
1

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Exceptional Control Flow:
Exceptions and Processes

CS 485G-006: Systems Programming
Lectures 24–26: 28 Mar–1 Apr 2016

http://csapp.cs.cmu.edu/3e/instructors.html

2

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

http://csapp.cs.cmu.edu/3e/instructors.html

3

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

 Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

http://csapp.cs.cmu.edu/3e/instructors.html

4

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Altering the Control Flow
 Up to now: two mechanisms for changing control flow:
 Jumps and branches
 Call and return
React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter
 Instruction divides by zero
 User hits Ctrl-C at the keyboard
 System timer expires

 System needs mechanisms for “exceptional control flow”

http://csapp.cs.cmu.edu/3e/instructors.html

5

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Exceptional Control Flow
 Exists at all levels of a computer system
 Low level mechanisms
 1. Exceptions (interrupts, traps, faults, and aborts)

 Change in control flow in response to a system event
(i.e., change in system state, bad instruction, …)

 Implemented using combination of hardware and OS software
 Handled by the OS (the kernel)

 Higher level mechanisms
 2. Process context switch

 Implemented by OS software and hardware timer
 3. Signals

 Implemented by OS software
 4. Nonlocal jumps: setjmp() and longjmp()

 Implemented by C runtime library

http://csapp.cs.cmu.edu/3e/instructors.html

6

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

http://csapp.cs.cmu.edu/3e/instructors.html

7

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Exceptions
 An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
 Kernel is the memory-resident part of the OS
 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler
 • Return to I_current

• Return to I_next
• Abort

Event I_current
I_next

http://csapp.cs.cmu.edu/3e/instructors.html

8

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

0
1
2 ...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

http://csapp.cs.cmu.edu/3e/instructors.html

9

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Asynchronous Exceptions (Interrupts)
 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

 Examples:
 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt
 Used by the kernel to take back control from user programs

 I/O interrupt from external device
 Hitting Ctrl-C at the keyboard
 Arrival of a packet from a network
 Arrival of data from a disk

http://csapp.cs.cmu.edu/3e/instructors.html

10

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional
 Examples: system calls, breakpoint traps, special instructions
 Returns control to “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
 Either re-executes faulting (“current”) instruction or aborts

 Aborts
 Unintentional and unrecoverable
 Examples: illegal instruction, parity error, machine check
 Aborts current program

http://csapp.cs.cmu.edu/3e/instructors.html

11

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number
 Examples:

http://csapp.cs.cmu.edu/3e/instructors.html

12

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

System Call Example: Opening File
 User calls: open(filename, options)
 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

http://csapp.cs.cmu.edu/3e/instructors.html

13

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Fault Example: Page Fault
 User writes to memory location
 That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memory Return and

reexecute movl

movl

http://csapp.cs.cmu.edu/3e/instructors.html

14

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process
 User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

http://csapp.cs.cmu.edu/3e/instructors.html

15

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

http://csapp.cs.cmu.edu/3e/instructors.html

16

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Processes
 Definition: A process is an instance of a running

program.
 One of the most profound ideas in computer science
 Not the same as “program” or “processor”

 Process provides each program with two key

abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU
 Provided by kernel mechanism called context switching

 Private address space
 Each program seems to have exclusive use of main

memory.
 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

http://csapp.cs.cmu.edu/3e/instructors.html

17

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
 Applications for one or more users

 Web browsers, email clients, editors, …
 Background tasks

 Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

http://csapp.cs.cmu.edu/3e/instructors.html

18

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing Example

 Running program “top” on Mac
 System has 123 processes, 5 of which are active
 Identified by Process ID (PID)

http://csapp.cs.cmu.edu/3e/instructors.html

19

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in course)
 Register values for nonexecuting processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

http://csapp.cs.cmu.edu/3e/instructors.html

20

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

http://csapp.cs.cmu.edu/3e/instructors.html

21

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

http://csapp.cs.cmu.edu/3e/instructors.html

22

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

http://csapp.cs.cmu.edu/3e/instructors.html

23

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Multiprocessing: The (Modern) Reality

 Multicore processors
 Multiple CPUs on single chip
 Share main memory (and some of

the caches)
 Each can execute a separate process

 Scheduling of processors onto
cores done by kernel

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

http://csapp.cs.cmu.edu/3e/instructors.html

24

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Concurrent Processes
 Each process is a logical control flow.
 Two processes run concurrently (are concurrent) if their

flows overlap in time
 Otherwise, they are sequential
 Examples (running on single core):
 Concurrent: A & B, A & C
 Sequential: B & C

Process A Process B Process C

Time

http://csapp.cs.cmu.edu/3e/instructors.html

25

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

User View of Concurrent Processes
 Control flows for concurrent processes are physically

disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

http://csapp.cs.cmu.edu/3e/instructors.html

26

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Context Switching
 Processes are managed by a shared chunk of memory-

resident OS code called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

http://csapp.cs.cmu.edu/3e/instructors.html

27

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

http://csapp.cs.cmu.edu/3e/instructors.html

28

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

System Call Error Handling
 On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
 Hard and fast rule:
 You must check the return status of every system-level function
 Only exception is the handful of functions that return void

 Example:

 if ((pid = fork()) < 0) {
 fprintf(stderr, "fork error: %s\n", strerror(errno));
 exit(0);
 }

http://csapp.cs.cmu.edu/3e/instructors.html

29

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Error-reporting functions
 Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(0);
}

 if ((pid = fork()) < 0)
 unix_error("fork error");

http://csapp.cs.cmu.edu/3e/instructors.html

30

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Obtaining Process IDs
 pid_t getpid(void)
 Returns PID of current process

 pid_t getppid(void)
 Returns PID of parent process

http://csapp.cs.cmu.edu/3e/instructors.html

31

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process
as being in one of three states

 Running
 Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped
 Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

 Terminated
 Process is stopped permanently

http://csapp.cs.cmu.edu/3e/instructors.html

32

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Terminating Processes
 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (next

lecture)
 Returning from the main routine
 Calling the exit function

 void exit(int status)
 Terminates with an exit status of status
 Convention: normal return status is 0, nonzero on error
 Another way to explicitly set the exit status is to return an integer

value from the main routine

 exit is called once but never returns.

http://csapp.cs.cmu.edu/3e/instructors.html

33

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Creating Processes
 Parent process creates a new running child process by

calling fork

 int fork(void)
 Returns 0 to the child process, child’s PID to parent process
 Child is almost identical to parent:

 Child get an identical (but separate) copy of the parent’s virtual
address space.

 Child gets identical copies of the parent’s open file descriptors
 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

http://csapp.cs.cmu.edu/3e/instructors.html

34

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

fork Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

 Shared open files
 stdout is the same in

both parent and child

http://csapp.cs.cmu.edu/3e/instructors.html

35

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement
 a -> b means a happens before b
 Edges can be labeled with current value of variables
 printf vertices can be labeled with output
 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible
total ordering.
 Total ordering of vertices where all edges point from left to right

http://csapp.cs.cmu.edu/3e/instructors.html

36

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Process Graph Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main for
k

printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

http://csapp.cs.cmu.edu/3e/instructors.html

37

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Interpreting Process Graphs
 Original graph:

 Relabled graph:

child: x=2

main for
k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

d c

e

a b e c f d

Feasible total ordering:

a b e c f d

Infeasible total ordering:

http://csapp.cs.cmu.edu/3e/instructors.html

38

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

fork Example: Two consecutive forks

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printf for
k

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

39

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

fork Example: Nested forks in parent

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printf fork

print
f L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

40

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

fork Example: Nested forks in children

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

print
f L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

41

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Reaping Child Processes
 Idea
 When process terminates, it still consumes system resources

 Examples: Exit status, various OS tables
 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)
 Parent is given exit status information
 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
 So, only need explicit reaping in long-running processes

 e.g., shells and servers

http://csapp.cs.cmu.edu/3e/instructors.html

42

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to be
reaped by init

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

43

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

44

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

wait: Synchronizing with Children
 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates
 Return value is the pid of the child process that terminated
 If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

http://csapp.cs.cmu.edu/3e/instructors.html

45

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printf fork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

http://csapp.cs.cmu.edu/3e/instructors.html

46

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Another wait Example
 If multiple children completed, will take in arbitrary order
 Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
 pid_t pid[N];
 int i, child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 exit(100+i); /* Child */
 }
 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

47

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

waitpid: Waiting for a Specific Process
 pid_t waitpid(pid_t pid, int &status, int options)

 Suspends current process until specific process terminates
 Various options (see textbook)

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

http://csapp.cs.cmu.edu/3e/instructors.html

48

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv
 By convention argv[0]==filename

 …and environment variable list envp
 “name=value” strings (e.g., USER=droh)
 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

http://csapp.cs.cmu.edu/3e/instructors.html

49

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

http://csapp.cs.cmu.edu/3e/instructors.html

50

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

 Executes “/bin/ls –lt /usr/include” in child process
using current environment:

(argc == 3)

http://csapp.cs.cmu.edu/3e/instructors.html

51

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Summary
 Exceptions
 Events that require nonstandard control flow
 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes
 Only one can execute at a time on a single core, though
 Each process appears to have total control of

processor + private memory space

http://csapp.cs.cmu.edu/3e/instructors.html

52

CS 485: Systems Programming

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Summary (cont.)
 Spawning processes
 Call fork
 One call, two returns

 Process completion
 Call exit
 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)
 One call, (normally) no return

http://csapp.cs.cmu.edu/3e/instructors.html

	Exceptional Control Flow:�Exceptions and Processes
	Today
	Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Today
	Exceptions
	Exception Tables
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Today
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Modern) Reality
	Concurrent Processes
	User View of Concurrent Processes
	Context Switching
	Today
	System Call Error Handling
	Error-reporting functions	
	Obtaining Process IDs
	Creating and Terminating Processes
	Terminating Processes	
	Creating Processes
	fork Example
	Modeling fork with Process Graphs
	Process Graph Example
	Interpreting Process Graphs
	fork Example: Two consecutive forks
	fork Example: Nested forks in parent
	fork Example: Nested forks in children
	Reaping Child Processes
	Zombie�Example
	Non-�terminating�Child Example
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	Another wait Example
	waitpid: Waiting for a Specific Process
	execve: Loading and Running Programs
	Structure of �the stack when a new program starts
	execve Example
	Summary
	Summary (cont.)

