CS 485: Systems Programming

Bits, Bytes, and Integers

CS 485G-006: Systems Programming
Lectures 2 and 3: 15-18 Jan 2016

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 1

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

m Representing information as bits
|

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 2

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Everything is bits

1.1V
0.9V

0.2V
0.0V

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 3

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= 1x8192+1x4096+1x2048 +0x 1024 +
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 4

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Bits, bytes, and octets

m Bases
= Decimal — base 10: our number system
" Binary —base 2: all 0Os and 1s
= Hexadecimal — base 16
= 0-9, A-F
» FA1D37B,, = @xfald37bin C
= 4 bits per “digit”

m Byte = 8 bits (usually)
" Machine term: smallest addressable unit of memory

Bomﬂmmhwmpo
o
|_\
o
=

T M| O] O | 3> O] 00| N[O] U1 B W[N] = O

" Binary 000000002t0 11111111> 11 | 1011
= Decimal: 010 to 25510 %g ﬂg(l)
= Hexadecimal 0016 to FFis 1411110
m Octet = 8 bits (always) 1511111

® This is the term used in networking

s How many bytes to store: 1001100011101, = 131D, = 4893,

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 5

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

How big is “mega”

m Scientists, most engineers say 10°
= 1,000,000 — decimal megabyte
= Megabyte — MB (what is Mb?)
m Programmers, computer engineers, say 22°
= 1,048,576 — binary megabyte
= About 5% larger
= “Mebibyte” (MiB) — IEC “standard” term, but not very common
m Networks are based on clock rates in Hz: decimal mega
" One megabit per second = 10° bits per second
m Computer memory is based on powers of 2: binary mega
= A megabyte of memory is 22° bytes.

m Hard drives and SSDs?

"= For marketing reasons, use the decimal system (sounds bigger)
= Even though sector sizes, Flash blocks are usually powers of two.

m Kilo, Giga, Tera are similar

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 6

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Byte-Oriented Memory Organization

m Programs refer to data by (virtual) address
= Conceptually, envision memory as a very large array of bytes
= In reality, it’s not, but virtual memory makes it look that way
® An address is like an index into that array
= and, a pointer variable stores an address
m System provides private address spaces to each “process”
= S0, a program can clobber its own data, but not that of others

m Compiler + OS control the allocation of memory
= (OS determines where different programs should be stored
= Compiler determines how data is laid out within a program

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 7

http://csapp.cs.cmu.edu/3e/instructors.html

Machine Words

m Any given computer has a “Word Size”

®" Nominal size of integer-valued data
= And/or of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)
= Too small for memory-intensive applications

" Increasingly, machines have 64-bit word size

= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 108
= x86-64 currently supports 48 bits of address: 256 TB

= Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 8

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Word-Oriented Memory Organization

32-bit 64-bit Bvtes Addr
m Addresses Specify Byte Locations Words Words '
= Address of first byte in word 0000
- - Addr 0001
= Addresses of successive words differ -
by 4 (32-bit) or 8 (64-bit) 0000 0002
m Beware terminology 0000 0004
= |ntel terminology is old-fashioned Addr 0005
= Doubleword = 4 bytes (32-bit) 0004 0006
= Quadword = 8 bytes (64-bit) 0007
= Why? Backwards compatibility. Addr 8882
= Chips still support 16-bit code A(idr 0011
- Even 16+32 bit code, or 32+64 bit, 0008 0012
at the same time! Addr 0013
0012 0014
0015

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 9

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Example Data Representations

TVplcal 16- Typlcal 32- Typ|cal 64-

char

short 2 2 2 2
int 2 4 4 4
flong 4 4 8 8
flong long = 8 8 8
float -/4 4 4 4
double - 8 8 8
double - - - 0
pointer 2 4 8 8

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 10

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 11

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 Ox102 0x103
01 23 45 67

Little Endian 0x100 Ox101 O0x102 0x103
67 45 23 01

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 12

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Decimal: 15213
Representing Integers |sinary: 0011 1011 0110 1101

Hex: 3 B 6 D
Int A = 15213; long int C = 15213;
IA32, x86-64 Sun
IA32 X86-64 Sun
6D
3B
00
00

int B = -15213;
IA32, x86-64 Sun

T~

Two’s complement representation

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 13

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes(pointer start, size t len){
size t 1;
for (i = 0; 1 < len; i++)
printfC’%p\th.2x\n",start+i, start[i]);
printf('\n");

}

Printf directives:
%p: Print pointer
00X Print Hexadecimal

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 14

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

show_bytes Execution Example

INt a = 15213;
printf(’'int a = 15213;\n"");
show bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

Int a = 15213;

OX7FfFfb7f71dbc 6d
Ox7fffb7f71dbd 3b
OX7fffb7f71dbe 00
OX7TFfb7F71dbf 00

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 15

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code

" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, %ebx

804836¢C: 83 bb 28 OOT()O 00 00 cmpl §6x0,0x28(%ebx)
m Deciphering Numbers /

= Value: Ox12ab

= Pad to 32 bits: 0x000012ab

= Splitinto bytes: 000012 ab

® Reverse: ab 12 00 00

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 16

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Representing Strings

char S[6] = "18213";
m StringsinC

= Represented by array of characters

= Each character encoded in ASCIl format IA32 Sun

= Standard 7-bit encoding of character set 31 e o 31

= Character “0” has code 0x30 38 | > 38

— Digit /i has code Ox30+i 32 |« o 32

= String should be null-terminated 31 | S 31

= Final character=0 33 | S 33

m Compatibility 00 |k J 00

= Byte ordering not an issue

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 17

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Strings vs. Buffers

m Strings and buffers can be easy to confuse

m They look alike in C:
= String: char example string[200];
= Buffer: char example buffer[200];
m The difference? How you use them.

m String
= Sequence of characters, usually “printable”.
= Uses a NUL character ‘\0’ (all zero bits) to mark the end.
= Meaning NUL bytes are not allowed within the string.
m Buffer
= Not explicitly defined by C, but often used in networking, OS, ...
= An array of bytes.
= Stores any byte, including 0 —so NUL cannot be a terminator.
= Requires an additional variable to store the “current size” (how
many of the bytes contain meaningful data).

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 18

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

|
m Bit-level manipulations

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 19

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or

= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|0 1
110 1 111 1

Not Exclusive-Or (Xor)

= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO T
0|1 0|10 1
110 111 O

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 20

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as O

A&~B |
—J Connection when
A -~B
o—< >0 pg-B | ~A&B
~A __ B
~A&B = A"B

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 21

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101] 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 22

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 23

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Bit-Level Operations in C

m Operations &, |, ~, " Availablein C

= Apply to any “integral” data type
= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)

~0x41 — OxBE

= ~010000012 — 101111102

~0x00 — OxFF

= ~000000002 — 11111111

0x69 & Ox55 — 0x41

= 011010012 & 010101012 — 010000012
0x69 | 0x55 — 0x7D

= 011010012 | 01010101> — 01111101>

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 24

http://csapp.cs.cmu.edu/3e/instructors.html

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&,],
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination (“short-circuiting”)

m Examples (char data type)
= 10x41 — 0x00

I0x00 — 0Ox01

= 1I0x41 — 0x01

= 0Ox69 && 0x55 — 0x01
= 0x69 || 0x55 — 0x01
" p&&*p (avoids null pointer access)

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 25

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Shift Operations

m Left Shift: X << vy Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: X >> vy
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 2|1 00011000

= Throw away extra bits on right Argument x| 10100010

= Logical shift (unsigned) << 3 00010000

= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift (signed)

= Copy most significant bit on left

Arith. >> 21 11101000

m Undefined Behavior
= |f the shift amount is < 0 or > word size

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 26

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Overview: Bits, Bytes, and Integers

m Integers
= Representation: unsigned and signed

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 27

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Encoding Integers

Unsigned Two’s Complement
w-1) w—2 .
B2UX) = Y x-2' B2T(X) = —Xuq-2" 4+ x-2'
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y 15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 28

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Two’s-complement Encoding (Cont.)
X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 29

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

* UMin =0 = TMin = 2wl
000...0 100...0
[— w_
UMax "1 " TMax = 271 —-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMIN -32768| 80 00| 10000000 00000000
-1 -1 FF FF}] 11111111 11111111
o) 0o OO0 00| 00000000 00000000

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 30

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 31

http://csapp.cs.cmu.edu/3e/instructors.html

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X) m Equivalence
0000 0 0 = Same encodings for nonnegative values
- : = m Uniqueness
0010 2 2 q
0011 3 3 = Every bit pattern represents unique
0100 4 4 integer value
0101 > 5 = Each representable integer has unique
0110 6 6 bit encoding
0111 7 7 .

O n Invert Mappin

3000 3 = = Ca ert Mappings
1001 9 -7 " U2B(x) = B2U"(x)
1010 10 —6 = Bit pattern for unsigned integer
1011 11 = = T2B(x) = B2T-!(x)
O = = Bit pattern for two’ int
1101 3 3 it pattern for two’s comp integer
1110 14 -2
1111 15 -1

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 32

http://csapp.cs.cmu.edu/3e/instructors.html

Signed vs. Unsigned in C

m Literals

= By default are considered to be signed integers
= Unsigned if have “U” as suffix: OU, 4294967259U

m Types:
= Signed: int, short, long, long long, signed char
= Unsigned: unsigned, unsigned short, unsigned long, ..., size_t
= Plain char can be either signed or unsigned on different platforms!

m Casting
= Explicit casting between signed & unsigned keep the bit patterns and
reinterpret (U2T(x) = B2T(U2B(x)), T2U(x) = B2U(T2B(x))
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tX = ux;
uy = ty;

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 33

http://csapp.cs.cmu.edu/3e/instructors.html

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

-2

-2

2147483648U

(int) 2147483648U

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html)

Relation

<

v N V V AN V V

TMAX = 2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned

signed
34

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Why Should | Use Unsigned?

m Don’t use without understanding implications

= Easy to make mistakes
unsigned 1;
for (1 = cnt-2; 1 >= 0; 1--)
alr] += a[i+1];

= Can be very subtle
#define DELTA sizeof(int)
int 1;
for (i = CNT; 1-DELTA >= 0O; 1-= DELTA)

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 35

http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
" Logical right shift, no sign extension

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html) 36

http://csapp.cs.cmu.edu/3e/instructors.html

	Bits, Bytes, and Integers
	Overview: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Bits, bytes, and octets
	How big is “mega”
	Byte-Oriented Memory Organization
	Machine Words
	Word-Oriented Memory Organization
	Example Data Representations
	Byte Ordering
	Byte Ordering Example
	Representing Integers
	Examining Data Representations
	show_bytes Execution Example
	Reading Byte-Reversed Listings
	Representing Strings
	Strings vs. Buffers
	Overview: Bits, Bytes, and Integers
	Boolean Algebra
	Application of Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Overview: Bits, Bytes, and Integers
	Encoding Integers
	Two’s-complement Encoding (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Signed vs. Unsigned in C
	Casting Surprises
	Why Should I Use Unsigned?
	Why Should I Use Unsigned? (cont.)

