://csapp.cs.cmu.edu/3e/instructors.html

35

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)
{
 int clientfd;
 char *host, *port, buf[MAXLINE];
 rio_t rio;

 host = argv[1];
 port = argv[2];

 clientfd = Open_clientfd(host, port);
 Rio_readinitb(&rio, clientfd);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {
 Rio_writen(clientfd, buf, strlen(buf));
 Rio_readlineb(&rio, buf, MAXLINE);
 Fputs(buf, stdout);
 }
 Close(clientfd);
 exit(0);
} echoclient.c

http://csapp.cs.cmu.edu/3e/instructors.html

36

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Iterative Echo Server: Main Routine
#include "csapp.h”
void echo(int connfd);

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr; /* Enough room for any addr */
 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage); /* Important! */
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
 Getnameinfo((SA *) &clientaddr, clientlen,
 client_hostname, MAXLINE, client_port, MAXLINE, 0);
 printf("Connected to (%s, %s)\n", client_hostname, client_port);
 echo(connfd);
 Close(connfd);
 }
 exit(0);
} echoserveri.c

http://csapp.cs.cmu.edu/3e/instructors.html

37

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Echo Server: echo function

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 printf("server received %d bytes\n", (int)n);
 Rio_writen(connfd, buf, n);
 }
}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
 EOF condition caused by client calling close(clientfd)

echo.c

http://csapp.cs.cmu.edu/3e/instructors.html

38

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Testing Servers Using telnet
 The telnet program is invaluable for testing servers

that transmit ASCII strings over Internet connections
 Our simple echo server
 Web servers
 Mail servers

 Usage:
 linux> telnet <host> <portnumber>
 Creates a connection with a server running on <host> and

listening on port <portnumber>

http://csapp.cs.cmu.edu/3e/instructors.html

39

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Testing the Echo Server With telnet
whaleshark> ./echoserveri 15213
Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)
server received 11 bytes
server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
Hi there!
Hi there!
Howdy!
Howdy!
^]
telnet> quit
Connection closed.
makoshark>

http://csapp.cs.cmu.edu/3e/instructors.html

40

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)
 Client and server establish TCP

connection
 Client requests content
 Server responds with requested

content
 Client and server close connection

(eventually)
 Current version is HTTP/1.1

 RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

http://csapp.cs.cmu.edu/3e/instructors.html

41

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Web Content
 Web servers return content to clients
 content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
 text/html HTML document
 text/plain Unformatted text
 image/gif Binary image encoded in GIF format
 image/png Binar image encoded in PNG format
 image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

http://csapp.cs.cmu.edu/3e/instructors.html

42

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Static and Dynamic Content

 The content returned in HTTP responses can be either
static or dynamic
 Static content: content stored in files and retrieved in response to

an HTTP request
 Examples: HTML files, images, audio clips
 Request identifies which content file

 Dynamic content: content produced on-the-fly in response to an
HTTP request
 Example: content produced by a program executed by the

server on behalf of the client
 Request identifies file containing executable code

 Bottom line: Web content is associated with a file that is
managed by the server

http://csapp.cs.cmu.edu/3e/instructors.html

43

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

URLs and how clients and servers use them
 Unique name for a file: URL (Universal Resource Locator)
 Example URL: http://www.cmu.edu:80/index.html
 Clients use prefix (http://www.cmu.edu:80) to infer:
 What kind (protocol) of server to contact (HTTP)
 Where the server is (www.cmu.edu)
 What port it is listening on (80)

 Servers use suffix (/index.html) to:
 Determine if request is for static or dynamic content.

 No hard and fast rules for this
 One convention: executables reside in cgi-bin directory

 Find file on file system
 Initial “/” in suffix denotes home directory for requested content.
 Minimal suffix is “/”, which server expands to configured default

filename (usually, index.html)

http://csapp.cs.cmu.edu/3e/instructors.html

44

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

HTTP Requests

 HTTP request is a request line, followed by zero or more
request headers

 Request line: <method> <uri> <version>
 <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

 <uri> is typically URL for proxies, URL suffix for servers
 A URL is a type of URI (Uniform Resource Identifier)
 See http://www.ietf.org/rfc/rfc2396.txt

 <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

 Request headers: <header name>: <header data>
 Provide additional information to the server

http://csapp.cs.cmu.edu/3e/instructors.html
http://www.ietf.org/rfc/rfc2396.txt

45

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:
 <version> <status code> <status msg>
 <version> is HTTP version of the response
 <status code> is numeric status
 <status msg> is corresponding English text

 200 OK Request was handled without error
 301 Moved Provide alternate URL
 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
 Provide additional information about response
 Content-Type: MIME type of content in response body
 Content-Length: Length of content in response body

http://csapp.cs.cmu.edu/3e/instructors.html

46

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET / HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header
 Client: empty line terminates headers
HTTP/1.1 301 Moved Permanently Server: response line
Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers
Server: Apache/1.3.42 (Unix) Server: this is an Apache server
Location: http://www.cmu.edu/index.shtml Server: page has moved here
Transfer-Encoding: chunked Server: response body will be chunked
Content-Type: text/html; charset=... Server: expect HTML in response body
 Server: empty line terminates headers
15c Server: first line in response body
<HTML><HEAD> Server: start of HTML content
…
</BODY></HTML> Server: end of HTML content
0 Server: last line in response body
Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”
 Blank line (“\r\n”) terminates request and response headers

http://csapp.cs.cmu.edu/3e/instructors.html

47

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.42.52... Telnet prints 3 lines to terminal
Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.
Escape character is '^]'.
GET /index.shtml HTTP/1.1 Client: request line
Host: www.cmu.edu Client: required HTTP/1.1 header
 Client: empty line terminates headers
HTTP/1.1 200 OK Server: response line
Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers
Server: Apache/1.3.42 (Unix)
Transfer-Encoding: chunked
Content-Type: text/html; charset=...
 Server: empty line terminates headers
1000 Server: begin response body
<html ..> Server: first line of HTML content
…
</html>
0 Server: end response body
Connection closed by foreign host. Server: close connection

http://csapp.cs.cmu.edu/3e/instructors.html

48

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Tiny Web Server

 Tiny Web server described in text
 Tiny is a sequential Web server
 Serves static and dynamic content to real browsers

 text files, HTML files, GIF, PNG, and JPEG images
 239 lines of commented C code
 Not as complete or robust as a real Web server

 You can break it with poorly-formed HTTP requests (e.g.,
terminate lines with “\n” instead of “\r\n”)

http://csapp.cs.cmu.edu/3e/instructors.html

49

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Tiny Operation

 Accept connection from client
 Read request from client (via connected socket)
 Split into <method> <uri> <version>
 If method not GET, then return error

 If URI contains “cgi-bin” then serve dynamic content
 (Would do wrong thing if had file “abcgi-bingo.html”)
 Fork process to execute program

 Otherwise serve static content
 Copy file to output

http://csapp.cs.cmu.edu/3e/instructors.html

50

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Tiny Serving Static Content
void serve_static(int fd, char *filename, int filesize)
{
 int srcfd;
 char *srcp, filetype[MAXLINE], buf[MAXBUF];

 /* Send response headers to client */
 get_filetype(filename, filetype);
 sprintf(buf, "HTTP/1.0 200 OK\r\n");
 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);
 sprintf(buf, "%sConnection: close\r\n", buf);
 sprintf(buf, "%sContent-length: %d\r\n", buf, filesize);
 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
 Rio_writen(fd, buf, strlen(buf));

 /* Send response body to client */
 srcfd = Open(filename, O_RDONLY, 0);
 srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
 Close(srcfd);
 Rio_writen(fd, srcp, filesize);
 Munmap(srcp, filesize);
} tiny.c

http://csapp.cs.cmu.edu/3e/instructors.html

51

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content

Client Server

 Client sends request to server

 If request URI contains the
string “/cgi-bin”, the Tiny
server assumes that the
request is for dynamic content

GET /cgi-bin/env.pl HTTP/1.1

http://csapp.cs.cmu.edu/3e/instructors.html

52

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content (cont)

Client Server
 The server creates a child

process and runs the
program identified by the
URI in that process

env.pl

fork/exec

http://csapp.cs.cmu.edu/3e/instructors.html

53

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content (cont)

Client Server  The child runs and generates
the dynamic content

 The server captures the
content of the child and
forwards it without
modification to the client

env.pl

Content

Content

http://csapp.cs.cmu.edu/3e/instructors.html

54

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Issues in Serving Dynamic Content

 How does the client pass program
arguments to the server?

 How does the server pass these
arguments to the child?

 How does the server pass other info
relevant to the request to the child?

 How does the server capture the
content produced by the child?

 These issues are addressed by the
Common Gateway Interface (CGI)
specification.

Client Server

Content

Content

Request

Create

env.pl

http://csapp.cs.cmu.edu/3e/instructors.html

55

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CGI

 Because the children are written according to the CGI
spec, they are often called CGI programs.

 However, CGI really defines a simple standard for

transferring information between the client (browser),
the server, and the child process.

 CGI is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:
 E.g., fastCGI, Apache modules, Java servlets, Rails controllers
 Avoid having to create process on the fly (expensive and slow).

http://csapp.cs.cmu.edu/3e/instructors.html

56

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

The add.com Experience

Output page

host port CGI program

arguments

http://csapp.cs.cmu.edu/3e/instructors.html

57

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content With GET
 Question: How does the client pass arguments to the server?
 Answer: The arguments are appended to the URI

 Can be encoded directly in a URL typed to a browser or a URL

in an HTML link
 http://add.com/cgi-bin/adder?15213&18213

 adder is the CGI program on the server that will do the addition.
 argument list starts with “?”
 arguments separated by “&”
 spaces represented by “+” or “%20”

http://csapp.cs.cmu.edu/3e/instructors.html

58

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content With GET

 URL suffix:
 cgi-bin/adder?15213&18213

 Result displayed on browser:

Welcome to add.com: THE Internet
addition portal.

The answer is: 15213 + 18213 = 33426

Thanks for visiting!

http://csapp.cs.cmu.edu/3e/instructors.html

59

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content With GET

 Question: How does the server pass these arguments to
the child?

 Answer: In environment variable QUERY_STRING
 A single string containing everything after the “?”
 For add: QUERY_STRING = “15213&18213”

 /* Extract the two arguments */
 if ((buf = getenv("QUERY_STRING")) != NULL) {
 p = strchr(buf, '&');
 *p = '\0';
 strcpy(arg1, buf);
 strcpy(arg2, p+1);
 n1 = atoi(arg1);
 n2 = atoi(arg2);
 } adder.c

http://csapp.cs.cmu.edu/3e/instructors.html

60

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

void serve_dynamic(int fd, char *filename, char *cgiargs)
{
 char buf[MAXLINE], *emptylist[] = { NULL };

 /* Return first part of HTTP response */
 sprintf(buf, "HTTP/1.0 200 OK\r\n");
 Rio_writen(fd, buf, strlen(buf));
 sprintf(buf, "Server: Tiny Web Server\r\n");
 Rio_writen(fd, buf, strlen(buf));

 if (Fork() == 0) { /* Child */
 /* Real server would set all CGI vars here */
 setenv("QUERY_STRING", cgiargs, 1);
 Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */
 Execve(filename, emptylist, environ); /* Run CGI program */
 }
 Wait(NULL); /* Parent waits for and reaps child */
}

Serving Dynamic Content with GET
 Question: How does the server capture the content produced by the child?
 Answer: The child generates its output on stdout. Server uses dup2 to

redirect stdout to its connected socket.

tiny.c

http://csapp.cs.cmu.edu/3e/instructors.html

61

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Serving Dynamic Content with GET

 /* Make the response body */
 sprintf(content, "Welcome to add.com: ");
 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);
 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",
 content, n1, n2, n1 + n2);
 sprintf(content, "%sThanks for visiting!\r\n", content);

 /* Generate the HTTP response */
 printf("Content-length: %d\r\n", (int)strlen(content));
 printf("Content-type: text/html\r\n\r\n");
 printf("%s", content);
 fflush(stdout);

 exit(0); adder.c

 Notice that only the CGI child process knows the content
type and length, so it must generate those headers.

http://csapp.cs.cmu.edu/3e/instructors.html

62

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

bash:makoshark> telnet whaleshark.ics.cs.cmu.edu 15213
Trying 128.2.210.175...
Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).
Escape character is '^]'.
GET /cgi-bin/adder?15213&18213 HTTP/1.0

HTTP/1.0 200 OK
Server: Tiny Web Server
Connection: close
Content-length: 117
Content-type: text/html

Welcome to add.com: THE Internet addition portal.
<p>The answer is: 15213 + 18213 = 33426
<p>Thanks for visiting!
Connection closed by foreign host.
bash:makoshark>

Serving Dynamic Content With GET

HTTP request sent by client

HTTP response generated
by the server

HTTP response generated
by the CGI program

http://csapp.cs.cmu.edu/3e/instructors.html

63

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

For More Information
 W. Richard Stevens et. al. “Unix Network Programming:

The Sockets Networking API”, Volume 1, Third Edition,
Prentice Hall, 2003
 THE network programming bible.

 Michael Kerrisk, “The Linux Programming Interface”, No
Starch Press, 2010
 THE Linux programming bible.

http://csapp.cs.cmu.edu/3e/instructors.html

	Networking part II:�Programming with sockets
	Sockets Interface
	Sockets
	Socket Address Structures
	Socket Address Structures
	Sockets Interface
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Sockets Interface
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	accept Illustrated
	Connected vs. Listening Descriptors
	Sockets Interface
	Sockets Interface
	Sockets Helper: open_clientfd
	Sockets Helper: open_clientfd (cont)
	Sockets Interface
	Sockets Helper: open_listenfd
	Sockets Helper: open_listenfd (cont)
	Sockets Helper: open_listenfd (cont)
	Echo Client: Main Routine
	Iterative Echo Server: Main Routine
	Echo Server: echo function
	Testing Servers Using telnet
	Testing the Echo Server With telnet
	Web Server Basics
	Web Content
	Static and Dynamic Content
	URLs and how clients and servers use them
	HTTP Requests
	HTTP Responses
	Example HTTP Transaction
	Example HTTP Transaction, Take 2
	Tiny Web Server
	Tiny Operation
	Tiny Serving Static Content
	Serving Dynamic Content
	Serving Dynamic Content (cont)
	Serving Dynamic Content (cont)
	Issues in Serving Dynamic Content
	CGI
	The add.com Experience
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content With GET
	Serving Dynamic Content with GET
	Serving Dynamic Content with GET
	Serving Dynamic Content With GET
	For More Information

