
Sun RPC Information

Al.l RPC Source Code Availability
The source code for the SunOS 4.0 RPC and XDR Library, referred
to as RPCSRC 4.0, is a license-free version of Sun's RPC and XDR
Library. RPCSRC is available free to anyone with access to the
Internet via an anonymous file-transfer program (ftp) login from
one of the RPCSRC archive sites. Because the archive sites change
over time, consult your local system administrator for more informa­
tion on locating an archive site and on using the Internet. You can
also obtain RPCSRC 4.0 directly from Sun for a nominal processing
fee. The part numbers are:

RPC-4.0-X-X-5 RPCSRC on 114-inch tape
RPC-4.0-X-X-6 RPCSRC on 1I2-inch tape

In the future, new releases of the RPC and XDR Library will be
available from RPCSRC archive sites.

A l.2 RPC Program Numbers
Program numbers are assigned in groups ofOx20000000 according
to the following chart:

Program Number

OxOOOOOOOO - OxlFFFFFFF
Ox20000000 - Ox3FFFFFFF
Ox40000000 - Ox5FFFFFFF
Ox60000000 - Ox7FFFFFFF
Ox80000000 - Ox9FFFFFFF
OxAOOOOOOO - OxBFFFFFFF
OxCOOOOOOO - OxDFFFFFFF
OxEOOOOOOO - OxFFFFFFFF

Description

Defined by Sun Microsystems
Defined by User
Transient
Reserved
Reserved
Reserved
Reserved
Reserved

Appendix
1

258 APPENDIX 1 Sun RPC Information

Sun Microsystems administers the first group of numbers,
which should be identical for all users of Sun's RPC Library, to
ensure that the global program numbers are unique. If you develop
an application that might be of general interest, or that might
become a product, then you should obtain a program number
from the first range. The second group of numbers is reserved for
applications specific to you, in that these applications are only
running on your network. This range is intended primarily for
developing new programs. If you develop internal distributed ap­
plications, then somebody within your organization should main­
tain these numbers to ensure that two different applications do not
try to use the same program number. The third group is reserved
for applications that generate program numbers dynamically, such
as applications that use Callback RPC. The final groups are re­
served for future use, and should not be used. Blocks of numbers
are also available for assignment to companies for use internally
or for assignment to your customers.

To obtain a unique RPC program number and to optionally
register a protocol specification, send a request by electronic mail
to rpc@sun or write to: RPC Administrator, Sun Microsystems,
2550 Garcia Ave., Mountain View, CA 94043

Below is a list of the RPC program numbers that have been
assigned and are public. On Unix systems, these program numbers
are usually found in the file /etc/rpc.

portmapper
rstatd
msersd
nfs
ypserv
mountd
ypbind
walld
yppasswdd
etherstatd
rquotad
sprayd
3270-Illapper
rje_mapper
selectioILSVC
database_svc
rexd
alis

100000 portmap sunrpc
100001 rstat mp perfmeter
100002 msers
100003 nfsprog
100004 ypprog
100005 mount showmount
100007
100008 rwall shutdown
100009 yppasswd
100010 etherstat
100011 rquotaprog quota rquota
100012 spray
100013
100014
100015 selnsvc
100016
100017 rex
100018

A1.2 RPC Program Numbers 259

sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
bootparam 100026
ypupdated 100028 ypupdate
keyserv 100029 keyserver
tfsd 100037
nsed 100038
nsemntd 100039
Netlicense 100062 rpc.netlicd

The following chart lists the currently used authentication
numbers:

Authentication Number

o
1
2
3

Description

None
UNIX-style
Short hand UNIX-style
DES

Sun Microsystems administers the entire range of authentica­
tion numbers. If you develop a new authentication flavor and wish
to reserve the authentication number, then you should obtain a
unique authentication number. Blocks of numbers are also avail­
able for assignment to companies. The procedure for obtaining an
authentication number is the same as for obtaining a program
number.

External Data
Representation Standard:
Protocol Specification

A2.1 Status of This Standard
Note: This appendix specifies a protocol that Sun Microsystems,
Inc., and others are using. It has been designated RFClO14 by the
ARPA Network Information Center.

A2.2 Introduction
XDR is a standard for the description and encoding of data. It is
useful for transferring data between different computer architec­
tures, and has been used to communicate data between such di­
verse machines as the Sun Workstation, VAX, IBM-PC, and Cray.
XDR fits into the ISO presentation layer, and is roughly analogous
in purpose to X.409, ISO Abstract Syntax Notation. The major
difference between these two is that XDR uses implicit typing,
while X.409 uses explicit typing.

XDR uses a language to describe data formats. The language
can be used only to describe data; it is not a programming language.
This language allows one to describe intricate data formats in a
concise manner. The alternative of using graphical representations
(itself an informal language) quickly becomes incomprehensible
when faced with complexity. The XDR language itself is similar
to the C language [1], just as Courier [4] is similar to Mesa. Proto­
cols such as Sun RPC (Remote Procedure Call) and the NFS (Net­
work File System) use XDR to describe the format of their data.

The XDR standard makes the following assumption: that
bytes (or octets) are portable, where a byte is defined to be 8 bits
of data. A given hardware device should encode the bytes onto the
various media in such a way that other hardware devices may

Appendix
2

262 APPENDIX 2 External Data Representation Standard: Protocol Specification

decode the bytes without loss of meaning. For example, the Ether­
net standard suggests that bytes be encoded in "little-endian" style
[2], or least significant bit first.

Basic Block Size
The representation of all items requires a multiple of four

bytes (or 32 bits) of data. The bytes are numbered 0 through n -
1. The bytes are read or written to some byte stream such that byte
m always precedes byte m + 1. If the n bytes needed to contain
the data are not a multiple of four, then the n bytes are followed
by enough (0 to 3) residual zero bytes, r, to make the total byte
count a multiple of 4.

We include the familiar graphic box notation for illustration
and comparison. In most illustrations, each box (delimited by a
plus sign at the 4 corners and vertical bars and dashes) depicts a
byte. Ellipses (...) between boxes show zero or more additional
bytes where required.

A Block

+-------+-------+ ... +-------+-------+ ... +-------+

1 byte 0 1 byte 1 1 ... 1 byte n - 1 1 o 1 ... 1 o
+-------+-------+ ... +-------+-------+ ... +-------+

1 < - - - - - - - - - - n bytes - - - - - - - - - - > 1 < - - - - - - r bytes - - - - - - > 1

1<------------ n+r(where(n+r)mod4 = 0) ------------>1

A2.3 XDR Doto Types
Each of the sections that follow describes a data type defined in
the XDR standard, shows how it is declared in the language, and
includes a graphic illustration of its encoding.

For each data type in the language we show a general para­
digm declaration. Note that angle brackets (and») denote variable
length sequences of data and square brackets ([and]) denote fixed­
length sequences of data. "n", "m" and "r" denote integers. For
the full language specification and more formal definitions of terms
such as "identifier" and "declaration", refer to The XDR Language
Specification presented later.

For some data types, more specific examples are included. A
more extensive example of a data description is in An Example of
an XDR Data Description that follows.

A2.3 XDR Data Types 263

Integer
An XDR signed integer is a 32-bit datum that encodes an

integer in the range [-2147483648,2147483647]. The integer is
represented in two's complement notation. The most and least
significant bytes are 0 and 3, respectively. Integers are declared as
follows:

Integer

(MSB) (LSB)
+------+------+------+------+

I byte 0 I byte 1 I byte 2 I byte 3 I
+------+------+------+------+
< - - - - - - - - - - - 32 bits - - - - - - - - - - - >

Unsigned Integer
An XDR unsigned integer is a 32-bit datum that encodes a

nonnegative integer in the range [0,4294967295]. It is represented
by an unsigned binary number with most and least significant
bytes of 0 and 3, respectively. An unsigned integer is declared as
follows:

Unsigned Integer

(MSB) (LSB)
+------+------+------+------+

I byte 0 I byte 1 I byte 2 I byte 3 I
+------+------+------+------+
< - - - - - - - - - - - 32 bits - - - - - - - - - - - >

Enumeration

Enumerations have the same representation as signed inte­
gers. Enumerations are handy for describing subsets of the inte­
gers. Enumerated data is declared as follows:

enum { name-identifier = constant, ... } identifier;

For example, the three colors red, yellow, and blue could be de­
scribed by an enumerated type:

enum { RED = 2, YELLOW = 3, BLUE = 5} colors;

264 APPENDIX 2 External Data Representation Standard: Protocol Specification

It is an error to encode as an enum any other integer than those
that have been given assignments in the enum declaration.

Boolean
Booleans are important enough and occur frequently enough

to warrant their own explicit type in the standard. Booleans are
declared as follows:

bool identifier;

This is equivalent to:

enum {FALSE = 0, TRUE = I} identifier;

Hyper Integer and Unsigned Hyper
Integer

The standard also defines 64-bit (8-byte) numbers called
hyper integer and unsigned hyper integer. Their representations
are the obvious extensions of integer and unsigned integer defined
above. They are represented in two's complement notation. The
most and least significant bytes are 0 and 7, respectively. Their
declarations:

Hyper Integer
Unsigned Hyper Integer

(MSB) (LSB)
+------+------+------+------+------+------+------+------+

I byte 0 I byte 1 I byte 2 I byte 3 I byte 4 I byte 5 I byte 6 I byte 7 I
+------+------+------+------+------+------+------+------+
< - 64 bits - >

Floating-point
The standard defines the floating-point data type "float" (32

bits or 4 bytes). The encoding used is the IEEE standard for
normalized single-precision floating-point numbers [3]. Three
fields describe the single-precision floating-point number. The
first field, which takes ((uses?)) one bit, refers to the sign of the
number; values 0 and 1 represent positive and negative, respec­
tively. The second field describes the exponent of the number to

A2.3 XDR Data Types 265

the base 2, with the exponent biased by 127. Eight bits are devoted
to the second field. The third field refers to the fractional part of
the number's mantissa with base 2; 23 bits are devoted to this field.

Therefore, the floating-point number is described by:

(-1)**8 * 2**(E-Bias) * l.F

It is declared as follows:

Single-Precision Floating-Point

+------+------+------+------+

1 byte 0 1 byte 1 1 byte 2 1 byte 3 1
81 ElF 1
+------+------+------+------+
11<- 8 ->1< ----- 23 bits ----- >1
< ---------- 32 bits ---------- >

Just as the most and least significant bytes of a number are 0
and 3, the most and least significant bits of a single-precision
floating-point number are 0 and 31. The beginning bit (and most
significant bit) offsets of S, E, and F are 0, 1, and 9, respectively.
Note that these numbers refer to the mathematical positions of the
bits, and NOT to their actual physical locations (which vary from
medium to medium).

The IEEE specifications should be consulted concerning the
encoding for signed zero, signed infinity (overflow), and de norma­
lized numbers (underflow) [3]. According to IEEE specifications,
the "NaN" (not a number) is system dependent and should not be
used externally.

Double-precision Floating-point
The standard defines the encoding for the double-precision

floating-point data type "double" (64 bits orB bytes). The encoding
used is the IEEE standard for normalized double-precision float­
ing-point numbers [3]. The standard encodes the following three
fields, which describe the double-precision floating-point number.
The first field, which takes one bit, refers to the sign of the number;
values 0 and 1 represent positive and negative, respectively. The
second field describes the exponent of the number to the base 2,
with the exponent biased by 1023. Eleven bits are devoted to the

266 APPENDIX 2 External Data Representation Standard: Protocol Specification

second field. The third field refers to the fractional part of the
number's mantissa with base 2; 52 bits are devoted to this field.
Therefore, the floating-point number is described by:

(-l)**S * 2**(E-Bias) * l.F

It is declared as follows:

Double-Precision Floating-Point

+------+------+------+------+------+------+------+------+

I byte 0 I byte 1 I byte 2 I byte 3 I byte 4 I byte 5 I byte 6 I byte 7 I
S I ElF I
+------+------+------+------+------+------+------+------+
1 1<- 11 -> I < - - - - - - - - - - - - - - - - - - - 52 bits - - - - - - - - - - - - - - - - - - - > I
< - 64 bits - >

Just as the most and least significant bytes of a number are 0
and 3, the most and least significant bits of a double-precision
floating-point number are 0 and 63. The beginning bit (and most
significant bit) offsets ofS, E ,and Fare 0,1, and 12, respectively.
Note that these numbers refer to the mathematical positions of the
bits, and NOT to their actual physical locations (which vary from
medium to medium).

The IEEE specifications should be consulted concerning the
encoding for signed zero, signed infinity (overflow), and de norma­
lized numbers (underflow) [3]. According to IEEE specifications,
the "NaN" (not a number) is system dependent and should not be
used externally.

Fixed-length Opaque Data
At times, fixed-length uninterpreted data needs to be passed

among machines. This data is called "opaque" and is declared as
follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to
contain the opaque data. If n is not a multiple of four, then the n
bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of four.

A2.3 XDR Data Types 267

Fixed-Length Opaque

o 1
+-------+-------+ ... +-------+-------+ ... +-------+

I byte 0 I byte 1 I ... I byte 0 -11 o I ... I o
+-------+-------+ ... +-------+-------+ ... +-------+
I < - - - - - - - - - - 0 bytes - - - - - - - - - - > I < - - - - - - r bytes - - - - - - > I
1<------------ 0+r(where(0+r)mod4 = 0) ------------>1

Variable-length Opaque Data
The standard also provides for variable-length (counted)

opaque data, defined as a sequence of n (numbered 0 through n -
1) arbitrary bytes to be the number n encoded as an unsigned
integer (as described below), and followed by the n bytes of the
sequence.

Byte m of the sequence always precedes byte m + 1 of the
sequence, and byte 0 of the sequence always follows the se­
quence's length (count). Enough (0 to 3) residual zero bytes, r, to
make the total byte count a multiple of four. Variable-length
opaque data is declared in the following way:

opaque ideotifier(m};

or

opaque ideotifier();

The constant m denotes an upper bound of the number of bytes
that the sequence may contain. If m is not specified, as in the
second declaration, it is assumed to be (2**32) - 1, the maximum
length. The constant m would normally be found in a protocol
specification. For example, a filing protocol may state that the
maximum data transfer size is 8192 bytes, as follows:

opaque filedata(8192};

This can be illustrated as follows:

Variable-Length Opaque

o 1 2 3 4 5
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+

leogth 0 I byte 0 I byte 1 I ... I 0 - 1 I 0 I· .. I 0
+----+----+----+----+-----+-----+ ... +-----+-----+ '" +-----+
1<------4 bytes------> I <-------0 bytes-------> I <---- r bytes ----> I
1<--------------- 4+0+r (where (o+r) mod 4 = 0) --------------->1

268 APPENDIX 2 External Data Representation Standard: Protocol Specification

It is an error to encode a length greater than the maximum de­
scribed in the specification.

String
The standard defines a string of n (numbered 0 through n -

1) ASCII bytes to be the number n encoded as an unsigned integer
(as described above), and followed by the n bytes of the string.
Byte m of the string always precedes byte m + 1 of the string, and
byte 0 of the string always follows the string's length. Ifn is not a
multiple of four, then the n bytes are followed by enough (0 to 3)
residual zero bytes, r, to make the total byte count a multiple of
four. Counted byte strings are declared as follows:

string object(m};

or
string object();

The constant m denotes an upper bound of the number of bytes
that a string may contain. If m is not specified, as in the second
declaration, it is assumed to be (2**32) - 1, the maximum length.
The constant m would normally be found in a protocol specifica­
tion. For example, a filing protocol may state that a file name can
be no longer than 255 bytes, as follows:

string filename(255};

Which can be illustrated as:

A String

o 1 2 3 4 5
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+

length n 1 byte 0 1 byte 1 1 ... 1 n -1 1 0 I· .. 1 0
+----+----+----+----+-----+-----+ ... +-----+-----+ ... +-----+
1 <------4 bytes- -----> 1 <- - - - - - -n bytes- - - - ---> 1 <---- r bytes --- -> 1

1 <--------------- 4+n+r (where (n+r) mod 4 = 0) --------------->1

It is an error to encode a length greater than the maximum de­
scribed in the specification.

Fixed-length Array
Declarations for fixed-length arrays of homogeneous elements

are in the following form:

A2.3 XDR Data Types 269

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n - 1 are
encoded by individually encoding the elements of the array in
their natural order, 0 through n - 1. Each element's size is a
multiple of four bytes. Though all elements are of the same type,
the elements may have different sizes. For example, in a fixed­
length array of strings, all elements are of type "string", yet each
element will vary in its length.

Fixed-Length Array

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+
element 0 element 1 1 .. ·1 element n-1

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+
1 < - n elements - > 1

Variable-length Array
Counted arrays provide the ability to encode variable-length

arrays of homogeneous elements. The array is encoded as the
element count n (an unsigned integer) followed by the encoding
of each of the array's elements, starting with element 0 and progress­
ing through element n - 1. The declaration for variable-length
arrays follows this form:

type-name identifier(m);

or

type-name identifier();

The constant m specifies the maximum acceptable element count
of an array; if m is not specified, as in the second declaration, it is
assumed to be (2**32) - 1.

Counted Array

o 123
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+

n element 0 element 1 I. .. 1 element n - 1 1
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+
1<--4 bytes-->I<-------------- n elements -------------->1

It is an error to encode a value of n that is greater than the maximum
described in the specification.

270 APPENDIX 2 External Data Representation Standard: Protocol Specification

Structure
Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;

} identifier;

The components of the structure are encoded in the order of their
declaration in the structure. Each component's size is a multiple
of four bytes, though the components may be different sizes.

Structure

+----------+----------+ .. .
I component A I component B I .. .
+----------+----------+ .. .

Discriminated Union
A discriminated union is a type composed of a discriminant

followed by a type selected from a set of prearranged types accord­
ing to the value of the discriminant. The type of discriminant is
either "inC, "unsigned int", or an enumerated type, such as
"boo!". The component types are called "arms" of the union, and
are preceded by the value of the discriminant which implies their
encoding. Discriminated unions are declared as follows:

union switch (discriminant-declaration) {
case discriminant-value-A:
arm-declaration-A;
case discriminant-value-B:
arm-declaration -B;

default: default-declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discrimi­
nant. The default arm is optional. If the discriminant is not speci­
fied, then a valid encoding of the union cannot take on unspecified
discriminant values. The size of the implied arm is always a multi­
ple of four bytes.

The discriminated union is encoded as its discriminant fol­
lowed by the encoding of the implied arm.

A2.3 XDR Data Types 271

Discriminated Union

o 1 2 3
+---+---+---+---+---+---+---+---+

discriminant implied arm
+---+---+---+---+---+---+---+---+

1< - - - -4 bytes - - - -> I

Void
An XDR void is a O-byte quantity. Voids are useful for describ­

ing operations that take no data as input or no data as output. They
are also useful in unions, where some arms may contain data and
others do not. The declaration is simply as follows:

void;

Voids are illustrated as follows:

++
II
++
- -><- - 0 bytes

Constant

The data declaration for a constant follows this form:

const name-identifier = n;

"const" is used to define a symbolic name for a constant; it does
not declare any data. The symbolic constant may be used anywhere
a regular constant may be used. For example, the following defines
a symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

Typedef
"typedef" does not declare any data either, but serves to

define new identifiers for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration
part of the typedef. For example, the following defines a new type
called "eggbox" using an existing type called "egg":

typedef egg eggbox[DOZEN];

272 APPENDIX 2 External Data Representation Standard: Protocol Specification

Variables declared using the new type name have the same type
as the new type name would have in the typedef, if it were consid­
ered a variable. For example, the following two declarations are
equivalent in declaring the variable "fresheggs":

eggbox fresheggs;
egg fresheggs[DOZENL

When a typedef involves a struct, enum, or union definition, there
is another (preferred) syntax that may be used to define the same
type. In general, a typedef of the following form:

typedef «struct, union, or enum definition» identifier;

may be converted to the alternative form by removing the
"typedef" part and placing the identifier after the "strucC,
"union", or "enum" keyword, instead of at the end. For example,
here are the two ways to define the type "bool":

typedef enum {
FALSE = 0,
TRUE = 1
} bool;

enum bool {
FALSE = 0,
TRUE =·1
};

/* using typedef */

/* preferred alternative */

The reason for preferring this syntax is that one does not have to
wait until the end of a declaration to figure out the name of the
new type.

Optional-data
Optional-data is one kind of union that occurs so frequently

that we give it a special syntax of its own for declaring it. It is
declared as follows:

type-name *identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:
type-name element;
case FALSE:
void;

} identifier;

A2.3 XDR Data Types 273

It is also equivalent to the following variable-length array declara­
tion, since the boolean "opted" can be interpreted as the length of
the array:

type-name identifier(l};

Optional-data is not so interesting in itself, but it is very useful for
describing recursive data-structures such as linked-lists and trees.
For example, the following defines a type "stringlist" that encodes
lists of arbitrary length strings:

struct *stringlist {
string item(};
stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {

};

case TRUE:
struct {

string item(};
stringlist next;

} element;
case FALSE:

void;

or as a variable-length array:

struct stringlist(l} {

};

string item(};
stringlist next;

Both of these declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them. The optional-data type also has a close correlation to how
recursive data structures are represented in high-level languages
such as Pascal or C by use of pointers. In fact, the syntax is the
same as that of the C language for pointers.

Areas for Future Enhancement

The XDR standard lacks representations for bit fields and
bitmaps, since the standard is based on bytes. Also missing are
packed (or binary-coded) decimals.

274 APPENDIX 2 External Data Representation Standard: Protocol Specification

The intent of the XDR standard was not to describe every
kind of data that people have ever sent or will ever want to send
from machine to machine. Rather, it only describes the most com­
monly used data-types of high-level languages such as Pascal or C
so that applications written in these languages will be able to
communicate easily over some medium.

One could imagine extensions to XDR that would let it de­
scribe almost any existing protocol, such as TCP. The minimum
necessary for this are support for different block sizes and byte­
orders. The XDR discussed here could then be considered the 4-
byte big-endian member of a larger XDR family.

A2.4 Discussion

Why a Language for Describing Data?
There are many advantages in using a data-description lan­

guage such as XDR versus using diagrams. Languages are more
formal than diagrams and lead to less ambiguous descriptions of
data. Languages are also easier to understand and allow one to
think of other issues instead of the low-level details of bit-encod­
ing. Also, there is a close analogy between the types of XDR
and a high-level language such as C or Pascal. This makes the
implementation ofXDR encoding and decoding modules an easier
task. Finally, the language specification itself is an ASCII string
that can be passed from machine to machine to perform on-the-fly
data interpretation.

Why Only One Byte-Order for an
XDR Unit?

Supporting two byte-orderings requires a higher level proto­
col for determining in which byte-order the data is encoded. Since
XDR is not a protocol, this cannot be done. However, an advantage
of supporting two byte-orderings is that data in XDR format can be
written to a magnetic tape, and any machine will be able to inter­
pret it, since no higher level protocol is necessary for determining
the byte-order.

Why Does XDR Use Big-Endian
Byte-Order?

A2.4 Discussion 275

Yes, it is unfair, but having only one byte-order means you
have to be unfair to somebody. Many architectures, such as the
Motorola 68000 and IBM 370, support the big-endian byte-order.

Why Is the XDR Unit Four Bytes Wide?
There is a tradeoff in choosing the XDR unit size. Choosing

a small size such as two makes the encoded data small, but causes
alignment problems for machines that aren't aligned on these
boundaries. A large size such as eight means the data will be
aligned on virtually every machine, but causes the encoded data
to grow too big. We chose four as a compromise. Four is big enough
to support most architectures efficiently, except for rare machines
such as the eight-byte aligned Cray. Four is also small enough to
keep the encoded data restricted to a reasonable size.

Why Must Variable-Length Data Be
Padded with Zeros?

It is desirable that the same data encode into the same thing
on all machines, so that encoded data can be meaningfully com­
pared or checksummed. Forcing the padded bytes to be zero en­
sures this.

Why Is There No Explicit Data-Typing?
Data-typing has a relatively high cost for what small advan­

tages it may have. One cost is the expansion of data due to the
inserted type fields. Another is the added cost of interpreting these
type fields and acting accordingly. Since most protocols alref\.dy
know what type they expect, data-typing supplies only redundant
information. However, one can still get the benefits of data-typing
using XDR. One way is to encode two things: first a string which
is the XDR data description of the encoded data, and then the
encoded data itself. Another way is to assign a value to all the types
in XDR, and then define a universal type which takes this value
as its discriminant and for each value describes the corresponding
data type.

276 APPENDIX 2 External Data Representation Standard: Protocol Specification

A2.5 The XDR language Specification

Notational Conventions
This specification uses an extended Backus-Naur Form nota­

tion for describing the XDR language. Here is a brief description
of the notation:

• The characters I, (,), [,], , and * are special.

• Terminal symbols are strings of any characters surrounded
by double quotes.

• Non-terminal symbols are strings of non-special characters.

• Alternative items are separated by a vertical bar ("I").

· Optional items are enclosed in brackets.

· Items are grouped together by enclosing them in paren­
theses.

• A * following an item means 0 or more occurrences of that
item.

For example, consider the following pattern:

"a" "very" (", " " very")* [" cold" "and"] " rainy" ("day" I "night")

An infinite number of strings match this pattern. A few of them
are:

"a very rainy day"
"a very, very rainy day"
"a very cold and rainy day"
"a very, very, very cold and rainy night"

lexical Notes
• Comments begin with '/*' and terminate with '*/'.
· White space serves to separate items and is otherwise ig­

nored.

• An identifier is a letter followed by an optional sequence of
letters, digits or underbar C-'). The case ofidentifiers is not
ignored.

A2.5 The XDR Language Specification 277

. A constant is a sequence of one or more decimal digits,
optionally preceded by a minus-sign (' - ').

Syntax Information
declaration:

value:

type-specifier identifier
I type-specifier identifier "[" value "]"
I type-specifier identifier "(" [value] ")"
I "opaque" identifier "[" value "]"
I "opaque" identifier "(" [value] ")"
I "string" identifier "(" [value] ")"
I type-specifier "*" identifier
I "void"

constant
I identifier

type-specifier:
["unsigned"] "int"
["unsigned"] "hyper"
"float"
"double"
"bool"
enum-type-spec
struct-type-spec
union-type-spec
identifier

enum-type-spec:
"enum" enum-body

enum-body
"{"
(identifier" =" value)
("," identifier" =" value)*
"}"

struct-type-spec:
"struct" struct-body

struct-body:
"{"
(declaration ";")
(declaration ";")*
"}"

278 APPENDIX 2 External Data Representation Standard: Protocol Specification

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]
"}"

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"
I "enum" identifier enum-body ";"
I "struct" identifier struct-body ";"
I "union" identifier union-body";"

definition:
type-def
I constant-def

specification:
definition *

Syntax Notes
1. The following are keywords and cannot be used as identifi-

"b 1"" "" " "d f: 1" "d bl"" " ers: 00, case, const, e au t, ou e, enum ,
"float", "hyper", opaque", "string", "struct", "switch",
"typedef", "union", "unsigned" and "void".

2. Only unsigned constants may be used as size specifications
for arrays. If an identifier is used, it must have been de­
clared previously as an unsigned constant in a "const" defi­
nition.

3. Constant and type identifiers within the scope of a specifi­
cation are in the same name space and must be declared
uniquely within this scope.

4. Similarly, variable names must be unique within the scope
of struct and union declarations. Nested struct and union
declarations create new scopes.

A2.6 An Example of an XDR Data Description 279

5. The discriminant of a union must be of a type that evaluates
to an integer. That is, "int", "unsigned inC, "bool", an
enumerated type or any typedefed type that evaluates to
one of these is legal. Also, the case values must be one of
the legal values of the discriminant. Finally, a case value
may not be specified more than once within the scope of a
union declaration.

A2.6 An Example of an XDR Data
Description

Here is a short XDR data description of a thing called a "file",
which might be used to transfer files from one machine to another.

const MAXUSERNAME = 32;
const MAXFILELEN = 65535;
const MAXNAMELEN = 255;

/* max length of a user name */
/* max length of a file */
/* max length of a file name */

/*
* Types of files:
*/

enum filekind {
TEXT = 0,
DATA = 1,
EXEC = 2

};

/*

/* ascii data */
/* raw data */
/* executable */

* File information, per kind of file:
*/

union filetype switch (filekind kind) {

};

/*

case TEXT:

case

case

void;
DATA:
string creator(MAXNAMELEN);
EXEC:
string interpretor(MAXNAMELEN);

* A complete file:
*/

/* no extra information */

/* data creator */

/* program interpretor */

280 APPENDIX 2 External Data Representation Standard: Protocol Specification

struct file {

};

string filename(MAXNAMELEN); /* name of file */
filetype type; /* info about file */
string owner(MAXUSERNAME); /* owner of file */
opaque data(MAXFILELEN); /* file data */

Suppose now that there is a user named "john" who wants to store
his lisp program "sillyprog" that contains just the data "(quit)".
His file would be encoded as follows:

Offset Hex Bytes ASCII Description

0 00000009 Length of filename = 9
4 7369 6c 6c sill Filename characters
8 7970 726f ypro ... and more characters ...

12 67000000 g and 3 zero-bytes offill
16 00000002 Filekind is EXEC = 2
20 00000004 Length of interpretor = 4
24 6c 69 73 70 lisp Interpretor characters
28 00000004 Length of owner = 4
32 6a 6f68 6e john Owner characters
36 00000006 Length of file data = 6
40 2871 7569 (qui File data bytes ...
44 74290000 t) and 2 zero-bytes of fill

References

[1] Brian W. Kernighan & Dennis M. Ritchie, "The C Programming Lan­
guage", Bell Laboratories, Murray Hill, New Jersey, 1978.

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer,
October 1981.

[3] "IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics Engineers, August
1985.

[4] "Courier: The Remote Procedure Call Protocol", XEROX Corporation,
XSIS 038112, December 1981.

Remote Procedure Call:
Protocol Specification

A3.1 Status of this Memo
Note: This appendix specifies a protocol that Sun Microsystems,
Inc., and others are using. It has been designated RFC1057 by the
ARPA Network Information Center.

A3.2 Introduction
This appendix specifies a message protocol used in implementing
Sun's Remote Procedure Call (RPC) package. (The message proto­
col is specified with the External Data Representation (XDR) lan­
guage. See the External Data Representation Standard: Protocol
Specification Appendix 3 for the details. Here, we assume that the
reader is familiar with XDR and do not attempt to justify it or its
uses.) The paper by Birrell and Nelson [1] is recommended as an
excellent background to and justification of RPC.

Terminology
This chapter discusses servers, services, programs, proce­

dures, clients, and versions. A server is a piece of software where
network services are implemented. A network service is a collec­
tion of one or more remote programs. A remote program imple­
ments one or more remote procedures; the procedures, their param­
eters, and results are documented in the specific program's
protocol specification (see the Port Mapper Program Protocol be­
low, for an example). Network clients are pieces of software that
initiate remote procedure calls to services. A server may support
more than one version of a remote program in order to be forward
compatible with changing protocols.

Appendix
3

282 APPENDIX 3 Remote Procedure Call: Protocol Specification

For example, a network file service may be composed of two
programs. One program may deal with high-level applications such
as file system access control and locking. The other may deal with
low-level file 10 and have procedures like "read" and "write". A
client machine of the network file service would call the proce­
dures associated with the two programs of the service on behalf of
some user on the client machine.

The RPC Model
The remote procedure call model is similar to the local proce­

dure call model. In the local case, the caller places arguments
to a procedure in some well-specified location (such as a result
register). It then transfers control to the procedure, and eventually
gains back control. At that point, the results of the procedure are
extracted from the well-specified location, and the caller continues
execution.

The remote procedure call is similar, in that one thread of
control logically winds through two processes - one is the caller's
process, the other is a server's process. That is, the caller process
sends a call message to the server process and waits (blocks) for a
reply message. The call message contains the procedure's parame­
ters, among other things. The reply message contains the proce­
dure's results, among other things. Once the reply message is
received, the results of the procedure are extracted, and the caller's
execution is resumed.

On the server side, a process is dormant awaiting the arrival
of a call message. When one arrives, the server process extracts
the procedure's parameters, computes the results, sends a reply
message, and then awaits the next call message.

Note that in this model, only one of the two processes is active
at any given time. However, this model is only given as an example.
The RPC protocol makes no restrictions on the concurrency model
implemented, and others are possible. For example, an implemen­
tation may choose to have RPC calls be asynchronous, so that the
client may do useful work while waiting for the reply from the
server. Another possibility is to have the server create a task to
process an incoming request, so that the server can be free to
receive other requests.

A3.2 Introduction 283

Transports and Semantics

The RPC protocol is independent of transport protocols. That
is, RPC does not care how a message is passed from one process
to another. The protocol deals only with specification and interpre­
tation of messages.

It is important to point out that RPC does not try to implement
any kind of reliability and that the application must be aware of
the type of transport protocol underneath RPC. If it knows it is
running on top of a reliable transport such as TCP/IP[6], then most
of the work is already done for it. On the other hand, if it is running
on top of an unreliable transport such as UDP/IP[7], it must imple­
ment its own retransmission and time-out policy as the RPC layer
does not provide this service.

Because of transport independence, the RPC protocol does
not attach specific semantics to the remote procedures or their
execution. Semantics can be inferred from (but should be explicitly
specified by) the underlying transport protocol. For example, con­
sider RPC running on top of an unreliable transport such as UDPI
IP. If an application retransmits RPC messages after short time­
outs, the only thing it can infer if it receives no reply is that the
procedure was executed zero or more times. If it does receive a
reply, then it can infer that the procedure was executed at least
once.

A server may wish to remember previously granted requests
from a client and not regrant them in order to insure some degree
of execute-at-most-once semantics. A server can do this by taking
advantage of the transaction ID that is packaged with every RPC
request. The main use of this transaction is by the client RPC layer
in matching replies to requests. However, a client application may
choose to reuse its previous transaction ID when retransmitting a
request. The server application, knowing this fact, may choose to
remember this ID after granting a request and not regrant requests
with the same ID, thus achieving some degree of execute-at-most­
once semantics. The server is not allowed to examine this ID in
any other way except as a test for equality.

On the other hand, if using a reliable transport such as TCPI
IP, the application can infer from a reply message that the proce­
dure was executed exactly once, but if it receives no reply message,

284 APPENDIX 3 Remote Procedure Call: Protocol Specification

it cannot assume the remote procedure was not executed. Note
that even if a connection-oriented protocol like TCP is used, an
application still needs time-outs and reconnection to handle server
crashes.

There are other possibilities for transports besides datagram­
or connection-oriented protocols. For example, a request-reply
protocol such as VMTP[2] is perhaps the most natural transport for
RPC. At Sun, RPC is currently implemented on top of both TCPI
IP and UDP/IP transports.

Binding and Rendezvous Independence
The act of binding a client to a service is NOT part of the

remote procedure call specification. This important and necessary
function is left up to some higher-level software. (The software may
use RPC itself-see the Port Mapper Program Protocol below).

Implementors should think of the RPC protocol as the jump­
subroutine instruction ("JSR") of a network; the loader (binder)
makes JSR useful, and the loader itself uses JSR to accomplish
its task. Likewise, the network makes RPC useful, using RPC to
accomplish this task.

Authentication
The RPC protocol provides the fields necessary for a client to

identify itself to a service and vice-versa. Security and access con­
trol mechanisms can be built on top of the message authentication.
Several different authentication protocols can be supported. A field
in the RPC header indicates which protocol is being used. More
information on specific authentication protocols can be found in
the Authentication Protocols below.

A3.3 RPC Protocol Requirements
The RPC protocol must provide for the following:

· Unique specification of a procedure to be called.

• Provisions for matching response messages to request mes­
sages.

• Provisions for authenticating the caller to service and vice­
versa.

A3.3 RPC Protocol Requirements 285

In addition to these requirements, features that detect the follow­
ing are worth supporting because of protocol roll-over errors, imple­
mentation bugs, user error, and network administration:

· RPC protocol mismatches.

• Remote program protocol version mismatches.

· Protocol errors (such as misspecification of a procedure's
parameters).

· Reasons why remote authentication failed.

· Any other reasons why the desired procedure was not called.

Programs and Procedures
The RPC call message has three unsigned fields: remote

program number, remote program version number, and remote
procedure number. The three fields uniquely identify the proce­
dure to be called. Program numbers are administered by some
central authority (like Sun). Once an implementor has a program
number, he can implement his remote program; the first imple­
mentation would most likely have the version number of 1.
Because most new protocols evolve into better, stable, and
mature protocols, a version field of the call message identifies
which version of the protocol the caller is using. Version numbers
make speaking old and new protocols through the same server
process possible.

The procedure number identifies the procedure to be called.
These numbers are documented in the specific program's protocol
specification. For example, a file service's protocol specification
may state that its procedure number 5 is "read" and procedure
number 12 is "write".

Just as remote program protocols may change over several
versions, the actual RPC message protocol could also change.
Therefore, the call message also has in it the RPC version number,
which is always equal to two for the version of RPC described
here.

The reply message to a request message has enough informa­
tion to distinguish the following error conditions:

286 APPENDIX 3 Remote Procedure Call: Protocol Specification

• The remote implementation of RPC does speak protocol
version 2. The lowest and highest supported RPC version
numbers are returned.

• The remote program is not available on the remote system.

• The remote program does not support the requested version
number. The lowest and highest supported remote program
version numbers are returned.

• The requested procedure number does not exist. (This is
usually a caller side protocol or programming error.)

· The parameters to the remote procedure appear to be gar­
bage from the server's point of view. (Again, this is usually
caused by a disagreement about the protocol between client
and service.)

Authentication
Provisions for authentication of caller to service and vice­

versa are provided as a part of the RPC protocol. The call message
has two authentication fields, the credentials and verifier. The
reply message has one authentication field, the response verifier.
The RPC protocol specification defines all three fields to be the
following opaque type:

enum auth_flavor {

};

AUTH_NULL = 0,
AUTH_UNIX = 1,
AUTH_SHORT = 2,
AUTH_DES = 3
/* and more to be defined */

struct opaque_auth {
autlLflavor flavor;
opaque body(400);

};

In simple English, any opaque_auth structure is an auth-flavor
enumeration followed by bytes which are opaque to the RPC
protocol implementation.

The interpretation and semantics of the data contained within
the authentication fields is specified by individual, independent

A3.3 RPC Protocol Requirements 287

authentication protocol specifications. (See Authentication Proto­
cols below, for definitions of the various authentication protocols.)

If authentication parameters were rejected, the response mes­
sage contains information stating why they were rejected.

Program Number Assignment
Program numbers are given out in groups ofOx20000000 (decimal
536870912) according to the following chart:

Program Number

OxOOOOOOOO - OxlFFFFFFF
Ox20000000 - Ox3FFFFFFF
Ox40000000 - Ox5FFFFFFF
Ox60000000 - Ox7FFFFFFF
Ox80000000 - Ox9FFFFFFF
OxAOOOOOOO - OxBFFFFFFF
Oxcooooooo - OxDFFFFFFF
OxEOOOOOOO - OxFFFFFFFF

Description

Defined by Sun Microsystems
Defined by User
Transient
Reserved
Reserved
Reserved
Reserved
Reserved

The first group is a range of numbers administered by Sun Microsys­
terns and should be identical for all sites. The second range is for
applications peculiar to a particular site. This range is intended
primarily for debugging new programs. When a site develops an
application that might be of general interest, that application
should be given an assigned number in the first range. The third
group is for applications that generate program numbers dynami­
cally. The final groups are reserved for future use, and should not
be used.

Other Uses of the RPC Protocol
The intended use of this protocol is for calling remote proce­

dures. That is, each call message is matched with a response mes­
sage. However, the protocol itself is a message-passing protocol
with which other (non-RPC) protocols can be implemented. Sun
currently uses, or perhaps abuses, the RPC message protocol for
the following two (non-RPC) protocols: batching (or pipe lining)
and broadcast RPC. These two protocols are discussed but not
defined below.

Botching. Batching allows a client to send an arbitrarily large se­
quence of call messages to a server; batching typically uses reliable

288 APPENDIX 3 Remote Procedure Call: Protocol Specification

byte stream protocols (like TCP/IP) for its transport. In the case of
batching, the client never waits for a reply from the server, and the
server does not send replies to batch requests. A sequence of batch
calls is usually terminated by a legitimate RPC in order to Hush
the pipeline (with positive acknowledgement).

Broadcast RPC. In broadcast RPC-based protocols, the client sends
a broadcast packet to the network and waits for numerous replies.
Broadcast RPC uses unreliable, pacKet-based protocols (like UDPI
IP) as its transports. Servers that support broadcast protocols only
respond when the request is successfully processed, and are silent
in the face of errors. Broadcast RPC uses the Port Mapper RPC
service to achieve its semantics. See the Port Mapper Program
Protocol below, for more information.

A3.4 The RPC Message Protocol
This section defines the RPC message protocol in the XDR data
description language. The message is defined in a top-down style.

enum ms~type {
CALL = 0,
REPLY = 1

};

/*
* A reply to a call message can take on two forms:
* The message was either accepted or rejected.
*/

enum reply-stat {
MSG-ACCEPTED = 0,
MSG_DENIED = 1

};

/*
* Given that a call message was accepted, the following is the
* status of an attempt to call a remote procedure.

*/
enum acceptJtat {

SUCCESS
PROG_UNAVAIL
PROG_MISMATCH
PROC_UNA VAIL
GARBAGE-ARGS

};

= 0, /* RPC executed successfully */
= 1, /* remote hasn't exported program */
= 2, /* remote can't support version # */
= 3, /* program can't support procedure */
= 4/* procedure can't decode params */

/*
* Reasons why a call message was rejected:
*/

A3.4 The RPC Message Protocol 289

enum rejecLstat {
RPC_MISMATCH
AUTH_ERROR

0, /* RPC version number! = 2 */
1 /* remote can't authenticate caller */

};
/*
* Why authentication failed:
*/

enum auth_stat {
AUTH_BADCRED
AUTH_REJECTEDCRED
AUTH_BADVERF
AUTH_REJECTEDVERF
AUTH_TOOWEAK

};

/*
* The RPC message:

= 1, /* bad credentials */
= 2, /* client must begin new session */
= 3, /* bad verifier */
= 4, /* verifier expired or replayed */
= 5 /* rejected for security reasons */

* All messages start with a transaction identifier, xid,
* followed by a two-armed discriminated union. The union's
• discriminant is a msg_type which switches to one of the two
• types of the message. The xid of a REPLY message always
• matches that of the initiating CALL message. NB: The xid
* field is only used for clients matching reply messages with
* call messages or for servers detecting retransmissions; the
* service side cannot treat this xid as any type of sequence
* number.
*/ .

struct rpc_msg {
unsigned int xid;

};

/*

union switch (msg_type mtype) {
case CALL:

} body;

calLbody cbody;
case REPLY:

reply_body rbody;

* Body of an RPC request call:
* In version 2 of the RPC protocol specification, rpcvers must
* be equal to 2. The fields prog, vers, and proc specify the
* remote program, its version number, and the procedure within
* the remote program to be called. After these fields are two
* authentication parameters: cred (authentication credentials)

290 APPENDIX 3 Remote Procedure Call: Protocol Specification

* and verf (authentication verifier). The two authentication
* parameters are followed by the parameters to the remote
* procedure, which are specified by the specific program
* protocol.
*/

struct calLbody {
unsigned int rpcvers; /* must be equal to two (2) */
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/* procedure specific parameters start here */

};

/*
* Body of a reply to an RPC request:
* The call message was either accepted or rejected.
*/

union reply_body switch (reply_stat stat) {
case MSG-ACCEPTED:

acceptecLreply areply;
case MSG_DENIED:

rejectecLreply rreply;
} reply;

/*
* Reply to an RPC request that was accepted by the server:
* there could be an error even though the request was accepted.
* The first field is an authentication verifier that the server
* generates in order to validate itself to the caller. It is
* followed by a union whose discriminant is an enum
* accepLstat. The SUCCESS arm of the union is protocol
* specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE-ARGP
* arms of the union are void. The PROG_MISMATCH arm specifies
* the lowest and highest version numbers of the remote program
* supported by the server.
*/

struct acceptecLreply {
opaque-auth verf;
union switch (accepLstat stat) {

case SUCCESS:
opaque results[O];
/* procedure-specific results start here */

case PROG_MISMATCH:
struct {

default:

};

/*

A3.5 Authentication Protocols 291

unsigned int low;
unsigned int high;

} mismatch_info;

/*
* Void. Cases include PROG_UNAVAIL,
PROC_UNAVAIL,
* and GARBAGE-ARGS.
*/

void;

* Reply to an RPC request that was rejected by the server:
* The request can be rejected for two reasons: either the
* server is not running a compatible version of the RPC
* protocol (RPPC_MISMATCH), or the server refuses to
* authenticate the caller (AUTH_ERROR). In case of an RPC
* version mismatch, the server returns the lowest and highest
* supported RPC version numbers. In case of refused
* authentication, failure status is returned.
*1

union rejectedJeply switch (rejecLstat stat) {
case RPC_MISMATCH:

};

struct {
unsigned int low;
unsigned int high;

} mismatch_info;
case AUTH_ERROR:

auth_stat stat;

A3.5 Authentication Protocols
As previously stated, authentication parameters are opaque, but
open-ended to the rest of the RPC protocol. This section defines
some "flavors" of authentication implemented at (and supported
by) Sun. Other sites are free to invent new authentication types,
with the same rules of flavor number assignment as there is for
program number assignment.

292 APPENDIX 3 Remote Procedure Call: Protocol Specification

Null Authentication
Often calls must be made where the caller does not know who

he is or the server does not care who the caller is. In this case, the
flavor value (the discriminant of the opaque_auth 's union) of the
RPC message's credentials, verifier, and response verifier is
AUTH-.NULL. The bytes of the opaque_auth's body are undefined.
It is recommended that the opaque length be zero.

UNIX Authentication
The caller of a remote procedure may wish to identify himself

as he is identified on a UNIX system. The value of the credential's
discriminant of an RPC call message is AUTH_UNIX. The bytes of
the credential's opaque body encode the following structure:

struct auth_unix {

};

unsigned int stamp;
string machinename(255);
unsigned int uid;
unsigned int gid;
unsigned int gids(lO);

The stamp is an arbitrary ID which the caller machine may
generate. The machinename is the name of the caller's machine
(like "krypton"). The uid is the caller's effective user ID. The gid
is the caller's effective group ID. The gids is a counted array of
groups which contain the caller as a member. The verifier accompa­
nying the credentials should be of AUTH-.NULL (defined above).

The value of the discriminant of the response verifier received
in the reply message from the server may be AUTH-.NULL or
AUTH_SHORT. 'In the case of AUTH_SHORT, the bytes of the
response verifier's string encode an opaque structure. This new
opaque structure may now be passed to the server instead of the
original AUTH_UNIX flavor credentials. The server keeps a cache
which maps shorthand opaque structures (passed back by way of
an AUTH_SHORT style response verifier) to the original creden­
tials of the caller. The caller can save network bandwidth and
server cpu cycles by using the new credentials.

The server may flush the shorthand opaque structure at any
time. If this happens, the remote procedure call message will be
rejected due to an authentication error. The reason for the failure

A3.5 Authentication Protocols 293

will be AUTH-RE]ECTEDCRED. At this point, the caller may
wish to try the original AUTH_UNIX style of credentials.

DES Authentication
UNIX authentication suffers from two major problems:

. The naming is too UNIX-system oriented .

. There is no verifier, so credentials can easily be faked.

DES authentication attempts to fix these two problems.

Naming. The first problem is handled by addressing the caller by
a simple string of characters instead of by an operating system
specific integer. This string of characters is known as the "net­
name" or network name of the caller. The server is not allowed to
interpret the contents of the caller's name in any other way except
to identify the caller. Thus, netnames should be unique for every
caller in the internet.

It is up to each operating system's implementation of DES
authentication to generate netnames for its users that insure this
uniqueness when they call upon remote servers. Operating sys­
tems already know how to distinguish users local to their systems.
It is usually a simple matter to extend this mechanism to the
network. For example, a UNIX user at Sun with a user ID of 515
might be assigned the following netname: "unix.515@sun.com".
This netname contains three items that serve to insure it is unique.
Going backwards, there is only one naming domain called
"sun. com" in the internet. Within this domain, there is only one
UNIX user with user ID 515. However, there may be another user
on another operating system, for example VMS, within the same
naming domain that, by coincidence, happens to have the same
user ID. To insure that these two users can be distinguished we
add the operating system name. So one user is "unix.515@­
sun.com" and the other is "vms.515@sun.com".

The first field is actually a naming method rather than an
operating system name. It just happens that today there is almost
a one-to-one correspondence between naming methods and opera­
ting systems. If the world could agree on a naming standard, the

294 APPENDIX 3 Remote Procedure Call: Protocol Specification

first field could be the name of that standard, instead of an operating
system name.

DES Authentication Verifiers. Unlike UNIX authentication, DES
authentication does have a verifier so the server can validate the
client's credential (and vice-versa). The contents of this verifier
are primarily an encrypted timestamp. The server can decrypt this
timestamp, and if it is close to what the real time is, then the client
must have encrypted it correctly. The only way the client could
encrypt it correctly is to know the "conversation key" of the RPC
session. And if the client knows the conversation key, then it must
be the real client.

The conversation key is a DES [5] key which the client gener­
ates and notifies the server of in its first RPC call. The conversation
key is encrypted using a public key scheme in this first transaction.
The particular public key scheme used in DES authentication is
Diffie-Hellman [3] with 192-bitkeys. The details of this encryption
method are described later.

The client and the server need the same notion of the current
time in order for all of this to work. If network time synchronization
cannot be guaranteed, then the client can synchronize with the
server before beginning the conversation, perhaps by consulting
the Internet Time Server (TIME[4]).

The way a server determines if a client timestamp is valid is
somewhat complicated. For any other transaction but the first, the
server simply checks for two things:

• the timestamp should be greater than the one previously
seen from the same client.

. the timestamp should not have expired.

A timestamp is expired if the server's time is later than the sum of
the client's timestamp plus what is known as the client's "win­
dow". The "window" is a number the client passes (encrypted) to
the server in its first transaction. You can think of it as a lifetime
for the credential.

This explains everything but the first transaction. In the first
transaction, the server checks only that the timestamp has not
expired. However, if this was all that was done, then it would be

/*

A3.5 Authentication Protocols 295

quite easy for the client to send random data in place of the time­
stamp with a fairly good chance of succeeding. As an added check,
the client sends an encrypted item in the first transaction known
as the "window verifier" which must be equal to the window
minus 1, or the server will reject the credential.

The client too must check the verifier returned from the server
to be sure it is legitimate. The server sends back to the client
the encrypted timestamp it received from the client, minus one
second. If the client gets anything different than this, it will reject
it.

Nicknames and Clock Synchronization. After the first transaction,
the server's DES authentication subsystem returns in its verifier
to the client an integer "nickname" which the client may use in
its further transactions instead of passing its netname, encrypted
DES key and window every time. The nickname is most likely an
index into a table on the server which stores for each client its
netname, decrypted DES key and window.

Although they originally were synchronized, the client's and
server's clocks can get out of sync again. When this happens the
client RPC subsystem most likely will get back RPC.AUTHER­
ROR, at which point it should resynchronize.

A client may still get the RPC.AUTHERROR error even
though it is synchronized with the server. The reason is that the
server's nickname table is a limited size, and it may flush entries
whenever it wants. A client should resend its original credential
inthis case and the server will give it a new nickname. If a server
crashes, the entire nickname table gets flushed, and all clients will
have to resend their original credentials.

DES Authentication Protocol (in XDR language)

* There are two kinds of credentials: one in which the client uses
* its full network name, and one in which it uses its "nickname"
* (just an unsigned integer) given to it by the server. The
* client must use its fullname in its first transaction with the
* server, in which the server will return to the client its
* nickname. The client may use its nickname in all further
* transactions with the server. There is no requirement to use the
* nickname, but it is wise to use it for performance reasons.
*/

296 APPENDIX 3 Remote Procedure Call: Protocol Specification

enum authdeLnamekind {
ADN_FULLNAME = 0,
ADN_NICKNAME = 1

};

/*
* A 64-bit block of encrypted DES data
*/

typedef opaque des_block[8};

/*
* Maximum length of a network user's name
*/

const MAXNETNAMELEN = 255;

/*
* A fullname contains the network name of the client, an encrypted
* conversation key and the window. The window is actually a
* lifetime for the credential. If the time indicated in the
* verifier timestamp plus the window has past, then the server
* should expire the request and not grant it. To insure that
* requests are not replayed, the server should insist that
* timestamps are greater than the previous one seen, unless it is
* the first transaction. In the first transaction, the server
* checks instead that the window verifier is one less than the
* window.
*/

struct authdeLfullname {

};

/*

string name(MAXNETNAMELEN);
deLblock key;
unsigned int window;

/* nmne of client */
/* PK encrypted conversation key */
/* encrypted window */

* A credential is either a fullname or a nickname
*/

union authdeLcred switch (authdes_namekind adcnamekind) {
case ADN_FULLNAME:

authdes_fullname adc-Fullname;
case ADN_NICKNAME:

unsigned int adc_nickname;
};

/*
* A timestamp encodes the time since midnight, January 1, 1970.
*/

A3.5 Authentication Protocols 297

struct timestamp {
unsigned int seconds; /* seconds */
unsigned int useconds; /* and microseconds */

};

/*
* Verifier: client variety
* The window verifier is only used in the first transaction. In
* conjunction with a fullname credential, these items are packed
* into the following structure before being encrypted:
*
* struct {
* adv_timestamp; -one DES block
* adc_fullname.window;
* adv_winverf;

-one half DES block
-one half DES block

* }
* This structure is encrypted using GBG mode encryption with an
* input vector of zero. All other encryptions of timestamps use
* EGB mode encryption.
*/
struct authdeLverLclnt {

/*

timestamp adv_timestamp; /* encrypted timestamp */
unsigned int adv_winverf; /* encrypted window verifier */

* Verifier: server variety
* The server returns (encrypted) the same timestamp the client
* gave it minus one second. It also tells the client its nickname
* to be used in future transactions (unencrypted).
*/

struct authdeLverLsvr {

};

timestamp adv_timeverf; /* encrypted verifier */
unsigned int adv_nickname; /* new nickname for client */

Diffie-Hellman Encryption. In this scheme, there are two constants,
BASE and MODULUS. The particular values Sun has chosen for
these for the DES authentication protocol are:

const BASE = 3;
const MODULUS = "d4aOba0250b6fd2ec626e7efd637df76c716e22d0944b88b"; /*
hex */

The way this scheme works is best explained by an example.
Suppose there are two people "A" and "B" who want to send
encrypted messages to each other. So, A and B both generate

298 APPENDIX 3 Remote Procedure Call: Protocol Specification

"secret" keys at random which they do not reveal to anyone. Let
these keys be represented as SK(A) and SK(B). They also publish
in a public directory their "public" keys. These keys are computed
as follows:

PK(A) = (BASE ** SK(A)) mod MODULUS
PK(B) = (BASE ** SK(B)) mod MODULUS

The "**" notation is used here to represent exponentiation. Now,
both A and B can arrive at the "common" key between them,
represented here as CK(A, B), without revealing their secret keys.

A computes:

CK(A, B) = (PK(B) ** SK(A)) mod MODULUS

while B computes:

CK(A, B) = (PK(A) ** SK(B)) mod MODULUS

These two can be shown to be equivalent:

(PK(B) ** SK(A)) mod MODULUS = (PK(A) ** SK(B)) mod MODULUS

We drop the "mod MODULUS" parts andassumemoduloarithme­
tic to simplify things:

PK(B) ** SK(A) = PK(A) ** SK(B)

Then, replace PK(B) by what B computed earlier and likewise for
PK(A).

((BASE ** SK(B)) ** SK(A) = (BASE ** SK(A)) ** SK(B)

which leads to:

BASE ** (SK(A) * SK(B)) = BASE ** (SK(A) * SK(B))

This common key CK(A, B) is not used to encrypt the timestamps
used in the protocol. Rather, it is used only to encrypt a conversa­
tion key which is then used to encrypt the timestamps. The reason
for doing this is to use the common key as little as possible, for fear
that it could be broken. Breaking the conversation key is a far less
serious offense, since conversations are relatively short-lived.

The conversation key is encrypted using 56-bit DES keys, yet
the common key is 192 bits. To reduce the number of bits, 56 bits
are selected from the common key as follows. The middle-most 8-
bytes are selected from the common key, and then parity is added
to the lower order bit of each byte, producing a 56-bit key with 8
bits of parity.

A3.7 The RPC Language 299

A3.6 Record Marking Standard
When RPC messages are passed on top of a byte stream protocol
(like TCP/IP), it is necessary, or at least desirable, to delimit one
message from another in order to detect and possibly recover from
user protocol errors. This is called record marking (RM). Sun uses
this RM/TCP/IP transport for passing RPC messages on TCP
streams. One RPC message fits into one RM record.

A record is composed of one or more record fragments. A
record fragment is a four-byte header followed by 0 to (2**31) -
1 bytes of fragment data. The bytes encode an unsigned binary
number; as with XDR integers, the byte order is from highest
to lowest. The number encodes two values-a boolean which
indicates whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment), and a 31-bit
unsigned binary value which is the length in bytes of the frag­
ment's data. The boolean value is the highest-order bit of the
header; the length is the 31 low-order bits. (Note that this record
specification is NOT in XDR standard form!)

A3.7 The RPC Language
Just as there was a need to describe the XDR data-types in a formal
language, there is also need to describe the procedures that operate
on these XDR data-types in a formal language as well. We use the
RPC Language for this purpose. It is an extension to the XDR
language. The following example is used to describe the essence
of the language.

An Example Service Described in the
RPC Language

Here is an example of the specification of a simple ping
program.

/*
* Simple ping program
*/

program PING_PROG {
/* Latest and greatest version */
version PING_VERS_PINGBACK {
void
PINGPROC_NULL(void) = 0;

300 APPENDIX 3 Remote Procedure Call: Protocol Specification

} = 2;

/*

/*
* Ping the caller, return the round-trip time
* (in microseconds). Returns -1 if the operation
* timed out.
*/

int
PINGPROC_PINGBACK(void) = 1;

* Original version
*/

version PING_VERS_ORIG {
void

} = 1;

PINGPROC_NULL(void) = 0;
} = 1;

const PING_VERS = 2; /* latest version */

The first version described is PING_VERSYINGBACK with two
procedures, PINGPROC...NULL and PINGPROCYINGBACK.
PINGPROC...NULL takes no arguments and returns no results, but
is useful for computing round-trip times from the client to the
server and back again. By convention, procedure 0 of any RPC
protocol should have the same semantics, and never require any
kind of authentication. The second procedure is used for the client
to have the server do a reverse ping operation back to the client,
and it returns the amount of time (in microseconds) that the opera­
tion used. The next version, PING_VERS_ORIG, is the original
version of the protocol and it does not contain PINGPROC_
PINGBACK procedure. It is useful for compatibility with old client
programs, and as this program matures it may be dropped from the
protocol entirely.

The RPC Language Specification
The RPC language is identical to the XDR language, except

for the added definition of a program-de! described below.

program-def:
"program" identifier "{"

version-def
version-def *

"}" "=" constant";"

version-def:
"version" identifier "{"

procedure-def
procedure-def *

"}" "=" constant";"

procedure-def:

A3.8 Port Mapper Program Protocol 301

type-specifier identifier "(" type-specifier ")" "=" constant ";"

Syntax Notes
· The following keywords are added and cannot be used as

idenFfiers: "program" and "version";

· A version name cannot occur more than once within the
scope of a program definition. Nor can a version number
occur more than once within the scope of a program defi­
nition.

· A procedure name cannot occur more than once within the
scope of a version definition. Nor can a procedure number
occur more than once within the scope of version definition.

• Program identifiers are in the same name space as constant
and type identifiers.

• Only unsigned constants can be assigned to programs, ver­
sions and procedures.

A3.8 Port Mapper Program Protocol
The port mapper program maps RPC program and version numbers
to transport-specific port numbers. This program makes dynamic
binding of remote programs possible.

This is desirable because the range of reserved port numbers
is very small and the number of potential remote programs is very
large. By running only the port mapper on a reserved port, the port
numbers of other remote programs can be ascertained by querying
the port mapper.

The port mapper also aids in broadcast RPC. A given RPC
program will usually have different port number bindings on differ­
ent machines, so there is no way to broadcast directly to all of
these programs. The port mapper, however, does have a fixed port

302 APPENDIX 3 Remote Procedure Call: Protocol Specification

number. So, to broadcast to a given program, the client actually
sends its message to the port mapper located at the broadcast
address. Each port mapper that picks up the broadcast then calls
the local service specified by the client. When the port mapper
gets the reply from the local service, it sends the reply on back to
the client.

Port Mapper Protocol Specification
(in RPC Language)

const PMAP_PORT = 111; /* portmapper port number */

/*
* A mapping of (program, version, protocol) to port number
*/

struct mapping {

};

/*

unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

* Supported values for the "prot" field
*/

const IPPROTO_TCP = 6;
const IPPROTO_UDP = 17;

/*
* A list of mappings
*/
struct *pmaplist {

mapping map;
pmaplist next;

};

/*
* Arguments to callit
*/

struct caILargs {

};

unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args(};

/* protocol number for TCP/IP */
/* protocol number for UDP/IP */

/*
* Results of callit
*/

struct calLresult {
unsigned int port;
opaque res();

};

/*
* Port mapper procedures
*/

program PMAP _PROG {
version PMAP _ VERS {

void

A3.8 Pori Mapper Program Protocol 303

PMAPPROC_NULL(void) = 0;

} = 2;
} = 100000;

bool
PMAPPROC_SET(mapping) = 1;

boo I
PMAPPROC_UNSET(mapping) = 2;

unsigned int
PMAPPROC_GETPORT(mapping) = 3;

pmaplist
PMAPPROC_DUMP(void) = 4;

calLresult
PMAPPROC_CALLIT(caILargs) = 5;

Port Mapper Operation
The portmapper program currently supports two protocols

(UDP/IP and TCP/IP). The portmapper is contacted by talking to
it on assigned port number 111 (SUNRPC [8]) on either of these
protocols. The following is a description of each of the portmapper
procedures:

PMAPPROC_NULL:

This procedure does no work. By convention, procedure zero of
any protocol takes no parameters and returns no results.

304 APPENDIX 3 Remote Procedure Call: Protocol Specification

PMAPPROC_SET:

When a program first becomes available on a machine, it registers
itself with the port mapper program on the same machine. The
program passes its program number "prog", version number
"vers", transport protocol number "prot", and the port "port" on
which it awaits service request. The procedure returns a boolean
response whose value is TRUE if the procedure successfully estab­
lished the mapping and FALSE otherwise. The procedure refuses
to establish a mapping if one already exists for the tuple "(prog,

)" vers, prot .

PMAPPROC_UNSET:

When a program becomes unavailable, it should unregister itself
with the port mapper program on the same machine. The parame­
ters and results have meanings identical to those of PMAl'PROC
_SET. The protocol and port number fields of the argument are
ignored.

PMAPPROC_GETPORT:

Given a program number "prog", version number "vers", and
transport protocol number "prot", this procedure returns the port
number on which the program is awaiting call requests. A port
value of zero means the program has not been registered. The
"port" field of the argument is ignored.

PMAPPROC_DUMP:

This procedure enumerates all entries in the port mapper's data­
base. The procedure takes no parameters and returns a list of
program, version, protocol, and port values.

PMAPPROC_CALLIT:

This procedure allows a caller to call another remote procedure on
the same machine without knowing the remote procedure's port
number. It is intended for supporting broadcasts to arbitrary re­
mote programs via the well-known port mapper's port. The parame­
ters "prog", "vers", "proc", and the bytes of"args" are the program
number, version number, procedure number, and parameters of
the remote procedure. Note:

A3.8 Port Mapper Program Protocol 305

1. This procedure only sends a response if the procedure was
successfully executed and is silent (no response) otherwise.

2. The port mapper communicates with the remote program
using UDP/IP only.

The procedure returns the remote program's port number, and the
bytes of results are the results of the remote procedure.

References

[1] Birrell, Andrew D. & Nelson, Bruce Jay; "Implementing Remote Proce­
dure Calls"; XEROX CSL-83-7, October 1983.

[2] Cheriton, D.; "VMTP: Versatile Message Transaction Protocol", Prelimi­
nary Version 0.3; Stanford University, January 1987.

[3] Diffie & Hellman; "Net Directions in Cryptography"; IEEE Transac­
tions on Information Theory IT-22, November 1976.

[4] Harrenstien, K.; "Time Server", RFC 738; Information Sciences Insti­
tute, October 1977.

[5] National Bureau of Standards; "Data Encryption Standard"; Federal
Information Processing Standards Publication 46, January 1977.

[6] Postel, J.; "Transmission Control Protocol-DARPA Internet Program
Protocol Specification", RFC 793; Information Sciences Institute, September
1981.

[7] Postel, J.; "User Datagram Protocol", RFC 768; Information Sciences
Institute, August 1980.

[8] Reynolds, J. & Postel, J.; "Assigned Numbers", RFC 923; Information
Sciences Institute, October 1984.

Differences Between the
RPC Library on SunOS 4.0
and SunOS 4.1

This appendix covers the differences between the SunOS 4.0 and
the SunOS 4.1 versions of the RPC Library, the portmap service,
and the rpcgen program. Only a brief summary of the changes are
presented. More detailed information can be obtained from the
SunOS 4.1 documentation.

A4.l RPC library
The following new features were added to the RPC Library:

• The routine xdrrecJeadbytesO was added to the Library.
This routine can only be used on streams created by
xdrrec_create(). The routine attempts to read a specified num­
ber of bytes from the XDR stream into a specified buffer.

• The routine clntudp_bufcreateO is now documented and
available to the user. This routine is in the SunOS 4.0 version
of the Library but is for internal use by the Library. This
routine is the same as clntudp_create() except that you can
now specify the size of the send and receive buffers.

• The routine clnLcreate_vers() was added to the Library. This
routine is a generic client creation routine which also checks
for the version available. Remember that the clnLcreateO
routine returns a valid client handle even if the specified
version number supplied to the routine is not registered with
the portmap service. However, clnLcreate_versO does this
for you and returns a valid handle only if a version within
the range supplied is supported by the server.

Appendix
4

308 APPENDIX 4 Differences Between the RPC Library on SunOS 4.0 and SunOS 4.1

• New request values have been added to the clnLcontrolO
routine. The new request values, their associated argument
types, and what the requests do follows:

CLGET_FD int get socket descriptor associated
with the client handle

CLSET_FD_CLOSE void close socket when clnLdestroy()
is called

CLSET_FD_NCLOSE void leave socket open when
clnLdestroy() is called

• You need to include (rpc/raw.h) when using the raw trans­
port creation routines.

The following fixes were added to the SunOS 4.1 version of the
Library:

• The routine clnLcallO now does an exponential back off
when retrying RPC requests.

• The clnLbroadcastO routine now uses an exponential back
off on the retry time-out. In SunOS 4.0 version, it used a
linear series for retry time-outs.

• The svc_runO routine now ignores all error codes returned
from selectO except for EBADF. The svc_runO in the SunOS
4.0 version of the Library ignores only the EINTR error code.
This change was made because EBADF is the only error that
should result in svc_runO returning. This change also makes
svc_run() more tolerant of applications that handle signals
and inadvertently modify the global variable errno inside
their signal handling routine. The problem exists in svc_runO
because the return from selectO and the test of the errno
variable is not an atomic operation and, in fact, control may
be passed to a signal handling routine during this sequence
of operations. The SunOS 4.1 version of the svcJunO routine
was covered in Chapter 6.

• The raw transport creation routines have been fixed.

A4.2 Portmap Service
The following fixes were made to the portmap service:

• Disallows PMAP _SET and PMAP _UNSET operations from
remote hosts.

A4.3 Rpcgen 309

• Disallows PMAP _SET and PMAP _UNSET of reserved ports
from non-reserved ports.

• The PMAP -RMTCALL procedure no longer forks. This pro­
vides a significant performance improvement for the process­
ing of broadcast requests.

A4.3 Rpcgen
The following features were added to rpcgen:

• Can generate servers which can be invoked by the inetd
program.

• Allows for -DDEFINE statements on the command line to
define macros.

• Allows for server error messages to be logged using the
syslog mechanism.

• Can generate an indexed-by-procedure table.

Source for Examples

The examples used in this book can be obtained in a computer
readable form. To order the examples, specify the type of media
desired and the format to be used on the disk. The media, media
formats supported, and prices are listed below.

3.5" Floppy Disk UNIX tar Format

5.25" Floppy Disk UNIX tar Format

114" Streaming Tape Unix tar Format

3.5" Floppy Disk MS-DOS Format

5.25" Floppy Disk MS-DOS Format

Send your order along with payment to:

RPC Programming Examples
P.O. Box 12474
EI Paso, TX 79912

$8.00(US)

$8.00(US)

$12.00(US)

$8.00(US)

$8.00(US)

Appendix
5

Bibliography

Bergan, E.S., Tolchin, S.C.: Using Remote Procedure Calls (RPC) for a
Distributed Clinical Information System. Proceedings of the U niForurn Confer­
ence, 1986

Birman, K.P., Joseph, T.A.: Exploiting Replication in Distributed Systems.
In: Mullender, S.(ed.): Distributed Systems. Reading (Mass.): Addison-Wesley
1989, pp. 191 - 214

Birrell, A.D., Nelson, B.J.: Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems 2:1, 39 - 59 (1984)

Comer, D.: Internetworking With TCP/IP -- Principles, Protocols and
Architectures. Englewood Cliffs (New Jersey): Prentice Hall 1988

Coulouris, C.F., Dollimore, J.: Distributed Systems -- Concepts and De­
sign. Reading (Mass.): Addison-Wesley 1988

Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transac­
tions on Information Theory IT-22, 644 - 654 (1976)

Folts, H.: Open Systems Standards -- OSI Remote and Reliable Operations.
IEEE Network 3:3, (1989)

Havender, J.W.: Avoiding Deadlock in Multitasking Systems. IBM Systems
Journal 7:2, 74 - 84 (1968)

Leffler, S.J., et al.: The Design and Implementation of the 4.3BSD UNIX
Operating System. Reading (Mass.): Addison-Wesley 1989

Lyon, B.: Sun Remote Procedure Call Specification. Sun Microsystems,
Inc., Mountain View (Calif.), 1984.

Lyon, B.: Sun External Data Representation Specification. Sun Microsys­
terns, Inc., Mountain View (Calif.), 1984.

National Bureau of Standards: Data Encryption Standard. Federal Informa­
tion Processing Standards Publication 46, January 15, 1977

Needham, R.M., Schroeder, M.D.: Using Encryption for Authentication in
Large Networks of Computers. Communications of the ACM 21:12, (1978)

Obermarck, R.: Distributed Deadlock Detection Algorithm. ACM Transac­
tions on Database Systems 7:2, 187 - 208 (1982)

Samar, V., McManis, C.: Sun Remote Procedure Call Implementation Made
Transport Independent. Sun Microsystems, Mountain View (Calif.), December
1989.

Spector, A.Z.: Distributed Transaction Processing Facilities. In: Mullender,
S.(ed.): Distributed Systems. Reading (Mass.): Addison-Wesley 1989, pp. 191 -
214

Stallings, W.: Handbook of Computer-Communications Standards (Volume
1). New York (New York): Macmillan 1987

314 BIBLIOGRAPHY

Sun Microsystems: Network Programming. Mountain View (Calif.): Sun
Microsystems 1988

Sun Microsystems: SunOS Reference Manual. Mountain View (Calif.): Sun
Microsystems 1988

Sun Microsystems: Security Features Guide. Mountain View (Calif.): Sun
Microsystems 1988

Taylor, B., Goldberg, D.: Secure Networking in the Sun Environment.
Proceedings of the USENIX Summer Conference, 1986

Weihl, W.E.: Remote Procedure Call. In: Mullender, S.(ed.): Distributed
Systems. Reading (Mass.): Addison-Wesley 1989, pp. 65 - 86

White, J.E.: A High-level Framework For Network-based Resource Shar­
ing. Proceedings of the National Computer Conference, June 1976

Xerox Corporation: Courier: The Remote Procedure Call Protocol -- Xerox
System Integration Standard XSIS-038112. Stamford (Conn.): Xerox Corporation
1981

Index

Abstract Syntax Notation 1 (ASN.l), 258
API (application programming inter­

face),9
Application programming interface, see

API entries
Applications , distributed, see Distrib-

uted applications
ASN.l (Abstract Syntax Notation 1),250
Asynchronous RPC, 147-158
Authentication fields, 286-287
Authentication mechanism, 115, 116-

126
Authentication protocols, 56-60, 291-

298
Authentication types, 56-57, 115-126

DES, 57-60, 121-126,293-298
null, 57,116-117,292
UNIX, 57,117-120,292-293

Batch-mode RPC, 162-170,287-288
Big-endian byte order, 12-14
Binding independence, 284
Breakpoints, setting, 243
Broadcast RPC, 147, 158-162,288
Broken connections, 220-221
Byte order, 12-14
Bytes, 14

Cache replies, 217-222
CAD (computer-aided design), 5
Call messages, 51, 53-54, 282, 288-291
Callback deadlocks, 222-223
Callback RPC, 147, 149-158
Callit procedure, 63-64
CK (conversation key), 58-60
Client crash, 7, 211
Client handle, 93, 102-106,221,225,

235

Client-server model, 6-7
Client side low-level RPC routines,

102-106
Client stub interface, 179
Client timestamp, 294-295
clnt stat values, 112, 113-115
Code-generation tool, 255
Command line options to rpcgen, 193-

194
Computer-aided design (CAD), 5
Computer names, 65
Computer "networks, see Network en-

tries
Computer readable sources for exam-

ples, 311
Connections, broken, 220-221
Conversation key (CK), 58-60, 298
"Cooked credentials," 118
Courier, 10
Credentials, 56-57, 115,286

"cooked," 118
null, 57, 116
"raw," 118

Credential window values, 131

Data base routines (DBM), 126-144
Data-communication networks, see Net­

work entries
Data description, 11
Data Encryption Standard, see DES

entries
Data representation, 11

eXternal, see XDR entries
XDR, 2, 4, 11-45, 66, 261-280

Datagram transport, 89, 92-93, 212-215
DBM (data base routines), 126-144
de facto and de jure standards, 247-248
Deadlocks, callback, 222-223

316 Index

DES (Data Encryption Standard), 57
DES authentication, 120-126, 293-29E<
DES authentication protocol, 295-297
DES authentication verifiers, 294-295
Development tools for distributed appli-

cations, 254-256
DFS (distributed file systems), 247-248
Diffie-Hpllman encryption, 297-298
Dispatch procedure, 100

server, see Server dispatch routine
Distributed applications, 4-6

callback deadlocks in, 222-223
design issues in, 212-229
designing, 207-212
developing RPC-based, 207-243
development tools for, 254-256
error recovery in, 211, 216-222
execute-at-most-once semantics in,

215-216
idempotency in, 215-216
implementing, 8
make file, 211
partitioning, 210
performance in, 223-229
purpose of, 208
testing procedures for, 229-243
testing with network component, 236,

242-243
testing without network component,

230-236
time-outs in, 229
transport issues in, 212-225

Distributed file systems (DFS), 247-248
Distributed systems, 1-2

8086 architecture, 12-14
Encryption, Diffie-Hellmen, 297-298
Error recovery in distributed applica-

tions, 211,216-222
Execute-at-most-once semantics, 215-

216
Explicit typing, 250
eXternal Data Representation routines,

see XDR entries

Fault tolerance, 5
File handle, 224
File state, 7

Grade-reporter programs, 71-88
rpcgen version, 181-193
revised, 93-101

Group ID, 121

Headers, 22-23
Heterogeneity issue, 209
Host names, 65
Hyper integers, 264

Idempotency, 215-216
Identification field, transaction (XID),

53-54
IEEE (Institute of Electrical and Elec­

tronics Engineers), 248
Institute of Electrical and Electronics

Engineers (IEEE), 248
Interface, 68

application programming (API), 9
client stub, 179
programming, 4
transport, 91-93

International Organization for Standard-
ization (ISO), 248-250

Internet Protocol (IP), 92
IP (Internet Protocol), 92
ISO (International Organization for

Standardization), 248-250

keyserv daemon, 121

Library
dbm, 126-144
RPC, see RPC Library
Transport Interface, 92
XDR, see XDR Library entries

Linking client and server, 231-235
Little-endian byte order, 12-14
Local data representations, 15
Lyon, Bob, 10

Magic number, 41
Manycast RPC, 246
Maximum transfer unit (MTU), 158
MTU (maximum transfer unit), 158
Multicast feature, 229

Name server, 60
Netnames, 120-125, 293
NETPATH variable, 252
Network access, 1-2
Network clients, 281; see also Client

entries
Network component

testing with, 236, 242-243
testing without, 230-236

Network File System (NFS), 10
Network resources, 1
Network service, 9, 66-67, 281
Network-transport dependency, 89, 211
NFS (Network File System), 10
Nicknames, 295
Nonblocking RPC, 147-149
Null authentication, 57, 116,292
Null credential, 57, 117
Null verifiers, 117

Octets, 14
ONC (Open Network Computing) plat­

form, 2
Opaque data, 32-33
Open Network Computing (ONC) plat­

form, 2
Open Systems Interconnection (OSI)

model, 248-249
Operating-system dependency, 211
OSI (Open Systems Interconnection)

Application Layer, 249
Data Link Layer, 249
model, 248-249
Network Layer, 249
Physical Layer, 249
Presentation Layer, 249, 250
Session Layer, 249
Transport Layer, 249

P1003.8 working group, 250-251
Partitioning distributed applications,

210
Performance analysis tool, 255-256
Performance. issue, 210, 223-229
ping program, 241
Platform, 2
Pointer declarations, 204-205

Index 317

Portable Operating Systems Environ­
ment Committee (POSIX), 248,
250-251

portmap program, 61, 62, 242
procedures, 62-64

portmap service, fixes made to, 308-309
Portmapper,61-62
Port map protocol, 301-305
Portmapper Library Routines, 175-177

pmap_getmaps(), 176
pmap_getport(), 176-177
pmapJmtcall(), 177
pmap_set(), 176-177
pmap_ unset(), 177

Ports, 60-61
POSIX (Portable Operating Systems

Environment Committee), 248, 250-
251

Preprocessor directives for rpcgen, 194-
195

Procedure, 65
remote, see Remote Procedure entries

Protocol specification, 179, 210-211
Protocol specification file, 198
Protocol testers, 243
Prototyping tool, 254-255

"Raw credentials," 119
Raw transport, 235-236, 237-241
References, 280, 305
Release independence, 209-210
Reliability, 52
Remote computer, 3
Remote Operations Service Element

(ROSE), 250
Remote procedure, 3, 65
Remote Procedure Call, see RPC entries
Remote procedure identification, 66-69
Remote program, 281
Remote program definitions, 197-199
Remote program numbers, 68
Reply cache, 217-222
Reply messages, 51, 54-58
RFC1014, 261
RFCI057, 281
ROSE (Remote Operations Service

Element), 250

318 Index

RPC (Remote Procedure Call), 2
API standard, 247
argument encoding and decoding, 66
asynchronous, 147-158
batch-mode, 162-170
broadcast, 147, 158-162,288
callback, 147, 149-158
history, 9-10
ISO and, 248-250
manycast, 246
message authentication, 284; see also

Authentication entries
message-passing scheme, 3, 51-53
nonblocking, 147-149
POSIX and, 250-251
procedure numbers, 68-69, 285
program number assignment, 287
program versions, 67

multiple, supporting, 81, 88
RPC Administrator, 258
RPC-based distributed applications, see

Distributed applications
RPC history, 9-10
RPC information, Sun, 257-259
RPC Language, see RPCL entries
RPC Library, 3-4, 69-70

additional features, 147-177
differences between SunOS 4.0 and

SunOs 4.1, 307-309
future directions of, 245-247
new features added to, 307-308
processing errors in, 109, 110-112

RPC mechanism, 65
RPC message protocol, 288-291
RPC model, 282
RPC program numbers, 257-259
RPC programming, 65-89

future directions of, 245-256
high-level, 70-88
low-level, 91-145

RPC Programming Examples, 311
RPC protocol requirements, 284-288
RPC protocol specification, 281-305
RPC Library routines

high-level, 79-81
callrpc(), 80-81
registerrpc(), 79-80
svcJun(), 80

low-level
client side, 102-106

auth_destroy(), 116
authnone_create(), 116
authdes_create(), 121
authunix_create(), 117
authunix_create_default(), 118
clnCbroadcast(), 159-160
clnLcall(), 105
clnLcontrol(), 106
clnt_create(), 102-103
clnt_destroy(), 105
clnt_freeres(), 106
clnCpcreateerror(), 112
clnCperrno(), 112
clnt_perror(), 113
clnt_spcreateerror(), 112
clnt_sperrno(), 113
clnt_sperror(), 113
clntraw_create(), 235
clnttcp_create(), 104-105
clntudp_create(), 103-104

example, 126-145
server side, 98-102

svc_destroy(),99
svc_freeargs(), 101-102
svc_getargs(), 101
svc_getreqset(), 173
svcJegister(), 100-101
svc_sendreply(), 102
svc_unregister(), 101-102
svcerr _auth(), 110
svcerr _decode(), 110
svcerr _noproc(), 110
svcerr _noprog(), 111
svcerr _progvers(), 111
svcerr _systemerr(), 111
svcerr _weakauth(), 111
svcraw_create(), 99
svctcp_create(), 99
svcudp_create(), 98-99

support, 122-123
host2netname(), 122
getnetname(), 123
netname2host(), 122-123
netname2user(), 123
user2netname(), 123

RPC source code availability, 257

RPC standardization efforts, 247-251
RPC version number, 54
rpchind program, 253-254
rpcgen program, 8, 179-206

command line options to, 193-194
features added to, 309
preprocessor directives for, 194-195

rpcinfo utility, 230
FlPCL (RPC Language), 179, 195-206,

299-301
arrays, fixed links, 269

Character, 226
fixed length, 202, 268-269
string, 237
variable length, 202-203, 269

Boolean type, 202, 264
comment delimiter, 196

constants, 201, 277, 278
data types, 199-201, 262

discriminated union, 34, 203-204,
270-271,278

enumerations, 201-202, 263-264, 277
fixed-length arrays, 202, 268-270, 277,

285
fixed-length opaque data, 266-267
floating-point data, 264-276

double-precision, 265-266, 278
single-precision, 265, 278

identifiers, 196, 276
integers, 262, 263

hyper, 264
unsigned, 263
unsigned hyper, 264

opaque data, 32-33, 213
fixed-length, 205, 266-267
variable-length, 205, 267-268

procedure definition syntax, 197-198
program definition syntax, 197-198
reserved keywords, 196, 278
strings, 31-32, 205, 227, 268
structures, 203, 270, 277
typede~,205-206,271-272, 278
types, decomposition of, 199-200
typing, explicit, 250
union, discriminated, 34
unsigned hyper integers, 264
unsigned integers, 263
variable-length arrays, 202-203, 269

Index 319

variable-length opaque data, 205,
267-268

variable names, 278
version definition syntax, 197
void declaration, 201, 271

RPCL specification, 300-301
RPCL syntax notes, 301
RPCL unions, 203-204
RPCSRC source code, 4, 257
rwhod daemon, 228

Security issues, 208-209
Server, 6, 281

linking client and, 231-235
stateless and stateful, 6-7

Server crash, 7, 218-222
Server dispatch routine, 107-109

example, 109, 110-111
Server process, 6-7
Server side low-level RPC routines, 99-

103
Server skeleton, 179
Service request structure svc_req(), 116
Session Layer, 249
Simulation tool, 255
Sockets, 91-92
SPARC architecture, 12-14
Standard data representations, 15
Standardization efforts, RPC, 243-251
Stateless and stateful servers, 6-7
STREAMS input/output mechanism,

251
Sun Microsystems, 2
Sun Operating System, see SunOS

entries
Sun RPC information, 257-259
SunOS (Sun Operating System), 4
SunOS 4.0 versus SunOS 4.1, 307-309
svcJun() routine, writing, 170-175
SVR4 (System V Release 4), 248
Syntax information, XDR, 277-279
Syntax

RPCL, 277-278, 300-301
XDR, 278-279

System/370 architecture, 12-14
System V Release 4 (SVR4), 248

320 Index

TCP (Transmission Control Protocol),
92,212-214,283-284

Testers, protocol, 243
Testing procedures for distributed

applications, 229-243
Testing tool, 255
TI RPC (transport-independent RPC),

248,251-254
Time-outs in distributed applications,

229
Timestamp, client, 294-295
TLI (Transport Layer Interface), 251
Transaction identification (XID) field,

53-54
Transfer unit, maximum (MTU), 158
Transmission Control Protocol (TCP),

98,212-214,283-284
Transport, 4

raw, 235-236, 237-241
Transport address, 60
Transport dependencies, 209
Transport handle, 93
Transport-independent RPC (TI RPC),

248,251-254
Transport interface, 91-93
Transport Interface Library, 92
Transport Layer Interface (TLI), 251
Transport protocols, 283-284
Transport selection mechanism, 251-

253
TRUE,66
Type-def syntax information, 278

UDP (User Datagram Protocol), 89, 92,
212-214,283-284

UNIX, 2
UNIX authentication, 117-120, 292-293
UNIX-style credential, 57
User Datagram Protocol (UDP), 89, 92,

212-214
User ID, 120

VAX architecture, 12-14
Vendor dependencies, 210
Verifiers, 56-57, 116

DES authentication, 294-295

null,116
UNIX, 117

Version definition syntax, 197

White, Jim, 10
Wrapper, 78-79

XDR (eXternal Data Representation), 2,
4,11-49,66,261-280

data types, 199-206, 262-274
in-line macros, 29, 227
macros, 29

in-line, 29, 227
stream-regulated, 26-27

memory allocation, 39-41
memory freeing, 40-41
memory streams, 20-22

example, 21
record stream, 22-26

example, 41, 45, 46-49
record marking (RM), 299
record streams, 22-26
standard I/O streams, 19-20

example, 41-45
stream-related macros, 26, 27

XDR block size, 16-17, 225-227, 262,
274,275

XDR data description example, 279-280
XDR data representation, 15-17
XDR definition, 14-15
XDR filters, 17-18,27-41

composite, 31-38
custom, 38-39
primitive, 28-31

XDR handles, 18
XDR language specification, 276-279
XDR lexical notes, 276-277
XDR Library routines

xdr _array(), 33~34
xdr _bytes(), 32-33
xdr _char(), 28
xdr _destroy(), 27
xdr _double(), 28
xdr _enum(), 28
xdr Jloat(), 28
xdr _free(), 40

xdr _getpos(), 26
xdr _inline(), 29
xdr _int(), 28
xdr _long(), 28
xdrmem_create(), 20-22
xdr _opaque(), 32
xdr _pointer(), 36-37
xdrrec_create(), 22-25
xdrrec_endofrecord(),25
xdrrec_eof(), 26
xdrrec_skiprecord(),26
xdr Jeference(), 35-36
xdr _setpos(), 27
xdr _short(), 28
xdrstdio_create(), 19-20
xdr _string(),31-32
xdr _u_char(), 28
xdr _u_int(), 28
xdr _u_long(), 28

xdr _u_short(), 28
xdr _union(), 34-35
xdr _vector(),33
xdr _void(),28
xdr _wrapstring(), 32

XDR standard, 11,261-280

Index 321

areas for future enhancement, 273-
274

data types in, 262-274
defined,261-262
status of, 261

XDR streams, 18-27
XDR syntax information, 277-278
XDR syntax notes, 278-279
XDR unit size, 274, 275
XID (transaction identification) field,

53-54

ypbind process, 228-229

