
Sun RPC Information 

Al.l RPC Source Code Availability 
The source code for the SunOS 4.0 RPC and XDR Library, referred 
to as RPCSRC 4.0, is a license-free version of Sun's RPC and XDR 
Library. RPCSRC is available free to anyone with access to the 
Internet via an anonymous file-transfer program (ftp) login from 
one of the RPCSRC archive sites. Because the archive sites change 
over time, consult your local system administrator for more informa­
tion on locating an archive site and on using the Internet. You can 
also obtain RPCSRC 4.0 directly from Sun for a nominal processing 
fee. The part numbers are: 

RPC-4.0-X-X-5 RPCSRC on 114-inch tape 
RPC-4.0-X-X-6 RPCSRC on 1I2-inch tape 

In the future, new releases of the RPC and XDR Library will be 
available from RPCSRC archive sites. 

A l.2 RPC Program Numbers 
Program numbers are assigned in groups ofOx20000000 according 
to the following chart: 

Program Number 

OxOOOOOOOO - OxlFFFFFFF 
Ox20000000 - Ox3FFFFFFF 
Ox40000000 - Ox5FFFFFFF 
Ox60000000 - Ox7FFFFFFF 
Ox80000000 - Ox9FFFFFFF 
OxAOOOOOOO - OxBFFFFFFF 
OxCOOOOOOO - OxDFFFFFFF 
OxEOOOOOOO - OxFFFFFFFF 

Description 

Defined by Sun Microsystems 
Defined by User 
Transient 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

Appendix 
1 
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Sun Microsystems administers the first group of numbers, 
which should be identical for all users of Sun's RPC Library, to 
ensure that the global program numbers are unique. If you develop 
an application that might be of general interest, or that might 
become a product, then you should obtain a program number 
from the first range. The second group of numbers is reserved for 
applications specific to you, in that these applications are only 
running on your network. This range is intended primarily for 
developing new programs. If you develop internal distributed ap­
plications, then somebody within your organization should main­
tain these numbers to ensure that two different applications do not 
try to use the same program number. The third group is reserved 
for applications that generate program numbers dynamically, such 
as applications that use Callback RPC. The final groups are re­
served for future use, and should not be used. Blocks of numbers 
are also available for assignment to companies for use internally 
or for assignment to your customers. 

To obtain a unique RPC program number and to optionally 
register a protocol specification, send a request by electronic mail 
to rpc@sun or write to: RPC Administrator, Sun Microsystems, 
2550 Garcia Ave., Mountain View, CA 94043 

Below is a list of the RPC program numbers that have been 
assigned and are public. On Unix systems, these program numbers 
are usually found in the file /etc/rpc. 

portmapper 
rstatd 
msersd 
nfs 
ypserv 
mountd 
ypbind 
walld 
yppasswdd 
etherstatd 
rquotad 
sprayd 
3270-Illapper 
rje_mapper 
selectioILSVC 
database_svc 
rexd 
alis 

100000 portmap sunrpc 
100001 rstat mp perfmeter 
100002 msers 
100003 nfsprog 
100004 ypprog 
100005 mount showmount 
100007 
100008 rwall shutdown 
100009 yppasswd 
100010 etherstat 
100011 rquotaprog quota rquota 
100012 spray 
100013 
100014 
100015 selnsvc 
100016 
100017 rex 
100018 
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sched 100019 
llockmgr 100020 
nlockmgr 100021 
x25.inr 100022 
statmon 100023 
status 100024 
bootparam 100026 
ypupdated 100028 ypupdate 
keyserv 100029 keyserver 
tfsd 100037 
nsed 100038 
nsemntd 100039 
Netlicense 100062 rpc.netlicd 

The following chart lists the currently used authentication 
numbers: 

Authentication Number 

o 
1 
2 
3 

Description 

None 
UNIX-style 
Short hand UNIX-style 
DES 

Sun Microsystems administers the entire range of authentica­
tion numbers. If you develop a new authentication flavor and wish 
to reserve the authentication number, then you should obtain a 
unique authentication number. Blocks of numbers are also avail­
able for assignment to companies. The procedure for obtaining an 
authentication number is the same as for obtaining a program 
number. 



External Data 
Representation Standard: 
Protocol Specification 

A2.1 Status of This Standard 
Note: This appendix specifies a protocol that Sun Microsystems, 
Inc., and others are using. It has been designated RFClO14 by the 
ARPA Network Information Center. 

A2.2 Introduction 
XDR is a standard for the description and encoding of data. It is 
useful for transferring data between different computer architec­
tures, and has been used to communicate data between such di­
verse machines as the Sun Workstation, VAX, IBM-PC, and Cray. 
XDR fits into the ISO presentation layer, and is roughly analogous 
in purpose to X.409, ISO Abstract Syntax Notation. The major 
difference between these two is that XDR uses implicit typing, 
while X.409 uses explicit typing. 

XDR uses a language to describe data formats. The language 
can be used only to describe data; it is not a programming language. 
This language allows one to describe intricate data formats in a 
concise manner. The alternative of using graphical representations 
(itself an informal language) quickly becomes incomprehensible 
when faced with complexity. The XDR language itself is similar 
to the C language [1], just as Courier [4] is similar to Mesa. Proto­
cols such as Sun RPC (Remote Procedure Call) and the NFS (Net­
work File System) use XDR to describe the format of their data. 

The XDR standard makes the following assumption: that 
bytes (or octets) are portable, where a byte is defined to be 8 bits 
of data. A given hardware device should encode the bytes onto the 
various media in such a way that other hardware devices may 

Appendix 
2 



262 APPENDIX 2 External Data Representation Standard: Protocol Specification 

decode the bytes without loss of meaning. For example, the Ether­
net standard suggests that bytes be encoded in "little-endian" style 
[2], or least significant bit first. 

Basic Block Size 
The representation of all items requires a multiple of four 

bytes (or 32 bits) of data. The bytes are numbered 0 through n -
1. The bytes are read or written to some byte stream such that byte 
m always precedes byte m + 1. If the n bytes needed to contain 
the data are not a multiple of four, then the n bytes are followed 
by enough (0 to 3) residual zero bytes, r, to make the total byte 
count a multiple of 4. 

We include the familiar graphic box notation for illustration 
and comparison. In most illustrations, each box (delimited by a 
plus sign at the 4 corners and vertical bars and dashes) depicts a 
byte. Ellipses ( ... ) between boxes show zero or more additional 
bytes where required. 

A Block 

+-------+-------+ ... +-------+-------+ ... +-------+ 

1 byte 0 1 byte 1 1 ... 1 byte n - 1 1 o 1 ... 1 o 
+-------+-------+ ... +-------+-------+ ... +-------+ 

1 < - - - - - - - - - - n bytes - - - - - - - - - - > 1 < - - - - - - r bytes - - - - - - > 1 

1<------------ n+r(where(n+r)mod4 = 0) ------------>1 

A2.3 XDR Doto Types 
Each of the sections that follow describes a data type defined in 
the XDR standard, shows how it is declared in the language, and 
includes a graphic illustration of its encoding. 

For each data type in the language we show a general para­
digm declaration. Note that angle brackets ( and») denote variable 
length sequences of data and square brackets ([ and]) denote fixed­
length sequences of data. "n", "m" and "r" denote integers. For 
the full language specification and more formal definitions of terms 
such as "identifier" and "declaration", refer to The XDR Language 
Specification presented later. 

For some data types, more specific examples are included. A 
more extensive example of a data description is in An Example of 
an XDR Data Description that follows. 
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Integer 
An XDR signed integer is a 32-bit datum that encodes an 

integer in the range [-2147483648,2147483647]. The integer is 
represented in two's complement notation. The most and least 
significant bytes are 0 and 3, respectively. Integers are declared as 
follows: 

Integer 

(MSB) (LSB) 
+------+------+------+------+ 

I byte 0 I byte 1 I byte 2 I byte 3 I 
+------+------+------+------+ 
< - - - - - - - - - - - 32 bits - - - - - - - - - - - > 

Unsigned Integer 
An XDR unsigned integer is a 32-bit datum that encodes a 

nonnegative integer in the range [0,4294967295]. It is represented 
by an unsigned binary number with most and least significant 
bytes of 0 and 3, respectively. An unsigned integer is declared as 
follows: 

Unsigned Integer 

(MSB) (LSB) 
+------+------+------+------+ 

I byte 0 I byte 1 I byte 2 I byte 3 I 
+------+------+------+------+ 
< - - - - - - - - - - - 32 bits - - - - - - - - - - - > 

Enumeration 

Enumerations have the same representation as signed inte­
gers. Enumerations are handy for describing subsets of the inte­
gers. Enumerated data is declared as follows: 

enum { name-identifier = constant, ... } identifier; 

For example, the three colors red, yellow, and blue could be de­
scribed by an enumerated type: 

enum { RED = 2, YELLOW = 3, BLUE = 5} colors; 
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It is an error to encode as an enum any other integer than those 
that have been given assignments in the enum declaration. 

Boolean 
Booleans are important enough and occur frequently enough 

to warrant their own explicit type in the standard. Booleans are 
declared as follows: 

bool identifier; 

This is equivalent to: 

enum {FALSE = 0, TRUE = I} identifier; 

Hyper Integer and Unsigned Hyper 
Integer 

The standard also defines 64-bit (8-byte) numbers called 
hyper integer and unsigned hyper integer. Their representations 
are the obvious extensions of integer and unsigned integer defined 
above. They are represented in two's complement notation. The 
most and least significant bytes are 0 and 7, respectively. Their 
declarations: 

Hyper Integer 
Unsigned Hyper Integer 

(MSB) (LSB) 
+------+------+------+------+------+------+------+------+ 

I byte 0 I byte 1 I byte 2 I byte 3 I byte 4 I byte 5 I byte 6 I byte 7 I 
+------+------+------+------+------+------+------+------+ 
< - - - - - - - - - - - - - - - - - - - - - - - - - 64 bits - - - - - - - - - - - - - - - - - - - - - - - - - > 

Floating-point 
The standard defines the floating-point data type "float" (32 

bits or 4 bytes). The encoding used is the IEEE standard for 
normalized single-precision floating-point numbers [3]. Three 
fields describe the single-precision floating-point number. The 
first field, which takes ((uses?)) one bit, refers to the sign of the 
number; values 0 and 1 represent positive and negative, respec­
tively. The second field describes the exponent of the number to 
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the base 2, with the exponent biased by 127. Eight bits are devoted 
to the second field. The third field refers to the fractional part of 
the number's mantissa with base 2; 23 bits are devoted to this field. 

Therefore, the floating-point number is described by: 

(-1)**8 * 2**(E-Bias) * l.F 

It is declared as follows: 

Single-Precision Floating-Point 

+------+------+------+------+ 

1 byte 0 1 byte 1 1 byte 2 1 byte 3 1 
81 ElF 1 
+------+------+------+------+ 
11<- 8 ->1< ----- 23 bits ----- >1 
< ---------- 32 bits ---------- > 

Just as the most and least significant bytes of a number are 0 
and 3, the most and least significant bits of a single-precision 
floating-point number are 0 and 31. The beginning bit (and most 
significant bit) offsets of S, E, and F are 0, 1, and 9, respectively. 
Note that these numbers refer to the mathematical positions of the 
bits, and NOT to their actual physical locations (which vary from 
medium to medium). 

The IEEE specifications should be consulted concerning the 
encoding for signed zero, signed infinity (overflow), and de norma­
lized numbers (underflow) [3]. According to IEEE specifications, 
the "NaN" (not a number) is system dependent and should not be 
used externally. 

Double-precision Floating-point 
The standard defines the encoding for the double-precision 

floating-point data type "double" (64 bits orB bytes). The encoding 
used is the IEEE standard for normalized double-precision float­
ing-point numbers [3]. The standard encodes the following three 
fields, which describe the double-precision floating-point number. 
The first field, which takes one bit, refers to the sign of the number; 
values 0 and 1 represent positive and negative, respectively. The 
second field describes the exponent of the number to the base 2, 
with the exponent biased by 1023. Eleven bits are devoted to the 
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second field. The third field refers to the fractional part of the 
number's mantissa with base 2; 52 bits are devoted to this field. 
Therefore, the floating-point number is described by: 

(-l)**S * 2**(E-Bias) * l.F 

It is declared as follows: 

Double-Precision Floating-Point 

+------+------+------+------+------+------+------+------+ 

I byte 0 I byte 1 I byte 2 I byte 3 I byte 4 I byte 5 I byte 6 I byte 7 I 
S I ElF I 
+------+------+------+------+------+------+------+------+ 
1 1<- 11 -> I < - - - - - - - - - - - - - - - - - - - 52 bits - - - - - - - - - - - - - - - - - - - > I 
< - - - - - - - - - - - - - - - - - - - - - - - - 64 bits - - - - - - - - - - - - - - - - - - - - - - - - > 

Just as the most and least significant bytes of a number are 0 
and 3, the most and least significant bits of a double-precision 
floating-point number are 0 and 63. The beginning bit (and most 
significant bit) offsets ofS, E ,and Fare 0,1, and 12, respectively. 
Note that these numbers refer to the mathematical positions of the 
bits, and NOT to their actual physical locations (which vary from 
medium to medium). 

The IEEE specifications should be consulted concerning the 
encoding for signed zero, signed infinity (overflow), and de norma­
lized numbers (underflow) [3]. According to IEEE specifications, 
the "NaN" (not a number) is system dependent and should not be 
used externally. 

Fixed-length Opaque Data 
At times, fixed-length uninterpreted data needs to be passed 

among machines. This data is called "opaque" and is declared as 
follows: 

opaque identifier[n]; 

where the constant n is the (static) number of bytes necessary to 
contain the opaque data. If n is not a multiple of four, then the n 
bytes are followed by enough (0 to 3) residual zero bytes, r, to make 
the total byte count of the opaque object a multiple of four. 
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Fixed-Length Opaque 

o 1 
+-------+-------+ ... +-------+-------+ ... +-------+ 

I byte 0 I byte 1 I ... I byte 0 -11 o I ... I o 
+-------+-------+ ... +-------+-------+ ... +-------+ 
I < - - - - - - - - - - 0 bytes - - - - - - - - - - > I < - - - - - - r bytes - - - - - - > I 
1<------------ 0+r(where(0+r)mod4 = 0) ------------>1 

Variable-length Opaque Data 
The standard also provides for variable-length (counted) 

opaque data, defined as a sequence of n (numbered 0 through n -
1) arbitrary bytes to be the number n encoded as an unsigned 
integer (as described below), and followed by the n bytes of the 
sequence. 

Byte m of the sequence always precedes byte m + 1 of the 
sequence, and byte 0 of the sequence always follows the se­
quence's length (count). Enough (0 to 3) residual zero bytes, r, to 
make the total byte count a multiple of four. Variable-length 
opaque data is declared in the following way: 

opaque ideotifier(m}; 

or 

opaque ideotifier(); 

The constant m denotes an upper bound of the number of bytes 
that the sequence may contain. If m is not specified, as in the 
second declaration, it is assumed to be (2**32) - 1, the maximum 
length. The constant m would normally be found in a protocol 
specification. For example, a filing protocol may state that the 
maximum data transfer size is 8192 bytes, as follows: 

opaque filedata(8192}; 

This can be illustrated as follows: 

Variable-Length Opaque 

o 1 2 3 4 5 
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+ 

leogth 0 I byte 0 I byte 1 I ... I 0 - 1 I 0 I· .. I 0 
+----+----+----+----+-----+-----+ ... +-----+-----+ '" +-----+ 
1<------4 bytes------> I <-------0 bytes-------> I <---- r bytes ----> I 
1<--------------- 4+0+r (where (o+r) mod 4 = 0) --------------->1 
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It is an error to encode a length greater than the maximum de­
scribed in the specification. 

String 
The standard defines a string of n (numbered 0 through n -

1) ASCII bytes to be the number n encoded as an unsigned integer 
(as described above), and followed by the n bytes of the string. 
Byte m of the string always precedes byte m + 1 of the string, and 
byte 0 of the string always follows the string's length. Ifn is not a 
multiple of four, then the n bytes are followed by enough (0 to 3) 
residual zero bytes, r, to make the total byte count a multiple of 
four. Counted byte strings are declared as follows: 

string object(m}; 

or 
string object(); 

The constant m denotes an upper bound of the number of bytes 
that a string may contain. If m is not specified, as in the second 
declaration, it is assumed to be (2**32) - 1, the maximum length. 
The constant m would normally be found in a protocol specifica­
tion. For example, a filing protocol may state that a file name can 
be no longer than 255 bytes, as follows: 

string filename(255}; 

Which can be illustrated as: 

A String 

o 1 2 3 4 5 
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+ 

length n 1 byte 0 1 byte 1 1 ... 1 n -1 1 0 I· .. 1 0 
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+ 
1 <------4 bytes- -----> 1 <- - - - - - -n bytes- - - - ---> 1 <---- r bytes --- -> 1 

1 <--------------- 4+n+r (where (n+r) mod 4 = 0) --------------->1 

It is an error to encode a length greater than the maximum de­
scribed in the specification. 

Fixed-length Array 
Declarations for fixed-length arrays of homogeneous elements 

are in the following form: 
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type-name identifier[n]; 

Fixed-length arrays of elements numbered 0 through n - 1 are 
encoded by individually encoding the elements of the array in 
their natural order, 0 through n - 1. Each element's size is a 
multiple of four bytes. Though all elements are of the same type, 
the elements may have different sizes. For example, in a fixed­
length array of strings, all elements are of type "string", yet each 
element will vary in its length. 

Fixed-Length Array 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
element 0 element 1 1 .. ·1 element n-1 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
1 < - - - - - - - - - - - - - - - - - - - - n elements - - - - - - - - - - - - - - - - - - - - > 1 

Variable-length Array 
Counted arrays provide the ability to encode variable-length 

arrays of homogeneous elements. The array is encoded as the 
element count n (an unsigned integer) followed by the encoding 
of each of the array's elements, starting with element 0 and progress­
ing through element n - 1. The declaration for variable-length 
arrays follows this form: 

type-name identifier(m); 

or 

type-name identifier(); 

The constant m specifies the maximum acceptable element count 
of an array; if m is not specified, as in the second declaration, it is 
assumed to be (2**32) - 1. 

Counted Array 

o 123 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 

n element 0 element 1 I. .. 1 element n - 1 1 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 
1<--4 bytes-->I<-------------- n elements -------------->1 

It is an error to encode a value of n that is greater than the maximum 
described in the specification. 
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Structure 
Structures are declared as follows: 

struct { 
component-declaration-A; 
component-declaration-B; 

} identifier; 

The components of the structure are encoded in the order of their 
declaration in the structure. Each component's size is a multiple 
of four bytes, though the components may be different sizes. 

Structure 

+----------+----------+ .. . 
I component A I component B I .. . 
+----------+----------+ .. . 

Discriminated Union 
A discriminated union is a type composed of a discriminant 

followed by a type selected from a set of prearranged types accord­
ing to the value of the discriminant. The type of discriminant is 
either "inC, "unsigned int", or an enumerated type, such as 
"boo!". The component types are called "arms" of the union, and 
are preceded by the value of the discriminant which implies their 
encoding. Discriminated unions are declared as follows: 

union switch (discriminant-declaration) { 
case discriminant-value-A: 
arm-declaration-A; 
case discriminant-value-B: 
arm-declaration -B; 

default: default-declaration; 
} identifier; 

Each "case" keyword is followed by a legal value of the discrimi­
nant. The default arm is optional. If the discriminant is not speci­
fied, then a valid encoding of the union cannot take on unspecified 
discriminant values. The size of the implied arm is always a multi­
ple of four bytes. 

The discriminated union is encoded as its discriminant fol­
lowed by the encoding of the implied arm. 
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Discriminated Union 

o 1 2 3 
+---+---+---+---+---+---+---+---+ 

discriminant implied arm 
+---+---+---+---+---+---+---+---+ 

1< - - - -4 bytes - - - -> I 

Void 
An XDR void is a O-byte quantity. Voids are useful for describ­

ing operations that take no data as input or no data as output. They 
are also useful in unions, where some arms may contain data and 
others do not. The declaration is simply as follows: 

void; 

Voids are illustrated as follows: 

++ 
II 
++ 
- -><- - 0 bytes 

Constant 

The data declaration for a constant follows this form: 

const name-identifier = n; 

"const" is used to define a symbolic name for a constant; it does 
not declare any data. The symbolic constant may be used anywhere 
a regular constant may be used. For example, the following defines 
a symbolic constant DOZEN, equal to 12. 

const DOZEN = 12; 

Typedef 
"typedef" does not declare any data either, but serves to 

define new identifiers for declaring data. The syntax is: 

typedef declaration; 

The new type name is actually the variable name in the declaration 
part of the typedef. For example, the following defines a new type 
called "eggbox" using an existing type called "egg": 

typedef egg eggbox[DOZEN]; 
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Variables declared using the new type name have the same type 
as the new type name would have in the typedef, if it were consid­
ered a variable. For example, the following two declarations are 
equivalent in declaring the variable "fresheggs": 

eggbox fresheggs; 
egg fresheggs[DOZENL 

When a typedef involves a struct, enum, or union definition, there 
is another (preferred) syntax that may be used to define the same 
type. In general, a typedef of the following form: 

typedef «struct, union, or enum definition» identifier; 

may be converted to the alternative form by removing the 
"typedef" part and placing the identifier after the "strucC, 
"union", or "enum" keyword, instead of at the end. For example, 
here are the two ways to define the type "bool": 

typedef enum { 
FALSE = 0, 
TRUE = 1 
} bool; 

enum bool { 
FALSE = 0, 
TRUE =·1 
}; 

/* using typedef */ 

/* preferred alternative */ 

The reason for preferring this syntax is that one does not have to 
wait until the end of a declaration to figure out the name of the 
new type. 

Optional-data 
Optional-data is one kind of union that occurs so frequently 

that we give it a special syntax of its own for declaring it. It is 
declared as follows: 

type-name *identifier; 

This is equivalent to the following union: 

union switch (bool opted) { 
case TRUE: 
type-name element; 
case FALSE: 
void; 

} identifier; 
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It is also equivalent to the following variable-length array declara­
tion, since the boolean "opted" can be interpreted as the length of 
the array: 

type-name identifier(l}; 

Optional-data is not so interesting in itself, but it is very useful for 
describing recursive data-structures such as linked-lists and trees. 
For example, the following defines a type "stringlist" that encodes 
lists of arbitrary length strings: 

struct *stringlist { 
string item(}; 
stringlist next; 

}; 

It could have been equivalently declared as the following union: 

union stringlist switch (bool opted) { 

}; 

case TRUE: 
struct { 

string item(}; 
stringlist next; 

} element; 
case FALSE: 

void; 

or as a variable-length array: 

struct stringlist(l} { 

}; 

string item(}; 
stringlist next; 

Both of these declarations obscure the intention of the stringlist 
type, so the optional-data declaration is preferred over both of 
them. The optional-data type also has a close correlation to how 
recursive data structures are represented in high-level languages 
such as Pascal or C by use of pointers. In fact, the syntax is the 
same as that of the C language for pointers. 

Areas for Future Enhancement 

The XDR standard lacks representations for bit fields and 
bitmaps, since the standard is based on bytes. Also missing are 
packed (or binary-coded) decimals. 
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The intent of the XDR standard was not to describe every 
kind of data that people have ever sent or will ever want to send 
from machine to machine. Rather, it only describes the most com­
monly used data-types of high-level languages such as Pascal or C 
so that applications written in these languages will be able to 
communicate easily over some medium. 

One could imagine extensions to XDR that would let it de­
scribe almost any existing protocol, such as TCP. The minimum 
necessary for this are support for different block sizes and byte­
orders. The XDR discussed here could then be considered the 4-
byte big-endian member of a larger XDR family. 

A2.4 Discussion 

Why a Language for Describing Data? 
There are many advantages in using a data-description lan­

guage such as XDR versus using diagrams. Languages are more 
formal than diagrams and lead to less ambiguous descriptions of 
data. Languages are also easier to understand and allow one to 
think of other issues instead of the low-level details of bit-encod­
ing. Also, there is a close analogy between the types of XDR 
and a high-level language such as C or Pascal. This makes the 
implementation ofXDR encoding and decoding modules an easier 
task. Finally, the language specification itself is an ASCII string 
that can be passed from machine to machine to perform on-the-fly 
data interpretation. 

Why Only One Byte-Order for an 
XDR Unit? 

Supporting two byte-orderings requires a higher level proto­
col for determining in which byte-order the data is encoded. Since 
XDR is not a protocol, this cannot be done. However, an advantage 
of supporting two byte-orderings is that data in XDR format can be 
written to a magnetic tape, and any machine will be able to inter­
pret it, since no higher level protocol is necessary for determining 
the byte-order. 
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Yes, it is unfair, but having only one byte-order means you 
have to be unfair to somebody. Many architectures, such as the 
Motorola 68000 and IBM 370, support the big-endian byte-order. 

Why Is the XDR Unit Four Bytes Wide? 
There is a tradeoff in choosing the XDR unit size. Choosing 

a small size such as two makes the encoded data small, but causes 
alignment problems for machines that aren't aligned on these 
boundaries. A large size such as eight means the data will be 
aligned on virtually every machine, but causes the encoded data 
to grow too big. We chose four as a compromise. Four is big enough 
to support most architectures efficiently, except for rare machines 
such as the eight-byte aligned Cray. Four is also small enough to 
keep the encoded data restricted to a reasonable size. 

Why Must Variable-Length Data Be 
Padded with Zeros? 

It is desirable that the same data encode into the same thing 
on all machines, so that encoded data can be meaningfully com­
pared or checksummed. Forcing the padded bytes to be zero en­
sures this. 

Why Is There No Explicit Data-Typing? 
Data-typing has a relatively high cost for what small advan­

tages it may have. One cost is the expansion of data due to the 
inserted type fields. Another is the added cost of interpreting these 
type fields and acting accordingly. Since most protocols alref\.dy 
know what type they expect, data-typing supplies only redundant 
information. However, one can still get the benefits of data-typing 
using XDR. One way is to encode two things: first a string which 
is the XDR data description of the encoded data, and then the 
encoded data itself. Another way is to assign a value to all the types 
in XDR, and then define a universal type which takes this value 
as its discriminant and for each value describes the corresponding 
data type. 
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A2.5 The XDR language Specification 

Notational Conventions 
This specification uses an extended Backus-Naur Form nota­

tion for describing the XDR language. Here is a brief description 
of the notation: 

• The characters I, (, ), [, ], , and * are special. 

• Terminal symbols are strings of any characters surrounded 
by double quotes. 

• Non-terminal symbols are strings of non-special characters. 

• Alternative items are separated by a vertical bar ("I"). 

· Optional items are enclosed in brackets. 

· Items are grouped together by enclosing them in paren­
theses. 

• A * following an item means 0 or more occurrences of that 
item. 

For example, consider the following pattern: 

"a" "very" (", " " very")* [" cold" "and"] " rainy" ("day" I "night") 

An infinite number of strings match this pattern. A few of them 
are: 

"a very rainy day" 
"a very, very rainy day" 
"a very cold and rainy day" 
"a very, very, very cold and rainy night" 

lexical Notes 
• Comments begin with '/*' and terminate with '*/'. 
· White space serves to separate items and is otherwise ig­

nored. 

• An identifier is a letter followed by an optional sequence of 
letters, digits or underbar C-'). The case ofidentifiers is not 
ignored. 
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. A constant is a sequence of one or more decimal digits, 
optionally preceded by a minus-sign (' - '). 

Syntax Information 
declaration: 

value: 

type-specifier identifier 
I type-specifier identifier "[" value "]" 
I type-specifier identifier "(" [ value] ")" 
I "opaque" identifier "[" value "]" 
I "opaque" identifier "(" [ value] ")" 
I "string" identifier "(" [ value] ")" 
I type-specifier "*" identifier 
I "void" 

constant 
I identifier 

type-specifier: 
[ "unsigned" ] "int" 
[ "unsigned" ] "hyper" 
"float" 
"double" 
"bool" 
enum-type-spec 
struct-type-spec 
union-type-spec 
identifier 

enum-type-spec: 
"enum" enum-body 

enum-body 
"{" 
( identifier" =" value) 
( "," identifier" =" value )* 
"}" 

struct-type-spec: 
"struct" struct-body 

struct-body: 
"{" 
( declaration ";" ) 
( declaration ";" )* 
"}" 
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union-type-spec: 
"union" union-body 

union-body: 
"switch" "(" declaration ")" "{" 
( "case" value ":" declaration ";" ) 
( "case" value ":" declaration ";" )* 
[ "default" ":" declaration ";" ] 
"}" 

constant-def: 
"const" identifier "=" constant ";" 

type-def: 
"typedef" declaration ";" 
I "enum" identifier enum-body ";" 
I "struct" identifier struct-body ";" 
I "union" identifier union-body";" 

definition: 
type-def 
I constant-def 

specification: 
definition * 

Syntax Notes 
1. The following are keywords and cannot be used as identifi-

"b 1"" "" " "d f: 1" "d bl"" " ers: 00, case, const, e au t, ou e, enum , 
"float", "hyper", opaque", "string", "struct", "switch", 
"typedef", "union", "unsigned" and "void". 

2. Only unsigned constants may be used as size specifications 
for arrays. If an identifier is used, it must have been de­
clared previously as an unsigned constant in a "const" defi­
nition. 

3. Constant and type identifiers within the scope of a specifi­
cation are in the same name space and must be declared 
uniquely within this scope. 

4. Similarly, variable names must be unique within the scope 
of struct and union declarations. Nested struct and union 
declarations create new scopes. 
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5. The discriminant of a union must be of a type that evaluates 
to an integer. That is, "int", "unsigned inC, "bool", an 
enumerated type or any typedefed type that evaluates to 
one of these is legal. Also, the case values must be one of 
the legal values of the discriminant. Finally, a case value 
may not be specified more than once within the scope of a 
union declaration. 

A2.6 An Example of an XDR Data 
Description 

Here is a short XDR data description of a thing called a "file", 
which might be used to transfer files from one machine to another. 

const MAXUSERNAME = 32; 
const MAXFILELEN = 65535; 
const MAXNAMELEN = 255; 

/* max length of a user name */ 
/* max length of a file */ 
/* max length of a file name */ 

/* 
* Types of files: 
*/ 

enum filekind { 
TEXT = 0, 
DATA = 1, 
EXEC = 2 

}; 

/* 

/* ascii data */ 
/* raw data */ 
/* executable */ 

* File information, per kind of file: 
*/ 

union filetype switch (filekind kind) { 

}; 

/* 

case TEXT: 

case 

case 

void; 
DATA: 
string creator(MAXNAMELEN); 
EXEC: 
string interpretor(MAXNAMELEN); 

* A complete file: 
*/ 

/* no extra information */ 

/* data creator */ 

/* program interpretor */ 
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struct file { 

}; 

string filename(MAXNAMELEN); /* name of file */ 
filetype type; /* info about file */ 
string owner(MAXUSERNAME); /* owner of file */ 
opaque data(MAXFILELEN); /* file data */ 

Suppose now that there is a user named "john" who wants to store 
his lisp program "sillyprog" that contains just the data "(quit)". 
His file would be encoded as follows: 

Offset Hex Bytes ASCII Description 

0 00000009 Length of filename = 9 
4 7369 6c 6c sill Filename characters 
8 7970 726f ypro ... and more characters ... 

12 67000000 g ... ... and 3 zero-bytes offill 
16 00000002 Filekind is EXEC = 2 
20 00000004 Length of interpretor = 4 
24 6c 69 73 70 lisp Interpretor characters 
28 00000004 Length of owner = 4 
32 6a 6f68 6e john Owner characters 
36 00000006 Length of file data = 6 
40 2871 7569 (qui File data bytes ... 
44 74290000 t) .. ... and 2 zero-bytes of fill 
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Remote Procedure Call: 
Protocol Specification 

A3.1 Status of this Memo 
Note: This appendix specifies a protocol that Sun Microsystems, 
Inc., and others are using. It has been designated RFC1057 by the 
ARPA Network Information Center. 

A3.2 Introduction 
This appendix specifies a message protocol used in implementing 
Sun's Remote Procedure Call (RPC) package. (The message proto­
col is specified with the External Data Representation (XDR) lan­
guage. See the External Data Representation Standard: Protocol 
Specification Appendix 3 for the details. Here, we assume that the 
reader is familiar with XDR and do not attempt to justify it or its 
uses.) The paper by Birrell and Nelson [1] is recommended as an 
excellent background to and justification of RPC. 

Terminology 
This chapter discusses servers, services, programs, proce­

dures, clients, and versions. A server is a piece of software where 
network services are implemented. A network service is a collec­
tion of one or more remote programs. A remote program imple­
ments one or more remote procedures; the procedures, their param­
eters, and results are documented in the specific program's 
protocol specification (see the Port Mapper Program Protocol be­
low, for an example). Network clients are pieces of software that 
initiate remote procedure calls to services. A server may support 
more than one version of a remote program in order to be forward 
compatible with changing protocols. 

Appendix 
3 
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For example, a network file service may be composed of two 
programs. One program may deal with high-level applications such 
as file system access control and locking. The other may deal with 
low-level file 10 and have procedures like "read" and "write". A 
client machine of the network file service would call the proce­
dures associated with the two programs of the service on behalf of 
some user on the client machine. 

The RPC Model 
The remote procedure call model is similar to the local proce­

dure call model. In the local case, the caller places arguments 
to a procedure in some well-specified location (such as a result 
register). It then transfers control to the procedure, and eventually 
gains back control. At that point, the results of the procedure are 
extracted from the well-specified location, and the caller continues 
execution. 

The remote procedure call is similar, in that one thread of 
control logically winds through two processes - one is the caller's 
process, the other is a server's process. That is, the caller process 
sends a call message to the server process and waits (blocks) for a 
reply message. The call message contains the procedure's parame­
ters, among other things. The reply message contains the proce­
dure's results, among other things. Once the reply message is 
received, the results of the procedure are extracted, and the caller's 
execution is resumed. 

On the server side, a process is dormant awaiting the arrival 
of a call message. When one arrives, the server process extracts 
the procedure's parameters, computes the results, sends a reply 
message, and then awaits the next call message. 

Note that in this model, only one of the two processes is active 
at any given time. However, this model is only given as an example. 
The RPC protocol makes no restrictions on the concurrency model 
implemented, and others are possible. For example, an implemen­
tation may choose to have RPC calls be asynchronous, so that the 
client may do useful work while waiting for the reply from the 
server. Another possibility is to have the server create a task to 
process an incoming request, so that the server can be free to 
receive other requests. 
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Transports and Semantics 

The RPC protocol is independent of transport protocols. That 
is, RPC does not care how a message is passed from one process 
to another. The protocol deals only with specification and interpre­
tation of messages. 

It is important to point out that RPC does not try to implement 
any kind of reliability and that the application must be aware of 
the type of transport protocol underneath RPC. If it knows it is 
running on top of a reliable transport such as TCP/IP[6], then most 
of the work is already done for it. On the other hand, if it is running 
on top of an unreliable transport such as UDP/IP[7], it must imple­
ment its own retransmission and time-out policy as the RPC layer 
does not provide this service. 

Because of transport independence, the RPC protocol does 
not attach specific semantics to the remote procedures or their 
execution. Semantics can be inferred from (but should be explicitly 
specified by) the underlying transport protocol. For example, con­
sider RPC running on top of an unreliable transport such as UDPI 
IP. If an application retransmits RPC messages after short time­
outs, the only thing it can infer if it receives no reply is that the 
procedure was executed zero or more times. If it does receive a 
reply, then it can infer that the procedure was executed at least 
once. 

A server may wish to remember previously granted requests 
from a client and not regrant them in order to insure some degree 
of execute-at-most-once semantics. A server can do this by taking 
advantage of the transaction ID that is packaged with every RPC 
request. The main use of this transaction is by the client RPC layer 
in matching replies to requests. However, a client application may 
choose to reuse its previous transaction ID when retransmitting a 
request. The server application, knowing this fact, may choose to 
remember this ID after granting a request and not regrant requests 
with the same ID, thus achieving some degree of execute-at-most­
once semantics. The server is not allowed to examine this ID in 
any other way except as a test for equality. 

On the other hand, if using a reliable transport such as TCPI 
IP, the application can infer from a reply message that the proce­
dure was executed exactly once, but if it receives no reply message, 
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it cannot assume the remote procedure was not executed. Note 
that even if a connection-oriented protocol like TCP is used, an 
application still needs time-outs and reconnection to handle server 
crashes. 

There are other possibilities for transports besides datagram­
or connection-oriented protocols. For example, a request-reply 
protocol such as VMTP[2] is perhaps the most natural transport for 
RPC. At Sun, RPC is currently implemented on top of both TCPI 
IP and UDP/IP transports. 

Binding and Rendezvous Independence 
The act of binding a client to a service is NOT part of the 

remote procedure call specification. This important and necessary 
function is left up to some higher-level software. (The software may 
use RPC itself-see the Port Mapper Program Protocol below). 

Implementors should think of the RPC protocol as the jump­
subroutine instruction ("JSR") of a network; the loader (binder) 
makes JSR useful, and the loader itself uses JSR to accomplish 
its task. Likewise, the network makes RPC useful, using RPC to 
accomplish this task. 

Authentication 
The RPC protocol provides the fields necessary for a client to 

identify itself to a service and vice-versa. Security and access con­
trol mechanisms can be built on top of the message authentication. 
Several different authentication protocols can be supported. A field 
in the RPC header indicates which protocol is being used. More 
information on specific authentication protocols can be found in 
the Authentication Protocols below. 

A3.3 RPC Protocol Requirements 
The RPC protocol must provide for the following: 

· Unique specification of a procedure to be called. 

• Provisions for matching response messages to request mes­
sages. 

• Provisions for authenticating the caller to service and vice­
versa. 
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In addition to these requirements, features that detect the follow­
ing are worth supporting because of protocol roll-over errors, imple­
mentation bugs, user error, and network administration: 

· RPC protocol mismatches. 

• Remote program protocol version mismatches. 

· Protocol errors (such as misspecification of a procedure's 
parameters). 

· Reasons why remote authentication failed. 

· Any other reasons why the desired procedure was not called. 

Programs and Procedures 
The RPC call message has three unsigned fields: remote 

program number, remote program version number, and remote 
procedure number. The three fields uniquely identify the proce­
dure to be called. Program numbers are administered by some 
central authority (like Sun). Once an implementor has a program 
number, he can implement his remote program; the first imple­
mentation would most likely have the version number of 1. 
Because most new protocols evolve into better, stable, and 
mature protocols, a version field of the call message identifies 
which version of the protocol the caller is using. Version numbers 
make speaking old and new protocols through the same server 
process possible. 

The procedure number identifies the procedure to be called. 
These numbers are documented in the specific program's protocol 
specification. For example, a file service's protocol specification 
may state that its procedure number 5 is "read" and procedure 
number 12 is "write". 

Just as remote program protocols may change over several 
versions, the actual RPC message protocol could also change. 
Therefore, the call message also has in it the RPC version number, 
which is always equal to two for the version of RPC described 
here. 

The reply message to a request message has enough informa­
tion to distinguish the following error conditions: 
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• The remote implementation of RPC does speak protocol 
version 2. The lowest and highest supported RPC version 
numbers are returned. 

• The remote program is not available on the remote system. 

• The remote program does not support the requested version 
number. The lowest and highest supported remote program 
version numbers are returned. 

• The requested procedure number does not exist. (This is 
usually a caller side protocol or programming error.) 

· The parameters to the remote procedure appear to be gar­
bage from the server's point of view. (Again, this is usually 
caused by a disagreement about the protocol between client 
and service.) 

Authentication 
Provisions for authentication of caller to service and vice­

versa are provided as a part of the RPC protocol. The call message 
has two authentication fields, the credentials and verifier. The 
reply message has one authentication field, the response verifier. 
The RPC protocol specification defines all three fields to be the 
following opaque type: 

enum auth_flavor { 

}; 

AUTH_NULL = 0, 
AUTH_UNIX = 1, 
AUTH_SHORT = 2, 
AUTH_DES = 3 
/* and more to be defined */ 

struct opaque_auth { 
autlLflavor flavor; 
opaque body(400); 

}; 

In simple English, any opaque_auth structure is an auth-flavor 
enumeration followed by bytes which are opaque to the RPC 
protocol implementation. 

The interpretation and semantics of the data contained within 
the authentication fields is specified by individual, independent 
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authentication protocol specifications. (See Authentication Proto­
cols below, for definitions of the various authentication protocols.) 

If authentication parameters were rejected, the response mes­
sage contains information stating why they were rejected. 

Program Number Assignment 
Program numbers are given out in groups ofOx20000000 (decimal 
536870912) according to the following chart: 

Program Number 

OxOOOOOOOO - OxlFFFFFFF 
Ox20000000 - Ox3FFFFFFF 
Ox40000000 - Ox5FFFFFFF 
Ox60000000 - Ox7FFFFFFF 
Ox80000000 - Ox9FFFFFFF 
OxAOOOOOOO - OxBFFFFFFF 
Oxcooooooo - OxDFFFFFFF 
OxEOOOOOOO - OxFFFFFFFF 

Description 

Defined by Sun Microsystems 
Defined by User 
Transient 
Reserved 
Reserved 
Reserved 
Reserved 
Reserved 

The first group is a range of numbers administered by Sun Microsys­
terns and should be identical for all sites. The second range is for 
applications peculiar to a particular site. This range is intended 
primarily for debugging new programs. When a site develops an 
application that might be of general interest, that application 
should be given an assigned number in the first range. The third 
group is for applications that generate program numbers dynami­
cally. The final groups are reserved for future use, and should not 
be used. 

Other Uses of the RPC Protocol 
The intended use of this protocol is for calling remote proce­

dures. That is, each call message is matched with a response mes­
sage. However, the protocol itself is a message-passing protocol 
with which other (non-RPC) protocols can be implemented. Sun 
currently uses, or perhaps abuses, the RPC message protocol for 
the following two (non-RPC) protocols: batching (or pipe lining) 
and broadcast RPC. These two protocols are discussed but not 
defined below. 

Botching. Batching allows a client to send an arbitrarily large se­
quence of call messages to a server; batching typically uses reliable 
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byte stream protocols (like TCP/IP) for its transport. In the case of 
batching, the client never waits for a reply from the server, and the 
server does not send replies to batch requests. A sequence of batch 
calls is usually terminated by a legitimate RPC in order to Hush 
the pipeline (with positive acknowledgement). 

Broadcast RPC. In broadcast RPC-based protocols, the client sends 
a broadcast packet to the network and waits for numerous replies. 
Broadcast RPC uses unreliable, pacKet-based protocols (like UDPI 
IP) as its transports. Servers that support broadcast protocols only 
respond when the request is successfully processed, and are silent 
in the face of errors. Broadcast RPC uses the Port Mapper RPC 
service to achieve its semantics. See the Port Mapper Program 
Protocol below, for more information. 

A3.4 The RPC Message Protocol 
This section defines the RPC message protocol in the XDR data 
description language. The message is defined in a top-down style. 

enum ms~type { 
CALL = 0, 
REPLY = 1 

}; 

/* 
* A reply to a call message can take on two forms: 
* The message was either accepted or rejected. 
*/ 

enum reply-stat { 
MSG-ACCEPTED = 0, 
MSG_DENIED = 1 

}; 

/* 
* Given that a call message was accepted, the following is the 
* status of an attempt to call a remote procedure. 

*/ 
enum acceptJtat { 

SUCCESS 
PROG_UNAVAIL 
PROG_MISMATCH 
PROC_UNA VAIL 
GARBAGE-ARGS 

}; 

= 0, /* RPC executed successfully */ 
= 1, /* remote hasn't exported program */ 
= 2, /* remote can't support version # */ 
= 3, /* program can't support procedure */ 
= 4/* procedure can't decode params */ 
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* Reasons why a call message was rejected: 
*/ 
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enum rejecLstat { 
RPC_MISMATCH 
AUTH_ERROR 

0, /* RPC version number! = 2 */ 
1 /* remote can't authenticate caller */ 

}; 
/* 
* Why authentication failed: 
*/ 

enum auth_stat { 
AUTH_BADCRED 
AUTH_REJECTEDCRED 
AUTH_BADVERF 
AUTH_REJECTEDVERF 
AUTH_TOOWEAK 

}; 

/* 
* The RPC message: 

= 1, /* bad credentials */ 
= 2, /* client must begin new session */ 
= 3, /* bad verifier */ 
= 4, /* verifier expired or replayed */ 
= 5 /* rejected for security reasons */ 

* All messages start with a transaction identifier, xid, 
* followed by a two-armed discriminated union. The union's 
• discriminant is a msg_type which switches to one of the two 
• types of the message. The xid of a REPLY message always 
• matches that of the initiating CALL message. NB: The xid 
* field is only used for clients matching reply messages with 
* call messages or for servers detecting retransmissions; the 
* service side cannot treat this xid as any type of sequence 
* number. 
*/ . 

struct rpc_msg { 
unsigned int xid; 

}; 

/* 

union switch (msg_type mtype) { 
case CALL: 

} body; 

calLbody cbody; 
case REPLY: 

reply_body rbody; 

* Body of an RPC request call: 
* In version 2 of the RPC protocol specification, rpcvers must 
* be equal to 2. The fields prog, vers, and proc specify the 
* remote program, its version number, and the procedure within 
* the remote program to be called. After these fields are two 
* authentication parameters: cred (authentication credentials) 
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* and verf (authentication verifier). The two authentication 
* parameters are followed by the parameters to the remote 
* procedure, which are specified by the specific program 
* protocol. 
*/ 

struct calLbody { 
unsigned int rpcvers; /* must be equal to two (2) */ 
unsigned int prog; 
unsigned int vers; 
unsigned int proc; 
opaque_auth cred; 
opaque_auth verf; 
/* procedure specific parameters start here */ 

}; 

/* 
* Body of a reply to an RPC request: 
* The call message was either accepted or rejected. 
*/ 

union reply_body switch (reply_stat stat) { 
case MSG-ACCEPTED: 

acceptecLreply areply; 
case MSG_DENIED: 

rejectecLreply rreply; 
} reply; 

/* 
* Reply to an RPC request that was accepted by the server: 
* there could be an error even though the request was accepted. 
* The first field is an authentication verifier that the server 
* generates in order to validate itself to the caller. It is 
* followed by a union whose discriminant is an enum 
* accepLstat. The SUCCESS arm of the union is protocol 
* specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE-ARGP 
* arms of the union are void. The PROG_MISMATCH arm specifies 
* the lowest and highest version numbers of the remote program 
* supported by the server. 
*/ 

struct acceptecLreply { 
opaque-auth verf; 
union switch (accepLstat stat) { 

case SUCCESS: 
opaque results[O]; 
/* procedure-specific results start here */ 

case PROG_MISMATCH: 
struct { 



default: 

}; 

/* 
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unsigned int low; 
unsigned int high; 

} mismatch_info; 

/* 
* Void. Cases include PROG_UNAVAIL, 
PROC_UNAVAIL, 
* and GARBAGE-ARGS. 
*/ 

void; 

* Reply to an RPC request that was rejected by the server: 
* The request can be rejected for two reasons: either the 
* server is not running a compatible version of the RPC 
* protocol (RPPC_MISMATCH), or the server refuses to 
* authenticate the caller (AUTH_ERROR). In case of an RPC 
* version mismatch, the server returns the lowest and highest 
* supported RPC version numbers. In case of refused 
* authentication, failure status is returned. 
*1 

union rejectedJeply switch (rejecLstat stat) { 
case RPC_MISMATCH: 

}; 

struct { 
unsigned int low; 
unsigned int high; 

} mismatch_info; 
case AUTH_ERROR: 

auth_stat stat; 

A3.5 Authentication Protocols 
As previously stated, authentication parameters are opaque, but 
open-ended to the rest of the RPC protocol. This section defines 
some "flavors" of authentication implemented at (and supported 
by) Sun. Other sites are free to invent new authentication types, 
with the same rules of flavor number assignment as there is for 
program number assignment. 
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Null Authentication 
Often calls must be made where the caller does not know who 

he is or the server does not care who the caller is. In this case, the 
flavor value (the discriminant of the opaque_auth 's union) of the 
RPC message's credentials, verifier, and response verifier is 
AUTH-.NULL. The bytes of the opaque_auth's body are undefined. 
It is recommended that the opaque length be zero. 

UNIX Authentication 
The caller of a remote procedure may wish to identify himself 

as he is identified on a UNIX system. The value of the credential's 
discriminant of an RPC call message is AUTH_UNIX. The bytes of 
the credential's opaque body encode the following structure: 

struct auth_unix { 

}; 

unsigned int stamp; 
string machinename(255); 
unsigned int uid; 
unsigned int gid; 
unsigned int gids(lO); 

The stamp is an arbitrary ID which the caller machine may 
generate. The machinename is the name of the caller's machine 
(like "krypton"). The uid is the caller's effective user ID. The gid 
is the caller's effective group ID. The gids is a counted array of 
groups which contain the caller as a member. The verifier accompa­
nying the credentials should be of AUTH-.NULL (defined above). 

The value of the discriminant of the response verifier received 
in the reply message from the server may be AUTH-.NULL or 
AUTH_SHORT. 'In the case of AUTH_SHORT, the bytes of the 
response verifier's string encode an opaque structure. This new 
opaque structure may now be passed to the server instead of the 
original AUTH_UNIX flavor credentials. The server keeps a cache 
which maps shorthand opaque structures (passed back by way of 
an AUTH_SHORT style response verifier) to the original creden­
tials of the caller. The caller can save network bandwidth and 
server cpu cycles by using the new credentials. 

The server may flush the shorthand opaque structure at any 
time. If this happens, the remote procedure call message will be 
rejected due to an authentication error. The reason for the failure 
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will be AUTH-RE]ECTEDCRED. At this point, the caller may 
wish to try the original AUTH_UNIX style of credentials. 

DES Authentication 
UNIX authentication suffers from two major problems: 

. The naming is too UNIX-system oriented . 

. There is no verifier, so credentials can easily be faked. 

DES authentication attempts to fix these two problems. 

Naming. The first problem is handled by addressing the caller by 
a simple string of characters instead of by an operating system 
specific integer. This string of characters is known as the "net­
name" or network name of the caller. The server is not allowed to 
interpret the contents of the caller's name in any other way except 
to identify the caller. Thus, netnames should be unique for every 
caller in the internet. 

It is up to each operating system's implementation of DES 
authentication to generate netnames for its users that insure this 
uniqueness when they call upon remote servers. Operating sys­
tems already know how to distinguish users local to their systems. 
It is usually a simple matter to extend this mechanism to the 
network. For example, a UNIX user at Sun with a user ID of 515 
might be assigned the following netname: "unix.515@sun.com". 
This netname contains three items that serve to insure it is unique. 
Going backwards, there is only one naming domain called 
"sun. com" in the internet. Within this domain, there is only one 
UNIX user with user ID 515. However, there may be another user 
on another operating system, for example VMS, within the same 
naming domain that, by coincidence, happens to have the same 
user ID. To insure that these two users can be distinguished we 
add the operating system name. So one user is "unix.515@­
sun.com" and the other is "vms.515@sun.com". 

The first field is actually a naming method rather than an 
operating system name. It just happens that today there is almost 
a one-to-one correspondence between naming methods and opera­
ting systems. If the world could agree on a naming standard, the 
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first field could be the name of that standard, instead of an operating 
system name. 

DES Authentication Verifiers. Unlike UNIX authentication, DES 
authentication does have a verifier so the server can validate the 
client's credential (and vice-versa). The contents of this verifier 
are primarily an encrypted timestamp. The server can decrypt this 
timestamp, and if it is close to what the real time is, then the client 
must have encrypted it correctly. The only way the client could 
encrypt it correctly is to know the "conversation key" of the RPC 
session. And if the client knows the conversation key, then it must 
be the real client. 

The conversation key is a DES [5] key which the client gener­
ates and notifies the server of in its first RPC call. The conversation 
key is encrypted using a public key scheme in this first transaction. 
The particular public key scheme used in DES authentication is 
Diffie-Hellman [3] with 192-bitkeys. The details of this encryption 
method are described later. 

The client and the server need the same notion of the current 
time in order for all of this to work. If network time synchronization 
cannot be guaranteed, then the client can synchronize with the 
server before beginning the conversation, perhaps by consulting 
the Internet Time Server (TIME[4]). 

The way a server determines if a client timestamp is valid is 
somewhat complicated. For any other transaction but the first, the 
server simply checks for two things: 

• the timestamp should be greater than the one previously 
seen from the same client. 

. the timestamp should not have expired. 

A timestamp is expired if the server's time is later than the sum of 
the client's timestamp plus what is known as the client's "win­
dow". The "window" is a number the client passes (encrypted) to 
the server in its first transaction. You can think of it as a lifetime 
for the credential. 

This explains everything but the first transaction. In the first 
transaction, the server checks only that the timestamp has not 
expired. However, if this was all that was done, then it would be 
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quite easy for the client to send random data in place of the time­
stamp with a fairly good chance of succeeding. As an added check, 
the client sends an encrypted item in the first transaction known 
as the "window verifier" which must be equal to the window 
minus 1, or the server will reject the credential. 

The client too must check the verifier returned from the server 
to be sure it is legitimate. The server sends back to the client 
the encrypted timestamp it received from the client, minus one 
second. If the client gets anything different than this, it will reject 
it. 

Nicknames and Clock Synchronization. After the first transaction, 
the server's DES authentication subsystem returns in its verifier 
to the client an integer "nickname" which the client may use in 
its further transactions instead of passing its netname, encrypted 
DES key and window every time. The nickname is most likely an 
index into a table on the server which stores for each client its 
netname, decrypted DES key and window. 

Although they originally were synchronized, the client's and 
server's clocks can get out of sync again. When this happens the 
client RPC subsystem most likely will get back RPC.AUTHER­
ROR, at which point it should resynchronize. 

A client may still get the RPC.AUTHERROR error even 
though it is synchronized with the server. The reason is that the 
server's nickname table is a limited size, and it may flush entries 
whenever it wants. A client should resend its original credential 
inthis case and the server will give it a new nickname. If a server 
crashes, the entire nickname table gets flushed, and all clients will 
have to resend their original credentials. 

DES Authentication Protocol (in XDR language) 

* There are two kinds of credentials: one in which the client uses 
* its full network name, and one in which it uses its "nickname" 
* (just an unsigned integer) given to it by the server. The 
* client must use its fullname in its first transaction with the 
* server, in which the server will return to the client its 
* nickname. The client may use its nickname in all further 
* transactions with the server. There is no requirement to use the 
* nickname, but it is wise to use it for performance reasons. 
*/ 
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enum authdeLnamekind { 
ADN_FULLNAME = 0, 
ADN_NICKNAME = 1 

}; 

/* 
* A 64-bit block of encrypted DES data 
*/ 

typedef opaque des_block[8}; 

/* 
* Maximum length of a network user's name 
*/ 

const MAXNETNAMELEN = 255; 

/* 
* A fullname contains the network name of the client, an encrypted 
* conversation key and the window. The window is actually a 
* lifetime for the credential. If the time indicated in the 
* verifier timestamp plus the window has past, then the server 
* should expire the request and not grant it. To insure that 
* requests are not replayed, the server should insist that 
* timestamps are greater than the previous one seen, unless it is 
* the first transaction. In the first transaction, the server 
* checks instead that the window verifier is one less than the 
* window. 
*/ 

struct authdeLfullname { 

}; 

/* 

string name(MAXNETNAMELEN); 
deLblock key; 
unsigned int window; 

/* nmne of client */ 
/* PK encrypted conversation key */ 
/* encrypted window */ 

* A credential is either a fullname or a nickname 
*/ 

union authdeLcred switch (authdes_namekind adcnamekind) { 
case ADN_FULLNAME: 

authdes_fullname adc-Fullname; 
case ADN_NICKNAME: 

unsigned int adc_nickname; 
}; 

/* 
* A timestamp encodes the time since midnight, January 1, 1970. 
*/ 
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struct timestamp { 
unsigned int seconds; /* seconds */ 
unsigned int useconds; /* and microseconds */ 

}; 

/* 
* Verifier: client variety 
* The window verifier is only used in the first transaction. In 
* conjunction with a fullname credential, these items are packed 
* into the following structure before being encrypted: 
* 
* struct { 
* adv_timestamp; -one DES block 
* adc_fullname.window; 
* adv_winverf; 

-one half DES block 
-one half DES block 

* } 
* This structure is encrypted using GBG mode encryption with an 
* input vector of zero. All other encryptions of timestamps use 
* EGB mode encryption. 
*/ 
struct authdeLverLclnt { 

/* 

timestamp adv_timestamp; /* encrypted timestamp */ 
unsigned int adv_winverf; /* encrypted window verifier */ 

* Verifier: server variety 
* The server returns (encrypted) the same timestamp the client 
* gave it minus one second. It also tells the client its nickname 
* to be used in future transactions (unencrypted). 
*/ 

struct authdeLverLsvr { 

}; 

timestamp adv_timeverf; /* encrypted verifier */ 
unsigned int adv_nickname; /* new nickname for client */ 

Diffie-Hellman Encryption. In this scheme, there are two constants, 
BASE and MODULUS. The particular values Sun has chosen for 
these for the DES authentication protocol are: 

const BASE = 3; 
const MODULUS = "d4aOba0250b6fd2ec626e7efd637df76c716e22d0944b88b"; /* 
hex */ 

The way this scheme works is best explained by an example. 
Suppose there are two people "A" and "B" who want to send 
encrypted messages to each other. So, A and B both generate 
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"secret" keys at random which they do not reveal to anyone. Let 
these keys be represented as SK(A) and SK(B). They also publish 
in a public directory their "public" keys. These keys are computed 
as follows: 

PK(A) = ( BASE ** SK(A) ) mod MODULUS 
PK(B) = ( BASE ** SK(B) ) mod MODULUS 

The "**" notation is used here to represent exponentiation. Now, 
both A and B can arrive at the "common" key between them, 
represented here as CK(A, B), without revealing their secret keys. 

A computes: 

CK(A, B) = ( PK(B) ** SK(A)) mod MODULUS 

while B computes: 

CK(A, B) = ( PK(A) ** SK(B)) mod MODULUS 

These two can be shown to be equivalent: 

(PK(B) ** SK(A)) mod MODULUS = (PK(A) ** SK(B)) mod MODULUS 

We drop the "mod MODULUS" parts andassumemoduloarithme­
tic to simplify things: 

PK(B) ** SK(A) = PK(A) ** SK(B) 

Then, replace PK(B) by what B computed earlier and likewise for 
PK(A). 

((BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B) 

which leads to: 

BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B)) 

This common key CK(A, B) is not used to encrypt the timestamps 
used in the protocol. Rather, it is used only to encrypt a conversa­
tion key which is then used to encrypt the timestamps. The reason 
for doing this is to use the common key as little as possible, for fear 
that it could be broken. Breaking the conversation key is a far less 
serious offense, since conversations are relatively short-lived. 

The conversation key is encrypted using 56-bit DES keys, yet 
the common key is 192 bits. To reduce the number of bits, 56 bits 
are selected from the common key as follows. The middle-most 8-
bytes are selected from the common key, and then parity is added 
to the lower order bit of each byte, producing a 56-bit key with 8 
bits of parity. 
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A3.6 Record Marking Standard 
When RPC messages are passed on top of a byte stream protocol 
(like TCP/IP), it is necessary, or at least desirable, to delimit one 
message from another in order to detect and possibly recover from 
user protocol errors. This is called record marking (RM). Sun uses 
this RM/TCP/IP transport for passing RPC messages on TCP 
streams. One RPC message fits into one RM record. 

A record is composed of one or more record fragments. A 
record fragment is a four-byte header followed by 0 to (2**31) -
1 bytes of fragment data. The bytes encode an unsigned binary 
number; as with XDR integers, the byte order is from highest 
to lowest. The number encodes two values-a boolean which 
indicates whether the fragment is the last fragment of the record 
(bit value 1 implies the fragment is the last fragment), and a 31-bit 
unsigned binary value which is the length in bytes of the frag­
ment's data. The boolean value is the highest-order bit of the 
header; the length is the 31 low-order bits. (Note that this record 
specification is NOT in XDR standard form!) 

A3.7 The RPC Language 
Just as there was a need to describe the XDR data-types in a formal 
language, there is also need to describe the procedures that operate 
on these XDR data-types in a formal language as well. We use the 
RPC Language for this purpose. It is an extension to the XDR 
language. The following example is used to describe the essence 
of the language. 

An Example Service Described in the 
RPC Language 

Here is an example of the specification of a simple ping 
program. 

/* 
* Simple ping program 
*/ 

program PING_PROG { 
/* Latest and greatest version */ 
version PING_VERS_PINGBACK { 
void 
PINGPROC_NULL(void) = 0; 
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} = 2; 

/* 

/* 
* Ping the caller, return the round-trip time 
* (in microseconds). Returns -1 if the operation 
* timed out. 
*/ 

int 
PINGPROC_PINGBACK(void) = 1; 

* Original version 
*/ 

version PING_VERS_ORIG { 
void 

} = 1; 

PINGPROC_NULL(void) = 0; 
} = 1; 

const PING_VERS = 2; /* latest version */ 

The first version described is PING_VERSYINGBACK with two 
procedures, PINGPROC...NULL and PINGPROCYINGBACK. 
PINGPROC...NULL takes no arguments and returns no results, but 
is useful for computing round-trip times from the client to the 
server and back again. By convention, procedure 0 of any RPC 
protocol should have the same semantics, and never require any 
kind of authentication. The second procedure is used for the client 
to have the server do a reverse ping operation back to the client, 
and it returns the amount of time (in microseconds) that the opera­
tion used. The next version, PING_VERS_ORIG, is the original 
version of the protocol and it does not contain PINGPROC_ 
PINGBACK procedure. It is useful for compatibility with old client 
programs, and as this program matures it may be dropped from the 
protocol entirely. 

The RPC Language Specification 
The RPC language is identical to the XDR language, except 

for the added definition of a program-de! described below. 

program-def: 
"program" identifier "{" 

version-def 
version-def * 

"}" "=" constant";" 



version-def: 
"version" identifier "{" 

procedure-def 
procedure-def * 

"}" "=" constant";" 

procedure-def: 
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type-specifier identifier "(" type-specifier ")" "=" constant ";" 

Syntax Notes 
· The following keywords are added and cannot be used as 

idenFfiers: "program" and "version"; 

· A version name cannot occur more than once within the 
scope of a program definition. Nor can a version number 
occur more than once within the scope of a program defi­
nition. 

· A procedure name cannot occur more than once within the 
scope of a version definition. Nor can a procedure number 
occur more than once within the scope of version definition. 

• Program identifiers are in the same name space as constant 
and type identifiers. 

• Only unsigned constants can be assigned to programs, ver­
sions and procedures. 

A3.8 Port Mapper Program Protocol 
The port mapper program maps RPC program and version numbers 
to transport-specific port numbers. This program makes dynamic 
binding of remote programs possible. 

This is desirable because the range of reserved port numbers 
is very small and the number of potential remote programs is very 
large. By running only the port mapper on a reserved port, the port 
numbers of other remote programs can be ascertained by querying 
the port mapper. 

The port mapper also aids in broadcast RPC. A given RPC 
program will usually have different port number bindings on differ­
ent machines, so there is no way to broadcast directly to all of 
these programs. The port mapper, however, does have a fixed port 
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number. So, to broadcast to a given program, the client actually 
sends its message to the port mapper located at the broadcast 
address. Each port mapper that picks up the broadcast then calls 
the local service specified by the client. When the port mapper 
gets the reply from the local service, it sends the reply on back to 
the client. 

Port Mapper Protocol Specification 
(in RPC Language) 

const PMAP_PORT = 111; /* portmapper port number */ 

/* 
* A mapping of (program, version, protocol) to port number 
*/ 

struct mapping { 

}; 

/* 

unsigned int prog; 
unsigned int vers; 
unsigned int prot; 
unsigned int port; 

* Supported values for the "prot" field 
*/ 

const IPPROTO_TCP = 6; 
const IPPROTO_UDP = 17; 

/* 
* A list of mappings 
*/ 
struct *pmaplist { 

mapping map; 
pmaplist next; 

}; 

/* 
* Arguments to callit 
*/ 

struct caILargs { 

}; 

unsigned int prog; 
unsigned int vers; 
unsigned int proc; 
opaque args(}; 

/* protocol number for TCP/IP */ 
/* protocol number for UDP/IP */ 



/* 
* Results of callit 
*/ 

struct calLresult { 
unsigned int port; 
opaque res(); 

}; 

/* 
* Port mapper procedures 
*/ 

program PMAP _PROG { 
version PMAP _ VERS { 

void 
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PMAPPROC_NULL(void) = 0; 

} = 2; 
} = 100000; 

bool 
PMAPPROC_SET(mapping) = 1; 

boo I 
PMAPPROC_UNSET(mapping) = 2; 

unsigned int 
PMAPPROC_GETPORT(mapping) = 3; 

pmaplist 
PMAPPROC_DUMP(void) = 4; 

calLresult 
PMAPPROC_CALLIT(caILargs) = 5; 

Port Mapper Operation 
The portmapper program currently supports two protocols 

(UDP/IP and TCP/IP). The portmapper is contacted by talking to 
it on assigned port number 111 (SUNRPC [8]) on either of these 
protocols. The following is a description of each of the portmapper 
procedures: 

PMAPPROC_NULL: 

This procedure does no work. By convention, procedure zero of 
any protocol takes no parameters and returns no results. 
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PMAPPROC_SET: 

When a program first becomes available on a machine, it registers 
itself with the port mapper program on the same machine. The 
program passes its program number "prog", version number 
"vers", transport protocol number "prot", and the port "port" on 
which it awaits service request. The procedure returns a boolean 
response whose value is TRUE if the procedure successfully estab­
lished the mapping and FALSE otherwise. The procedure refuses 
to establish a mapping if one already exists for the tuple "(prog, 

)" vers, prot . 

PMAPPROC_UNSET: 

When a program becomes unavailable, it should unregister itself 
with the port mapper program on the same machine. The parame­
ters and results have meanings identical to those of PMAl'PROC 
_SET. The protocol and port number fields of the argument are 
ignored. 

PMAPPROC_GETPORT: 

Given a program number "prog", version number "vers", and 
transport protocol number "prot", this procedure returns the port 
number on which the program is awaiting call requests. A port 
value of zero means the program has not been registered. The 
"port" field of the argument is ignored. 

PMAPPROC_DUMP: 

This procedure enumerates all entries in the port mapper's data­
base. The procedure takes no parameters and returns a list of 
program, version, protocol, and port values. 

PMAPPROC_CALLIT: 

This procedure allows a caller to call another remote procedure on 
the same machine without knowing the remote procedure's port 
number. It is intended for supporting broadcasts to arbitrary re­
mote programs via the well-known port mapper's port. The parame­
ters "prog", "vers", "proc", and the bytes of"args" are the program 
number, version number, procedure number, and parameters of 
the remote procedure. Note: 
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1. This procedure only sends a response if the procedure was 
successfully executed and is silent (no response) otherwise. 

2. The port mapper communicates with the remote program 
using UDP/IP only. 

The procedure returns the remote program's port number, and the 
bytes of results are the results of the remote procedure. 
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Differences Between the 
RPC Library on SunOS 4.0 
and SunOS 4.1 

This appendix covers the differences between the SunOS 4.0 and 
the SunOS 4.1 versions of the RPC Library, the portmap service, 
and the rpcgen program. Only a brief summary of the changes are 
presented. More detailed information can be obtained from the 
SunOS 4.1 documentation. 

A4.l RPC library 
The following new features were added to the RPC Library: 

• The routine xdrrecJeadbytesO was added to the Library. 
This routine can only be used on streams created by 
xdrrec_create(). The routine attempts to read a specified num­
ber of bytes from the XDR stream into a specified buffer. 

• The routine clntudp_bufcreateO is now documented and 
available to the user. This routine is in the SunOS 4.0 version 
of the Library but is for internal use by the Library. This 
routine is the same as clntudp_create() except that you can 
now specify the size of the send and receive buffers. 

• The routine clnLcreate_vers() was added to the Library. This 
routine is a generic client creation routine which also checks 
for the version available. Remember that the clnLcreateO 
routine returns a valid client handle even if the specified 
version number supplied to the routine is not registered with 
the portmap service. However, clnLcreate_versO does this 
for you and returns a valid handle only if a version within 
the range supplied is supported by the server. 

Appendix 
4 
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• New request values have been added to the clnLcontrolO 
routine. The new request values, their associated argument 
types, and what the requests do follows: 

CLGET_FD int get socket descriptor associated 
with the client handle 

CLSET_FD_CLOSE void close socket when clnLdestroy() 
is called 

CLSET_FD_NCLOSE void leave socket open when 
clnLdestroy() is called 

• You need to include (rpc/raw.h) when using the raw trans­
port creation routines. 

The following fixes were added to the SunOS 4.1 version of the 
Library: 

• The routine clnLcallO now does an exponential back off 
when retrying RPC requests. 

• The clnLbroadcastO routine now uses an exponential back 
off on the retry time-out. In SunOS 4.0 version, it used a 
linear series for retry time-outs. 

• The svc_runO routine now ignores all error codes returned 
from selectO except for EBADF. The svc_runO in the SunOS 
4.0 version of the Library ignores only the EINTR error code. 
This change was made because EBADF is the only error that 
should result in svc_runO returning. This change also makes 
svc_run() more tolerant of applications that handle signals 
and inadvertently modify the global variable errno inside 
their signal handling routine. The problem exists in svc_runO 
because the return from selectO and the test of the errno 
variable is not an atomic operation and, in fact, control may 
be passed to a signal handling routine during this sequence 
of operations. The SunOS 4.1 version of the svcJunO routine 
was covered in Chapter 6. 

• The raw transport creation routines have been fixed. 

A4.2 Portmap Service 
The following fixes were made to the portmap service: 

• Disallows PMAP _SET and PMAP _UNSET operations from 
remote hosts. 
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• Disallows PMAP _SET and PMAP _UNSET of reserved ports 
from non-reserved ports. 

• The PMAP -RMTCALL procedure no longer forks. This pro­
vides a significant performance improvement for the process­
ing of broadcast requests. 

A4.3 Rpcgen 
The following features were added to rpcgen: 

• Can generate servers which can be invoked by the inetd 
program. 

• Allows for -DDEFINE statements on the command line to 
define macros. 

• Allows for server error messages to be logged using the 
syslog mechanism. 

• Can generate an indexed-by-procedure table. 



Source for Examples 

The examples used in this book can be obtained in a computer 
readable form. To order the examples, specify the type of media 
desired and the format to be used on the disk. The media, media 
formats supported, and prices are listed below. 

3.5" Floppy Disk UNIX tar Format 

5.25" Floppy Disk UNIX tar Format 

114" Streaming Tape Unix tar Format 

3.5" Floppy Disk MS-DOS Format 

5.25" Floppy Disk MS-DOS Format 

Send your order along with payment to: 

RPC Programming Examples 
P.O. Box 12474 
EI Paso, TX 79912 

$8.00(US) 

$8.00(US) 

$12.00(US) 

$8.00(US) 

$8.00(US) 

Appendix 
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Null authentication, 57, 116,292 
Null credential, 57, 117 
Null verifiers, 117 

Octets, 14 
ONC (Open Network Computing) plat­

form, 2 
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example, 126-145 
server side, 98-102 

svc_destroy(),99 
svc_freeargs( ), 101-102 
svc_getargs(), 101 
svc_getreqset(), 173 
svcJegister(), 100-101 
svc_sendreply(), 102 
svc_unregister(), 101-102 
svcerr _auth(), 110 
svcerr _decode( ), 110 
svcerr _noproc(), 110 
svcerr _noprog(), 111 
svcerr _progvers(), 111 
svcerr _systemerr(), 111 
svcerr _weakauth( ), 111 
svcraw_create( ), 99 
svctcp_create( ), 99 
svcudp_create( ), 98-99 

support, 122-123 
host2netname( ), 122 
getnetname( ), 123 
netname2host( ), 122-123 
netname2user( ), 123 
user2netname( ), 123 

RPC source code availability, 257 



RPC standardization efforts, 247-251 
RPC version number, 54 
rpchind program, 253-254 
rpcgen program, 8, 179-206 

command line options to, 193-194 
features added to, 309 
preprocessor directives for, 194-195 

rpcinfo utility, 230 
FlPCL (RPC Language), 179, 195-206, 

299-301 
arrays, fixed links, 269 

Character, 226 
fixed length, 202, 268-269 
string, 237 
variable length, 202-203, 269 
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SunOS 4.0 versus SunOS 4.1, 307-309 
svcJun( ) routine, writing, 170-175 
SVR4 (System V Release 4), 248 
Syntax information, XDR, 277-279 
Syntax 

RPCL, 277-278, 300-301 
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