CS 485: Systems Programming

Bits, Bytes, and Integers
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Lectures 2 and 3: 15-18 Jan 2016

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 1



http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

m Representing information as bits
|
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CS 485: Systems Programming

Everything is bits

1.1V
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CS 485: Systems Programming

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= 1x8192+1x4096+1x2048 +0x 1024 + ....
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213
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CS 485: Systems Programming

Bits, bytes, and octets

m Bases
= Decimal — base 10: our number system
" Binary —base 2: all 0Os and 1s
= Hexadecimal — base 16
= 0-9, A-F
» FA1D37B,, = @xfald37bin C
= 4 bits per “digit”

m Byte = 8 bits (usually)
" Machine term: smallest addressable unit of memory

Bomﬂmmhwmpo
o
|_\
o
=

T M| O] O | 3> O] 00| N[ O] U1 B W[N] = O

" Binary 000000002t0 11111111> 11 | 1011
= Decimal: 010 to 25510 %g ﬂg(l)
= Hexadecimal 0016 to FFis 1411110
m Octet = 8 bits (always) 1511111

® This is the term used in networking

s How many bytes to store: 1001100011101, = 131D, = 4893,
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CS 485: Systems Programming

How big is “mega”

m Scientists, most engineers say 10°
= 1,000,000 — decimal megabyte
= Megabyte — MB (what is Mb?)
m Programmers, computer engineers, say 22°
= 1,048,576 — binary megabyte
= About 5% larger
= “Mebibyte” (MiB) — IEC “standard” term, but not very common
m Networks are based on clock rates in Hz: decimal mega
" One megabit per second = 10° bits per second
m Computer memory is based on powers of 2: binary mega
= A megabyte of memory is 22° bytes.

m Hard drives and SSDs?

"= For marketing reasons, use the decimal system (sounds bigger)
= Even though sector sizes, Flash blocks are usually powers of two.

m Kilo, Giga, Tera are similar
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CS 485: Systems Programming

Byte-Oriented Memory Organization

m Programs refer to data by (virtual) address
= Conceptually, envision memory as a very large array of bytes
= In reality, it’s not, but virtual memory makes it look that way
® An address is like an index into that array
= and, a pointer variable stores an address
m System provides private address spaces to each “process”
= S0, a program can clobber its own data, but not that of others

m Compiler + OS control the allocation of memory
= (OS determines where different programs should be stored
= Compiler determines how data is laid out within a program
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Machine Words

m Any given computer has a “Word Size”

®" Nominal size of integer-valued data
= And/or of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)
= Too small for memory-intensive applications

" Increasingly, machines have 64-bit word size

= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 108
= x86-64 currently supports 48 bits of address: 256 TB

= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes
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CS 485: Systems Programming

Word-Oriented Memory Organization

32-bit  64-bit Bvtes  Addr
m Addresses Specify Byte Locations  Words Words '
= Address of first byte in word 0000
- - Addr 0001
= Addresses of successive words differ -
by 4 (32-bit) or 8 (64-bit) 0000 0002
m Beware terminology 0000 0004
= |ntel terminology is old-fashioned Addr 0005
= Doubleword = 4 bytes (32-bit) 0004 0006
= Quadword = 8 bytes (64-bit) 0007
= Why? Backwards compatibility. Addr 8882
= Chips still support 16-bit code A(idr 0011
- Even 16+32 bit code, or 32+64 bit, 0008 0012
at the same time! Addr 0013
0012 0014
0015
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CS 485: Systems Programming

Example Data Representations

TVplcal 16- Typlcal 32- Typ|cal 64-

char

short 2 2 2 2
int 2 4 4 4
flong 4 4 8 8
flong long = 8 8 8
float -/4 4 4 4
double - 8 8 8
double - - - 0
pointer 2 4 8 8
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CS 485: Systems Programming

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address
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CS 485: Systems Programming

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 Ox102 0x103
01 23 45 67

Little Endian 0x100 Ox101 O0x102 0x103
67 45 23 01
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CS 485: Systems Programming

Decimal: 15213
Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
Int A = 15213; long int C = 15213;
IA32, x86-64  Sun
IA32 X86-64 Sun
6D
3B
00
00

int B = -15213;
IA32, x86-64 Sun

T~

Two’s complement representation
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Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes(pointer start, size t len){
size t 1;
for (i = 0; 1 < len; i++)
printfC’%p\th.2x\n",start+i, start[i]);
printf('\n");

}

Printf directives:
%p:  Print pointer
00X Print Hexadecimal
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show_bytes Execution Example

INt a = 15213;
printf(’'int a = 15213;\n"");
show bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

Int a = 15213;

OX7FfFfb7f71dbc 6d
Ox7fffb7f71dbd 3b
OX7fffb7f71dbe 00
OX7TFfb7F71dbf 00
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Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code

" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, %ebx

804836¢C: 83 bb 28 OOT()O 00 00 cmpl §6x0,0x28(%ebx)
m Deciphering Numbers /

= Value: Ox12ab

= Pad to 32 bits: 0x000012ab

= Splitinto bytes: 000012 ab

® Reverse: ab 12 00 00
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Representing Strings

char S[6] = "18213";
m StringsinC

= Represented by array of characters

= Each character encoded in ASCIl format IA32 Sun

= Standard 7-bit encoding of character set 31 e o 31

= Character “0” has code 0x30 38 | > 38

— Digit /i has code Ox30+i 32 |« o 32

= String should be null-terminated 31 | S 31

= Final character=0 33 | S 33

m Compatibility 00 |k J 00

= Byte ordering not an issue
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Strings vs. Buffers

m Strings and buffers can be easy to confuse

m They look alike in C:
= String: char example string[200];
= Buffer: char example buffer[200];
m The difference? How you use them.

m String
= Sequence of characters, usually “printable”.
= Uses a NUL character ‘\0’ (all zero bits) to mark the end.
= Meaning NUL bytes are not allowed within the string.
m Buffer
= Not explicitly defined by C, but often used in networking, OS, ...
= An array of bytes.
= Stores any byte, including 0 —so NUL cannot be a terminator.
= Requires an additional variable to store the “current size” (how
many of the bytes contain meaningful data).
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Overview: Bits, Bytes, and Integers

|
m Bit-level manipulations
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Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or

= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|0 1
110 1 111 1

Not Exclusive-Or (Xor)

= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO T
0|1 0|10 1
110 111 O
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Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as O

A&~B |
—J Connection when
A -~B
o—< >0 pg-B | ~A&B
~A __ B
~A&B = A"B
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General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 ] 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply
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Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}
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Bit-Level Operations in C

m Operations &, |, ~, " Availablein C

= Apply to any “integral” data type
= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)

~0x41 — OxBE

= ~010000012 — 101111102

~0x00 — OxFF

= ~000000002 — 11111111

0x69 & Ox55 — 0x41

= 011010012 & 010101012 — 010000012
0x69 | 0x55 — 0x7D

= 011010012 | 01010101> — 01111101>
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Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, ],
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination (“short-circuiting”)

m Examples (char data type)
= 10x41 — 0x00

I0x00 — 0Ox01

= 1I0x41 — 0x01

= 0Ox69 && 0x55 — 0x01
= 0x69 || 0x55 — 0x01
" p&&*p (avoids null pointer access)
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Shift Operations

m Left Shift: X << vy Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: X >> vy
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 2|1 00011000

= Throw away extra bits on right Argument x| 10100010

= Logical shift (unsigned) << 3 00010000

= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift (signed)

= Copy most significant bit on left

Arith. >> 21 11101000

m Undefined Behavior
= |f the shift amount is < 0 or > word size
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Overview: Bits, Bytes, and Integers

m Integers
= Representation: unsigned and signed
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Encoding Integers

Unsigned Two’s Complement
w-1 ) w—2 .
B2UX) = Y x-2' B2T(X) = —Xuq-2" 4+ x-2'
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y 15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative
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Two’s-complement Encoding (Cont.)
X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213
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Numeric Ranges

m Unsigned Values

m Two’s Complement Values

* UMin =0 = TMin = 2wl
000...0 100...0
[ — w_
UMax "1 " TMax = 271 —-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535( FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMIN -32768| 80 00| 10000000 00000000
-1 -1 FF FF}] 11111111 11111111
o) 0o OO0 00| 00000000 00000000
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Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific
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Unsighed & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative values
- : = m Uniqueness
0010 2 2 q
0011 3 3 = Every bit pattern represents unique
0100 4 4 integer value
0101 > 5 = Each representable integer has unique
0110 6 6 bit encoding
0111 7 7 .

O n Invert Mappin

3000 3 = = Ca ert Mappings
1001 9 -7 " U2B(x) = B2U"(x)
1010 10 —6 = Bit pattern for unsigned integer
1011 11 = = T2B(x) = B2T-!(x)
O = = Bit pattern for two’ int
1101 3 3 it pattern for two’s comp integer
1110 14 -2
1111 15 -1
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Signed vs. Unsigned in C

m Literals

= By default are considered to be signed integers
= Unsigned if have “U” as suffix: OU, 4294967259U

m Types:
= Signed: int, short, long, long long, signed char
= Unsigned: unsigned, unsigned short, unsigned long, ..., size_t
= Plain char can be either signed or unsigned on different platforms!

m Casting
= Explicit casting between signed & unsigned keep the bit patterns and
reinterpret (U2T(x) = B2T(U2B(x)), T2U(x) = B2U(T2B(x))
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tX = ux;
uy = ty;
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Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

-2

-2

2147483648U

(int) 2147483648U

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Relation

<

v N V V AN V V

TMAX = 2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned

signed
34
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Why Should | Use Unsigned?

m Don’t use without understanding implications

= Easy to make mistakes
unsigned 1;
for (1 = cnt-2; 1 >= 0; 1--)
alr] += a[i+1];

= Can be very subtle
#define DELTA sizeof(int)
int 1;
for (i = CNT; 1-DELTA >= 0O; 1-= DELTA)

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 35
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Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
" Logical right shift, no sign extension
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