
1 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Bits, Bytes, and Integers

CS 485G-006: Systems Programming
Lectures 2 and 3: 15–18 Jan 2016

http://csapp.cs.cmu.edu/3e/instructors.html

2 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed

http://csapp.cs.cmu.edu/3e/instructors.html

3 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Everything is bits

0.0V

0.2V

0.9V

1.1V

0 1 0

http://csapp.cs.cmu.edu/3e/instructors.html

4 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

For example, can count in binary
 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 1 x 8192 + 1 x 4096 + 1 x 2048 + 0 x 1024 + ….
 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

http://csapp.cs.cmu.edu/3e/instructors.html

5 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Bits, bytes, and octets
 Bases
 Decimal – base 10: our number system
 Binary – base 2: all 0s and 1s
 Hexadecimal – base 16

 0-9, A-F
 FA1D37B16 = 0xfa1d37b in C
 4 bits per “digit”

 Byte = 8 bits (usually)
 Machine term: smallest addressable unit of memory
 Binary 000000002 to 111111112

 Decimal: 010 to 25510
 Hexadecimal 0016 to FF16

 Octet = 8 bits (always)
 This is the term used in networking

 How many bytes to store: 10011000111012 = 131D16 = 489310

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

http://csapp.cs.cmu.edu/3e/instructors.html

6 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

How big is “mega”
 Scientists, most engineers say 106
 1,000,000 – decimal megabyte
 Megabyte – MB (what is Mb?)

 Programmers, computer engineers, say 220

 1,048,576 – binary megabyte
 About 5% larger
 “Mebibyte” (MiB) – IEC “standard” term, but not very common

 Networks are based on clock rates in Hz: decimal mega
 One megabit per second = 106 bits per second

 Computer memory is based on powers of 2: binary mega
 A megabyte of memory is 220 bytes.

 Hard drives and SSDs?
 For marketing reasons, use the decimal system (sounds bigger)
 Even though sector sizes, Flash blocks are usually powers of two.

 Kilo, Giga, Tera are similar

http://csapp.cs.cmu.edu/3e/instructors.html

7 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Byte-Oriented Memory Organization

 Programs refer to data by (virtual) address
 Conceptually, envision memory as a very large array of bytes

 In reality, it’s not, but virtual memory makes it look that way
 An address is like an index into that array

 and, a pointer variable stores an address
 System provides private address spaces to each “process”
 So, a program can clobber its own data, but not that of others

 Compiler + OS control the allocation of memory
 OS determines where different programs should be stored
 Compiler determines how data is laid out within a program

• • •

http://csapp.cs.cmu.edu/3e/instructors.html

8 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Machine Words
 Any given computer has a “Word Size”
 Nominal size of integer-valued data
 And/or of addresses

 Until recently, most machines used 32 bits (4 bytes) as word size
 Limits addresses to 4GB (232 bytes)
 Too small for memory-intensive applications

 Increasingly, machines have 64-bit word size
 Potentially, could have 18 EB (exabytes) of addressable memory
 That’s 18.4 X 1018

 x86-64 currently supports 48 bits of address: 256 TB
 Machines still support multiple data formats
 Fractions or multiples of word size
 Always integral number of bytes

http://csapp.cs.cmu.edu/3e/instructors.html

9 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Word-Oriented Memory Organization
 Addresses Specify Byte Locations
 Address of first byte in word
 Addresses of successive words differ

by 4 (32-bit) or 8 (64-bit)

 Beware terminology
 Intel terminology is old-fashioned
 Doubleword = 4 bytes (32-bit)
 Quadword = 8 bytes (64-bit)
 Why? Backwards compatibility.

 “Word” = 2 bytes (16-bit)
 Chips still support 16-bit code
 Even 16+32 bit code, or 32+64 bit,

at the same time!

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

http://csapp.cs.cmu.edu/3e/instructors.html

10 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Example Data Representations

C Data Type Typical 16-
bit μC

Typical 32-
bit

Typical 64-
bit x86-64

char 1 1 1 1

short 2 2 2 2

int 2 4 4 4

long 4 4 8 8

long long − 8 8 8

float −/4 4 4 4

double − 8 8 8

long
double − − − 10/16

pointer 2 4 8 8

http://csapp.cs.cmu.edu/3e/instructors.html

11 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Byte Ordering
 So, how are the bytes within a multi-byte word ordered in

memory?
 Conventions
 Big Endian: Sun, PPC Mac, Internet
 Least significant byte has highest address

 Little Endian: x86, ARM processors running Android, iOS, and
Windows
 Least significant byte has lowest address

http://csapp.cs.cmu.edu/3e/instructors.html

12 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Byte Ordering Example

 Example
 Variable x has 4-byte value of 0x01234567
 Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

http://csapp.cs.cmu.edu/3e/instructors.html

13 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun

6D
3B
00
00

IA32

http://csapp.cs.cmu.edu/3e/instructors.html

14 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Examining Data Representations
 Code to Print Byte Representation of Data
 Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
 size_t i;
 for (i = 0; i < len; i++)
 printf(”%p\t%.2x\n",start+i, start[i]);
 printf("\n");
}

http://csapp.cs.cmu.edu/3e/instructors.html

15 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

show_bytes Execution Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

http://csapp.cs.cmu.edu/3e/instructors.html

16 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

 Address Instruction Code Assembly Rendition
 8048365: 5b pop %ebx
 8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
 804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings
 Disassembly
 Text representation of binary machine code
 Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse: ab 12 00 00

http://csapp.cs.cmu.edu/3e/instructors.html

17 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

char S[6] = "18213";

Representing Strings

 Strings in C
 Represented by array of characters
 Each character encoded in ASCII format
 Standard 7-bit encoding of character set
 Character “0” has code 0x30

– Digit i has code 0x30+i
 String should be null-terminated
 Final character = 0

 Compatibility
 Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

http://csapp.cs.cmu.edu/3e/instructors.html

18 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Strings vs. Buffers

 Strings and buffers can be easy to confuse
 They look alike in C:
 String: char example_string[200];
 Buffer: char example_buffer[200];

 The difference? How you use them.
 String
 Sequence of characters, usually “printable”.
 Uses a NUL character ‘\0’ (all zero bits) to mark the end.
 Meaning NUL bytes are not allowed within the string.

 Buffer
 Not explicitly defined by C, but often used in networking, OS, ...
 An array of bytes.
 Stores any byte, including 0 – so NUL cannot be a terminator.
 Requires an additional variable to store the “current size” (how

many of the bytes contain meaningful data).

http://csapp.cs.cmu.edu/3e/instructors.html

19 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed

http://csapp.cs.cmu.edu/3e/instructors.html

20 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Boolean Algebra
 Developed by George Boole in 19th Century
 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both

http://csapp.cs.cmu.edu/3e/instructors.html

21 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Application of Boolean Algebra
 Applied to Digital Systems by Claude Shannon
 1937 MIT Master’s Thesis
 Reason about networks of relay switches
 Encode closed switch as 1, open switch as 0

A

~A

~B

B

Connection when

 A&~B | ~A&B

A&~B

~A&B = A^B

http://csapp.cs.cmu.edu/3e/instructors.html

22 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

General Boolean Algebras
 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

http://csapp.cs.cmu.edu/3e/instructors.html

23 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Example: Representing & Manipulating Sets
 Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

 Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

http://csapp.cs.cmu.edu/3e/instructors.html

24 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

http://csapp.cs.cmu.edu/3e/instructors.html

25 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Contrast: Logic Operations in C
 Contrast to Logical Operators
 &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination (“short-circuiting”)

 Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41 → 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

http://csapp.cs.cmu.edu/3e/instructors.html

26 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Shift Operations
 Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

 Right Shift: x >> y
 Shift bit-vector x right y positions
 Throw away extra bits on right

 Logical shift (unsigned)
 Fill with 0’s on left

 Arithmetic shift (signed)
 Copy most significant bit on left

 Undefined Behavior
 If the shift amount is < 0 or ≥ word size

01100010 Argument x

00010000 << 3

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x

00010000 << 3

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

http://csapp.cs.cmu.edu/3e/instructors.html

27 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed

http://csapp.cs.cmu.edu/3e/instructors.html

28 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Encoding Integers

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

 short int x = 15213;
 short int y = -15213;

B2T (X) = −xw−1 ⋅2
w−1 + xi ⋅2

i

i=0

w−2

∑B2U(X) = xi ⋅2
i

i=0

w−1

∑
Unsigned Two’s Complement

Sign
Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

http://csapp.cs.cmu.edu/3e/instructors.html

29 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Two’s-complement Encoding (Cont.)
 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

http://csapp.cs.cmu.edu/3e/instructors.html

30 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Numeric Ranges
 Unsigned Values
 UMin = 0

000…0
 UMax = 2w – 1

111…1

 Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Other Values
 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

http://csapp.cs.cmu.edu/3e/instructors.html

31 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>
 Declares constants, e.g.,
 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

http://csapp.cs.cmu.edu/3e/instructors.html

32 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Unsigned & Signed Numeric Values
 Equivalence
 Same encodings for nonnegative values

 Uniqueness
 Every bit pattern represents unique

integer value
 Each representable integer has unique

bit encoding

 ⇒ Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned integer
 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp integer

X B2T(X) B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–8 8
–7 9
–6 10
–5 11
–4 12
–3 13
–2 14
–1 15

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

http://csapp.cs.cmu.edu/3e/instructors.html

33 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Signed vs. Unsigned in C
 Literals
 By default are considered to be signed integers
 Unsigned if have “U” as suffix: 0U, 4294967259U

 Types:
 Signed: int, short, long, long long, signed char
 Unsigned: unsigned, unsigned short, unsigned long, …, size_t
 Plain char can be either signed or unsigned on different platforms!

 Casting
 Explicit casting between signed & unsigned keep the bit patterns and

reinterpret (U2T(x) = B2T(U2B(x)), T2U(x) = B2U(T2B(x))
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

http://csapp.cs.cmu.edu/3e/instructors.html

34 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

 0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

http://csapp.cs.cmu.edu/3e/instructors.html

35 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Why Should I Use Unsigned?
 Don’t use without understanding implications
 Easy to make mistakes

unsigned i;
for (i = cnt-2; i >= 0; i--)
 a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
 . . .

http://csapp.cs.cmu.edu/3e/instructors.html

36 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

CS 485: Systems Programming

Why Should I Use Unsigned? (cont.)
 Do Use When Performing Modular Arithmetic
 Multiprecision arithmetic

 Do Use When Using Bits to Represent Sets
 Logical right shift, no sign extension

http://csapp.cs.cmu.edu/3e/instructors.html

	Bits, Bytes, and Integers
	Overview: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Bits, bytes, and octets
	How big is “mega”
	Byte-Oriented Memory Organization
	Machine Words
	Word-Oriented Memory Organization
	Example Data Representations
	Byte Ordering
	Byte Ordering Example
	Representing Integers
	Examining Data Representations
	show_bytes Execution Example
	Reading Byte-Reversed Listings
	Representing Strings
	Strings vs. Buffers
	Overview: Bits, Bytes, and Integers
	Boolean Algebra
	Application of Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Overview: Bits, Bytes, and Integers
	Encoding Integers
	Two’s-complement Encoding (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Signed vs. Unsigned in C
	Casting Surprises
	Why Should I Use Unsigned?
	Why Should I Use Unsigned? (cont.)

