
1

CS 485: Systems Programming

Course Overview

CS 485G-006: Systems Programming
Spring 2016

Instructor:
Neil Moore
Office Hours:
Hardymon 207, Wednesdays 2:00-4:00 PM
Web site:
http://www.cs.uky.edu/~neil/485/
Syllabus:
http://www.cs.uky.edu/~neil/485/syllabus.html

 Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html),

including revisions by J. Griffioen.

http://www.cs.uky.edu/%7Eneil/485/
http://www.cs.uky.edu/%7Eneil/485/syllabus.html
http://csapp.cs.cmu.edu/3e/instructors.html

2

Course Goals

 Develop an understanding of computing systems as a whole.
 Hardware, OS, libraries, windowing systems, network… working together.
 How these components fit together to provide the environment in which

an application executes.
 You should come away with a complete, demystified view of the system.

 Develop better programmers
 Identify causes of problems with your programs.
 Class takes the perspective of a programmer, not an OS (etc.) designer.
 Experience comes from developing/running programs on real machines.
 Abstraction is wonderful, but must be grounded in reality.

 Lay the foundation for upper-level classes
 Many upper-division classes assume the ability to write and debug large

programs that interact with a variety of components of a system (e.g.,
compilers, operating systems, databases, networking, graphics, etc.)

CS 485: Systems Programming

3

Programs are just a small part of the picture

 Even simple programs are part of a larger system
 Rely on several other system components to “run”.
 One source of bugs: incorrect assumptions about those components.
 Or not even having thought about them at all!

 Need an understanding of the system in which you code will run:
 To debug your program.
 To write efficient code.
 To write secure code.

 How a computer system does something is too often “magic” to
programmers. It should not be: computers are not magic!

 What happens when you run a program?

CS 485: Systems Programming

4

Abstraction Is Good, But Don’t Forget Reality

 Most CS and CE courses emphasize abstraction
 Matches how humans think
 Hides complexity so you can think about more at once
 E.g. abstract data types, asymptotic analysis

 But abstractions are only a model of reality
 Especially in the presence of bugs
 Hardware has limitations not reflected in the model.
 Hiding implementation details makes it harder to know how things interact

with other components of the system.
 Hiding complexity can lead to inefficiency.

 What can go wrong?

CS 485: Systems Programming

5

Pure math vs computer math:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Floats: Yes!

 Ints:
 40000 * 40000 → 1600000000
 50000 * 50000 → ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Ints: Yes!
 Floats:
 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

CS 485: Systems Programming

6

Code Security Example
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

CS 485: Systems Programming

7

Typical Usage

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf(“%s\n”, mybuf);
}

CS 485: Systems Programming

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

8

Malicious Usage

CS 485: Systems Programming

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

9

High-Level Languages Map to Assembly

 Chances are, you’ll never write programs in assembly
 Compilers are much better and more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs
 High-level language models break down

 Tuning program performance
 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

CS 485: Systems Programming

10

Memory Referencing Errors
 C and C++ do not provide any memory protection
 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free (or new/delete)
 C++11 can help avoid some problems, but not all.

 Can lead to nasty bugs
 Whether or not the bug has any effect depends on system and compiler
 Action at a distance
 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby or ML
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

CS 485: Systems Programming

11

Memory Referencing Bug Example
double fun(int i)
{
 volatile int a[2];
 volatile double d[1] = {3.14};
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) → 3.14
fun(1) → 3.14
fun(4) → 3.1399998664856
fun(5) → 2.00000061035156
fun(8) → 3.14, then segmentation fault

 Result depends heavily on architecture and even compiler flags

CS 485: Systems Programming

12

Memory Referencing Bug Example

Location accessed by
fun(i)

Explanation: Saved State 8
… 6-7
d[0] (part 2) 5
d[0] (part 1) 4
… 2-3
a[1] 1
a[0] 0

CS 485: Systems Programming

double fun(int i)
{
 volatile int a[2];
 volatile double d[1] = {3.14};
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

13

Memory System Performance Example

 Hierarchical memory organization
 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

~26 times slower
on the class VMs!

CS 485: Systems Programming

14

The Memory Mountain

64
M

8M

1M 12
8K 16

K 2K

0

1000

2000

3000

4000

5000

6000

7000

s1 s3 s5 s7 s9

s1
1

s1
3

s1
5

s3
2

Size (bytes)

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

CS 485: Systems Programming

15

Policies etc.
 Assignments/Grading
 Programming assignments: 50% (45% for grad students)

 Approximately every 3 weeks.
 In-class labs: 5%

 Generally on Fridays
 Bring your laptop on Friday! (required)

 Midterm exam: 20%
 Friday, 4 March, in class

 Final exam: 25%
 Monday, 2 May, 10:30am

 Grad students: research paper: 5%
 Decide on a topic with me.
 More details around midterm.

 Standard grading scale: 90%+ A, 80%+ B, 70%+ C, 60%+ D, else E

CS 485: Systems Programming

16

Policies etc.
 Academic Integrity
 Submitted work must be your own.
 Can discuss assignments with others, not share or show code.
 If you get ideas, code snippets, etc. from somewhere, cite it!

 Somewhere prominent in your documentation.
 That includes fellow students, tutors, etc.
 “Jane Doe, personal communication, March 1 2016.”

 When in doubt, ask me!

 Attendance
 Not taken most days, but still expected.
 Required on lab and exam days (most Fridays)
 See syllabus for make-up and absence policy.

 Late policy (if no excused absence)
 -10% of the total per business day, no credit after 5 days.

CS 485: Systems Programming

	Slide Number 1
	Course Goals
	Programs are just a small part of the picture
	Abstraction Is Good, But Don’t Forget Reality
	Pure math vs computer math: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	High-Level Languages Map to Assembly
	Memory Referencing Errors
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory System Performance Example
	The Memory Mountain
	Policies etc.
	Policies etc.

