CS 485: Systems Programming

Course Overview

CS 485G-006: Systems Programming
Spring 2016

Instructor:

Neil Moore

Office Hours:

Hardymon 207, Wednesdays 2:00-4:00 PM
Web site:

http://www.cs.uky.edu/~neil/485/

Syllabus:
http://www.cs.uky.edu/~neil/485/syllabus.html

Adapted from slides by R. Bryant and D. O’Hallaron (http://csapp.cs.cmu.edu/3e/instructors.html),
including revisions by J. Griffioen.



http://www.cs.uky.edu/%7Eneil/485/
http://www.cs.uky.edu/%7Eneil/485/syllabus.html
http://csapp.cs.cmu.edu/3e/instructors.html

CS 485: Systems Programming

Course Goals

m Develop an understanding of computing systems as a whole.
= Hardware, OS, libraries, windowing systems, network... working together.

" How these components fit together to provide the environment in which
an application executes.

" You should come away with a complete, demystified view of the system.

m Develop better programmers

Identify causes of problems with your programs.

Class takes the perspective of a programmer, not an OS (etc.) designer.

Experience comes from developing/running programs on real machines.

Abstraction is wonderful, but must be grounded in reality.

m Lay the foundation for upper-level classes

= Many upper-division classes assume the ability to write and debug large
programs that interact with a variety of components of a system (e.g.,
compilers, operating systems, databases, networking, graphics, etc.)



CS 485: Systems Programming

Programs are just a small part of the picture

m Even simple programs are part of a larger system
= Rely on several other system components to “run”.
= One source of bugs: incorrect assumptions about those components.
= Or not even having thought about them at all!

m Need an understanding of the system in which you code will run:

" To debug your program.
= To write efficient code.
= To write secure code.

m How a computer system does something is too often “magic” to
programmers. It should not be: computers are not magic!

m What happens when you run a program?



CS 485: Systems Programming

Abstraction Is Good, But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Matches how humans think
= Hides complexity so you can think about more at once
= E.g. abstract data types, asymptotic analysis

m But abstractions are only a model of reality

Especially in the presence of bugs

Hardware has limitations not reflected in the model.

Hiding implementation details makes it harder to know how things interact
with other components of the system.

Hiding complexity can lead to inefficiency.

m What can go wrong?



CS 485: Systems Programming

Pure math vs computer math:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 > 0?

" Floats: Yes!

" |nts:

losrt 2.

Fo

-

LR 1;306 saa ,;30?4 .=

BanA

5D
e

—

... 32,767...-32,768...

25

i=]

v =32,767... 32,766 ...

BAaag

?/ﬁ“‘“«-

=

= 40000 * 40000 - 1600000000
= 50000 * 50000 - ??

m Example 2:Is (x +y)+z = x+(y +2)?
= Unsigned & Signed Ints: Yes!

" Fl|oats:

= (1e20+-1e20) +3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

Source: xked.com/571 5




CS 485: Systems Programming

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user_dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs



CS 485: Systems Programming

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user_dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user _dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff(Q) {
char mybuf[MSI1ZE];
copy_Tfrom_kernel(mybuf, MSIZE);
printf(““%s\n”’, mybuf);




CS 485: Systems Programming

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user_dest, int maxlen) {

/* Byte count len 1s minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user _dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff() {
char mybuf[MSI1ZE];
copy_from_kernel (mybuf, -MSIZE);




CS 485: Systems Programming

High-Level Languages Map to Assembly

m Chances are, you’ll never write programs in assembly
" Compilers are much better and more patient than you are

m But: Understanding assembly is key to machine-level execution
model

Behavior of programs in presence of bugs

= High-level language models break down

Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency

Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!



CS 485: Systems Programming

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
= |nvalid pointer values
= Abuses of malloc/free (or new/delete)
® C++11 can help avoid some problems, but not all.

m Can lead to nasty bugs
= Whether or not the bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

10



CS 485: Systems Programming

Memory Referencing Bug Example

double fun(int 1)
{

volatile Int a[2];

volatile double d[1] = {3.14};

a[i1] = 1073741824 ; /* Possibly out of bounds */
return d[O];

}

fun(0) — 3.14

fun(l) . 3.14

fun(4) . 3.1399998664856

fun(b) . 2.00000061035156

fun(8) - 3.14, then segmentation fault

m Result depends heavily on architecture and even compiler flags

11



CS 485: Systems Programming

Memory Referencing Bug Example

double fun(int 1)
{

volatile Int a[2];

volatile double d[1] = {3.14};

a[i1] = 1073741824 ; /* Possibly out of bounds */
return d[O];

}
Explanation: |Saved State 8 ~
T 6-7
d[0] (part 2) 5
Location accessed by
d[0] (part 1 4
2 ) >fun(i)

a[0] 0 _

12



CS 485: Systems Programming

Memory System Performance Example

void copyij(int src[2048][2048],
int dst[2048][2048])
{
int i,j;
for (i=0; i< 2048; i++)
for (j = 0; ) < 2048; j++)
dst[i](] = srcli]{];
}

void copyji(int src[2048][2048],
int dst[2048][2048])
{
inti,j;

’fvor (=0;]<2048; j++)
~for (i=0;i<2048; i++)
dst[i](] = srcfi][];

}

~26 times slower

m Hierarchical memory organization OIN the class VMs!

m Performance depends on access patterns
® |Including how step through multi-dimensional array




CS 485: Systems Programming

The Memory Mountain 267 Gre

Read throughput (MB/s)

32 KB L1 d-cache
256 KB L2 cache
7000 T/J 8 MB L3 cache

Stride (x8 bytes)

8M

Size (bytes)

L0
i
2}

s32 |
64M {

14



CS 485: Systems Programming

Policies etc.

m Assignments/Grading
" Programming assignments: 50% (45% for grad students)
= Approximately every 3 weeks.

In-class labs: 5%

= Generally on Fridays

= Bring your laptop on Friday! (required)
= Midterm exam: 20%

= Friday, 4 March, in class

" Final exam: 25%

= Monday, 2 May, 10:30am
Grad students: research paper: 5%

= Decide on a topic with me.
= More details around midterm.
Standard grading scale: 90%+ A, 80%+ B, 70%+ C, 60%+ D, else E

15



CS 485: Systems Programming

Policies etc.

m Academic Integrity

= Submitted work must be your own.
= Can discuss assignments with others, not share or show code.
= |f you get ideas, code snippets, etc. from somewhere, cite it!

= Somewhere prominent in your documentation.

= That includes fellow students, tutors, etc.

“Jane Doe, personal communication, March 1 2016.”

= When in doubt, ask me!

m Attendance
= Not taken most days, but still expected.
= Required on lab and exam days (most Fridays)
= See syllabus for make-up and absence policy.

m Late policy (if no excused absence)
= -10% of the total per business day, no credit after 5 days.

16



	Slide Number 1
	Course Goals
	Programs are just a small part of the picture
	Abstraction Is Good, But Don’t Forget Reality
	Pure math vs computer math: �Ints are not Integers, Floats are not Reals
	Code Security Example
	Typical Usage
	Malicious Usage
	High-Level Languages Map to Assembly
	Memory Referencing Errors
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory System Performance Example
	The Memory Mountain
	Policies etc.
	Policies etc.

