
A Guide to the CP-net Generator

Thomas E. Allen

Version 0.70 (December 2015)

Copyright c© 2015 Thomas E. Allen. Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

1 Introduction

The CP-net Generator (GenCPnet) generates acyclic conditional preference networks (CP-nets) [2] uniformly
at random with respect to a specified set. It is possible to specify parameters such as the number of nodes,
bound on indegree, and the size of domains.

GenCPnet implements the method described in our paper, “Generating CP-nets Uniformly at Ran-
dom” [1]. If you use or adapt this software, we kindly ask that you would cite our paper. GenCPnet is free
software, released under the GNU Public License version 3. GenCPNet is written in C++ and designed to
run on a GNU Linux system. Throughout this manual, we assume the reader has access to such a system
and is familiar with using the command line to perform simple instructions. Please email questions or bug
reports to thomas.allen@uky.edu.

2 Obtaining GenCPnet

Presently the software and documentation is housed at

http://cs.uky.edu/~goldsmit/papers/GeneratingCPnetCode.html.

The code can be downloaded as a zipped archive via a link on that page. Alternatively, you can download
the archive directly with:

wget http://cs.uky.edu/~goldsmit/papers/gencpnet_0.70.zip

or

wget http://cs.uky.edu/~teal223/gencpnet_0.70.zip

3 Installing GenCPnet

The GNU MultiPrecision (GMP) library must be installed to compile or run GenCPnet. If GMP is not
present, you can install it with your distribution’s package manager. For more information on GMP, see
https://gmplib.org/.

Once GMP is present, it should be straightforward to build GenCPnet on a GNU Linux system:

unzip gencpnet_0.70.zip

cd gencpnet_0.70

make

If the build is successful, the message Success! will appear on the last line of the output. It should then be
possible to run GenCPNet directly within the build directory. For example, try:

1

mailto:thomas.allen@uky.edu
http://cs.uky.edu/~goldsmit/papers/GeneratingCPnetCode.html
http://cs.uky.edu/~goldsmit/papers/gencpnet_0.70.zip
http://cs.uky.edu/~teal223/gencpnet_0.70.zip
https://gmplib.org/

./gencpnet --help

You may also wish to copy the executable file gencpnet to a suitable directory in your path. For example,

make install

copies the executable file to your ~/bin directory by default. If you wish to make the program available to
all users on the system, you can do so with a command such as:

sudo cp gencpnet /usr/local/bin

You may need assistance from your system administrator with these latter steps. Finally, you may wish to
edit Makefile itself. The comments in the file provide additional installation and customization details.

4 Using the CP-net Generator

Typing ./gencpnet --version from within the gencpnet_0.70 build directory shows the current version:

$./gencpnet --version

CP-net Generator 0.70

Copyright (C) 2015 Thomas E. Allen

This is free software; see the source for copying conditions.

CP-net Generator comes with ABSOLUTELY NO WARRANTY.

If you are working in a different directory and the GenCPnet executable file is installed to a directory in
your path, you should omit the ./ and simply type gencpnet in all of the examples in this guide.

$ gencpnet --version

Note that the $ in these examples is the command line prompt and should not be typed.

4.1 The -n parameter: a simple binary-valued example

We begin with a couple of very simple examples. First, we show how to generate a single CP-net with 3
nodes and binary domains:

$ mkdir examples

$./gencpnet -n 3 examples

Building distribution tables for CP-nets with the following specs:

Number of nodes: n = 3

Bound on in-degree c = 2

Homogeneous domains of size d = 2

Probability of incompleteness i = 0

Generating 1 random CP-nets with these specs.

Generation complete.

Executing GenCPnet with the -n option specifies that the CP-net thus generated should be sampled
from CP-nets with n = 3 nodes. By default, the CP-nets in the set have unbounded indegree (a node may
have 0, 1, or 2 parents), and the domains are binary. In this case the generated example is written in XML
format to the examples directory:

$ ls -l examples

total 4

-rw-rw-r-- 1 user user 1932 Dec 15 14:49 cpnet_n3c2d2_0000.xml

The cpnet_n3c2d2_0000.xml filename describes the parameters of the generated CP-net instance:

2

• n3 indicates that the CP-net has n = 3 nodes;

• c2 indicates that a node can at most c = 2 parents;

• d2 indicates that the domains are all of size d = 2.

• _0000 is an index number. If we had generated multiple CP-nets using the -g option described below,
then these would be numbered sequentially from 0000.

Note that if we attempt to perform the identical command a second time, an error message would result:

Error: filename cpnet_n3c2d2_0000.xml already exists.

Delete file(s) first or output to another directory.

By throwing the error message, we avoid the unfortunate possibility of overwriting the sets that we have
previously generated, since these may be needed for later experiments or in case later researchers wish to
confirm our results using the same input.

The format of the XML file is described in detail at the site http://www.ece.iastate.edu/~gsanthan/

crisner.html. Here we only describe it briefly. Note that since our algorithm is randomized, the output
will likely differ on each execution.

1 <PREFERENCE-SPECIFICATION>

2

3 <PREFERENCE-VARIABLE>

4 <VARIABLE-NAME>x1</VARIABLE-NAME>

5 <DOMAIN-VALUE>1</DOMAIN-VALUE>

6 <DOMAIN-VALUE>2</DOMAIN-VALUE>

7 </PREFERENCE-VARIABLE>

8

9 <PREFERENCE-VARIABLE>

10 <VARIABLE-NAME>x2</VARIABLE-NAME>

11 <DOMAIN-VALUE>1</DOMAIN-VALUE>

12 <DOMAIN-VALUE>2</DOMAIN-VALUE>

13 </PREFERENCE-VARIABLE>

14

15 <PREFERENCE-VARIABLE>

16 <VARIABLE-NAME>x3</VARIABLE-NAME>

17 <DOMAIN-VALUE>1</DOMAIN-VALUE>

18 <DOMAIN-VALUE>2</DOMAIN-VALUE>

19 </PREFERENCE-VARIABLE>

20

21 <PREFERENCE-STATEMENT>

22 <STATEMENT-ID>p1_1</STATEMENT-ID>

23 <PREFERENCE-VARIABLE>x1</PREFERENCE-VARIABLE>

24 <PREFERENCE>2:1</PREFERENCE>

25 </PREFERENCE-STATEMENT>

26

27 <PREFERENCE-STATEMENT>

28 <STATEMENT-ID>p2_1</STATEMENT-ID>

29 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

30 <CONDITION>x1=1</CONDITION>

31 <CONDITION>x3=1</CONDITION>

32 <PREFERENCE>1:2</PREFERENCE>

33 </PREFERENCE-STATEMENT>

34

35 <PREFERENCE-STATEMENT>

36 <STATEMENT-ID>p2_2</STATEMENT-ID>

3

http://www.ece.iastate.edu/~gsanthan/crisner.html
http://www.ece.iastate.edu/~gsanthan/crisner.html

37 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

38 <CONDITION>x1=1</CONDITION>

39 <CONDITION>x3=2</CONDITION>

40 <PREFERENCE>1:2</PREFERENCE>

41 </PREFERENCE-STATEMENT>

42

43 <PREFERENCE-STATEMENT>

44 <STATEMENT-ID>p2_3</STATEMENT-ID>

45 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

46 <CONDITION>x1=2</CONDITION>

47 <CONDITION>x3=1</CONDITION>

48 <PREFERENCE>2:1</PREFERENCE>

49 </PREFERENCE-STATEMENT>

50

51 <PREFERENCE-STATEMENT>

52 <STATEMENT-ID>p2_4</STATEMENT-ID>

53 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

54 <CONDITION>x1=2</CONDITION>

55 <CONDITION>x3=2</CONDITION>

56 <PREFERENCE>1:2</PREFERENCE>

57 </PREFERENCE-STATEMENT>

58

59 <PREFERENCE-STATEMENT>

60 <STATEMENT-ID>p3_1</STATEMENT-ID>

61 <PREFERENCE-VARIABLE>x3</PREFERENCE-VARIABLE>

62 <CONDITION>x1=1</CONDITION>

63 <PREFERENCE>1:2</PREFERENCE>

64 </PREFERENCE-STATEMENT>

65

66 <PREFERENCE-STATEMENT>

67 <STATEMENT-ID>p3_2</STATEMENT-ID>

68 <PREFERENCE-VARIABLE>x3</PREFERENCE-VARIABLE>

69 <CONDITION>x1=2</CONDITION>

70 <PREFERENCE>2:1</PREFERENCE>

71 </PREFERENCE-STATEMENT>

72

73 </PREFERENCE-SPECIFICATION>

The PREFERENCE-VARIABLE enclosures tell us that we have three variables, X1, X2, and X3, each with
the values 1 and 2. These can map to Dom(X1) = {x1, x1}, etc. The preference statement in lines 21–25

<PREFERENCE-STATEMENT>

<STATEMENT-ID>p1_1</STATEMENT-ID>

<PREFERENCE-VARIABLE>x1</PREFERENCE-VARIABLE>

<PREFERENCE>2:1</PREFERENCE>

</PREFERENCE-STATEMENT>

tells us that X1 has no dependencies (parents), and that outcomes with X1 = 2 are always preferred to those
with X1 = 1. The preference statement in lines 66–71

<PREFERENCE-STATEMENT>

<STATEMENT-ID>p3_2</STATEMENT-ID>

<PREFERENCE-VARIABLE>x3</PREFERENCE-VARIABLE>

<CONDITION>x1=2</CONDITION>

<PREFERENCE>2:1</PREFERENCE>

</PREFERENCE-STATEMENT>

4

tells us that X1 is a parent of X3 and in particular that, when X1 = 2, outcomes with X3 = 2 are preferred
to those with X3 = 1. Altogether, the XML specification corresponds to the following CP-net:

X2

X1 X3

x1 ∧ x3 : x2 � x2

x1 ∧ x3 : x2 � x2

x1 ∧ x3 : x2 � x2

x1 ∧ x3 : x2 � x2

x1 � x1
x1 : x3 � x3

x1 : x3 � x3

4.2 The -d parameter: a two-node multi-valued example

It is possible to generate CP-nets with multivalued domains with the -d option. Note that our method
assumes domain sizes are homogeneous, that is, the same for all variables. For example, we can generate an
example with 2 nodes (n = 2) and three-valued domains (d = 3) with:

1 $./gencpnet -n 2 -d 3 examples

2 Building distribution tables for CP-nets with the following specs:

3 Number of nodes: n = 2

4 Bound on in-degree c = 1

5 Homogeneous domains of size d = 3

6 Probability of incompleteness i = 0

7 Generating 1 random CP-nets with these specs.

8 Generation complete.

9 $ cat examples/cpnet_n2c1d3_0000.xml

10 <PREFERENCE-SPECIFICATION>

11

12 <PREFERENCE-VARIABLE>

13 <VARIABLE-NAME>x1</VARIABLE-NAME>

14 <DOMAIN-VALUE>1</DOMAIN-VALUE>

15 <DOMAIN-VALUE>2</DOMAIN-VALUE>

16 <DOMAIN-VALUE>3</DOMAIN-VALUE>

17 </PREFERENCE-VARIABLE>

18

19 <PREFERENCE-VARIABLE>

20 <VARIABLE-NAME>x2</VARIABLE-NAME>

21 <DOMAIN-VALUE>1</DOMAIN-VALUE>

22 <DOMAIN-VALUE>2</DOMAIN-VALUE>

23 <DOMAIN-VALUE>3</DOMAIN-VALUE>

24 </PREFERENCE-VARIABLE>

25

26 <PREFERENCE-STATEMENT>

27 <STATEMENT-ID>p1_1</STATEMENT-ID>

28 <PREFERENCE-VARIABLE>x1</PREFERENCE-VARIABLE>

29 <PREFERENCE>2:1</PREFERENCE>

30 <PREFERENCE>1:3</PREFERENCE>

31 </PREFERENCE-STATEMENT>

32

33 <PREFERENCE-STATEMENT>

34 <STATEMENT-ID>p2_1</STATEMENT-ID>

35 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

36 <CONDITION>x1=1</CONDITION>

5

37 <PREFERENCE>2:1</PREFERENCE>

38 <PREFERENCE>1:3</PREFERENCE>

39 </PREFERENCE-STATEMENT>

40

41 <PREFERENCE-STATEMENT>

42 <STATEMENT-ID>p2_2</STATEMENT-ID>

43 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

44 <CONDITION>x1=2</CONDITION>

45 <PREFERENCE>1:2</PREFERENCE>

46 <PREFERENCE>2:3</PREFERENCE>

47 </PREFERENCE-STATEMENT>

48

49 <PREFERENCE-STATEMENT>

50 <STATEMENT-ID>p2_3</STATEMENT-ID>

51 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

52 <CONDITION>x1=3</CONDITION>

53 <PREFERENCE>3:1</PREFERENCE>

54 <PREFERENCE>1:2</PREFERENCE>

55 </PREFERENCE-STATEMENT>

56

57 </PREFERENCE-SPECIFICATION>

Again, each generated instance is random and thus probably differs from what is shown above. This
time the PREFERENCE-VARIABLE enclosures show that there are two variables, X1 and X2, each with three
values, 1, 2, and 3. We can write these as Dom(X1) = {x1, x

′
1, x

′′
1}, etc. The first PREFERENCE-STATEMENT

enclosure in lines 26–31 tells us that the preference over X1 is unconditional, with x′
1 � x1 � x′′

1 . The
following three preference statements (rules) in lines 33–55 give the CPT for X2. Note that there is one rule
for each assignment to X1, the parent of X2. Thus the corresponding CP-net is:

X1

X2

x′
1 � x1 � x′′

1

x1 : x′
2 � x2 � x′′

2

x′
1 : x2 � x′

2 � x′′
2

x′′
1 : x′′

2 � x2 � x′
2

4.3 The -c and -g parameters: multiple CP-nets with bounded indegree

Usually we want to generate a set of CP-nets for an experiment. We can specify the size of the set with the
-g parameter. Also, a bound on indegree is customarily assumed; we can specify this bound with the -c

parameter.
Suppose we want to generate 10 CP-nets uniformly at random. The CP-nets should have 10 nodes. No

node should have more than 4 parents. The domains are binary. We can do this by typing:

$./gencpnet -n 10 -c 4 -d 2 -g 10 temp

Building distribution tables for CP-nets with the following specs:

Number of nodes: n = 10

Bound on in-degree c = 4

Homogeneous domains of size d = 2

Probability of incompleteness i = 0

Generating 10 random CP-nets with these specs.

Generation complete.

6

The options -n, -c, and -d, specify the number of nodes n, bound c on indegree, and the size d of all
domains, as described in our paper. The -g option specifies the number of CP-nets to generate. In this
case the resulting CP-nets are written to the temp subdirectory, which we can create using mkdir as shown
above. Note that if we had failed to create the new subdirectory, we would receive an error message:

Error: cannot open output file cpnet_n10c4d2_0000.xml

Make sure specified directory temp is accessible.

The files are named cpnet_n10c4d2_0000.xml, cpnet_n10c4d2_0001.xml, etc. The numbers after the n,
c, and d correspond respectively to the number of nodes, bound on indegree, and homogeneous domain size
as described above. The numerals 0000, 0001, . . . , 0009 index the generated instances.

If the -c parameter is omitted, GenCPnet assumes a default value of 5. It is possible to generate CP-nets
with unbounded indegree by specifying a “bound” of c = n− 1, or by specifying an “infinite” bound, i.e., -c
99, in which case the program sets c to n− 1 internally. For example,

./gencpnet -n 20 -c 19 temp

generates just one CP-net with binary valued domains, n = 20 nodes, and indegree that is effectively
unbounded. However, with high probability, the resulting CP-net will have one node with indegree 19,
resulting in a conditional preference table with 219 = 524288 entries. The resulting file will be nearly 1 GB
in size. If the tables are considerably larger even than this, it may be impossible to output the resulting
CP-net representation. For example:

$./gencpnet -n 60 -c 59 temp

Building distribution tables for CP-nets with the following specs:

Number of nodes: n = 60

Bound on in-degree c = 59

Homogeneous domains of size d = 2

Probability of incompleteness i = 0

Sorry, there is not enough memory for CPTs with 576460752303423488 (5.76461e+17) entries

Aborting generation.

A suitable bound on indegree is thus conventionally assumed. For example, the command

./gencpnet -n 60 -c 5 -g 100 temp

should complete in approximately 10–15 seconds, producing 100 files, each around 270 KB in size.
Note that presently the number of nodes is limited to n = 63. An error message will result for n ≥ 64.

This is a due to our implementation, which assumes a processor with 64-bit words.

4.4 Generating DT problems with -t and -h

Dominance Testing (DT), determining whether one outcome is preferred to another, is an important rea-
soning problem when working with CP-nets. With GenCPnet the -t option can be used to generate DT
problem instances, as well as CP-net instances, that are quiprobable with respect to a set of DT problems
parameterized by the number of nodes n, bound c on indegree, and homogeneous domain size d. It is also
possible to constrain the Hamming distance, h, of the resulting problem set—that is, to fix the number of
variables in which each outcome pair differs.

For example, the following generates 10 random CP-nets with 5 nodes, bound 2 on indegree, and binary
domains.

./gencpnet -n 5 -c 2 -g 10 -t 1 problems

For each CP-net, one pair of outcomes (unconstrained by Hamming distance) is also generated. A listing of
the directory gives:

7

-rw-rw-r-- 1 user user 4006 Dec 10 17:01 cpnet_n5c2d2_0000.xml

-rw-rw-r-- 1 user user 3783 Dec 10 17:01 cpnet_n5c2d2_0001.xml

-rw-rw-r-- 1 user user 4006 Dec 10 17:01 cpnet_n5c2d2_0002.xml

-rw-rw-r-- 1 user user 4006 Dec 10 17:01 cpnet_n5c2d2_0003.xml

-rw-rw-r-- 1 user user 4006 Dec 10 17:01 cpnet_n5c2d2_0004.xml

-rw-rw-r-- 1 user user 3783 Dec 10 17:01 cpnet_n5c2d2_0005.xml

-rw-rw-r-- 1 user user 3277 Dec 10 17:01 cpnet_n5c2d2_0006.xml

-rw-rw-r-- 1 user user 3500 Dec 10 17:01 cpnet_n5c2d2_0007.xml

-rw-rw-r-- 1 user user 3500 Dec 10 17:01 cpnet_n5c2d2_0008.xml

-rw-rw-r-- 1 user user 4006 Dec 10 17:01 cpnet_n5c2d2_0009.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0000_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0001_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0002_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0003_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0004_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0005_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0006_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0007_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0008_0000.xml

-rw-rw-r-- 1 user user 1452 Dec 10 17:01 dt_n5c2d2_0009_0000.xml

Here the XML files prefaced with cpnet_ describe CP-nets as explained above. Those prefaced with dt_

describe DT problem instances. Note that the filename for each DT instance contains two indices. The first
is the same as the index of the corresponding CP-net. The second is numbered sequentially from 0000. If
we had generated multiple DT problems for CP-net 0000, then the corresponding DT XML files would be
labeled 0000_0000, 0000_0001, etc.

Recall that a DT problem N |= o � o′ consists of a CP-net N and a pair of outcomes o and o′. It is
assumed, of course, that N , o, and o′ share the same set of variables V with associated domains. Consider
the randomly generated contents of dt_n5c2d2_0000_0000.xml:

1 <PREFERENCE-QUERY>

2 <PREFERENCE-SPECIFICATION-FILENAME>cpnet_n5c2d2_0000.xml</PREFERENCE-SPECIFICATION-FILENAME>

3 <QUERY-TYPE>DOMINANCE</QUERY-TYPE>

4 <OUTCOME>

5 <LABEL>BETTER</LABEL>

6 <ASSIGNMENT>

7 <PREFERENCE-VARIABLE>x1</PREFERENCE-VARIABLE>

8 <VALUATION>2</VALUATION>

9 </ASSIGNMENT>

10 <ASSIGNMENT>

11 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

12 <VALUATION>1</VALUATION>

13 </ASSIGNMENT>

14 <ASSIGNMENT>

15 <PREFERENCE-VARIABLE>x3</PREFERENCE-VARIABLE>

16 <VALUATION>2</VALUATION>

17 </ASSIGNMENT>

18 <ASSIGNMENT>

19 <PREFERENCE-VARIABLE>x4</PREFERENCE-VARIABLE>

20 <VALUATION>2</VALUATION>

21 </ASSIGNMENT>

22 <ASSIGNMENT>

23 <PREFERENCE-VARIABLE>x5</PREFERENCE-VARIABLE>

24 <VALUATION>2</VALUATION>

25 </ASSIGNMENT>

26 </OUTCOME>

8

27 <OUTCOME>

28 <LABEL>WORSE</LABEL>

29 <ASSIGNMENT>

30 <PREFERENCE-VARIABLE>x1</PREFERENCE-VARIABLE>

31 <VALUATION>2</VALUATION>

32 </ASSIGNMENT>

33 <ASSIGNMENT>

34 <PREFERENCE-VARIABLE>x2</PREFERENCE-VARIABLE>

35 <VALUATION>2</VALUATION>

36 </ASSIGNMENT>

37 <ASSIGNMENT>

38 <PREFERENCE-VARIABLE>x3</PREFERENCE-VARIABLE>

39 <VALUATION>2</VALUATION>

40 </ASSIGNMENT>

41 <ASSIGNMENT>

42 <PREFERENCE-VARIABLE>x4</PREFERENCE-VARIABLE>

43 <VALUATION>1</VALUATION>

44 </ASSIGNMENT>

45 <ASSIGNMENT>

46 <PREFERENCE-VARIABLE>x5</PREFERENCE-VARIABLE>

47 <VALUATION>1</VALUATION>

48 </ASSIGNMENT>

49 </OUTCOME>

50 </PREFERENCE-QUERY>

The PREFERENCE-SPECIFICATION-FILENAME enclosure gives the XML file specifying CP-net N . The two
outcome enclosures specify the outcomes o and o′. In this case, the problem is whether x1 x2 x3 x4 x5 �
x1 x2 x3 x4 x5 with respect to CP-net N as defined in the file cpnet_n5c2d2_0000.xml. Again, we refer the
reader to the page http://www.ece.iastate.edu/~gsanthan/crisner.html for additional details on the
XML specification.

Note that in the problem given above, the Hamming distance is 3, since the two values differ in the values
of X2, X4, and X5. We could constrain the Hamming distance to any given value between 1 and n inclusive
with the -h option. For example:

./gencpnet -n 5 -c 2 -g 10 -t 1 -h 2 problems

We can use -t 10 to generate 10 DT problems for each of 10 CP-nets—a total of 100 DT problems:

./gencpnet -n 20 -c 4 -g 10 -t 10 problems

4.5 Other command line parameters

The --quiet parameter can be used to silence all most of the output to the console. Conversely, --verbose
provides additional output for debugging purposes.

An experimental -i parameter allows specifying a degree of incompleteness. For example, -i 0.60

specifies that each conditional preference rule will be specified with probability 0.6. Note that this does not
mean that exactly 60% of the rules of each table will be filled; it is only a probability invoked for each rule.
Thus the actual generated table could be complete or empty. This is an experimental feature. As
such, it could be removed or its behavior may be modified in a future release.

Finally, the --count and --countdags parameters only output the number of CP-nets and directed
acyclic graphs (DAGs) respectively, as described in our paper. For example, the following BASH shell script

1 echo "The number of acyclic, unbounded, binary CP-nets:"

2 echo -e "n\ta(n)"

3 for i in $(seq 1 8); do

4 echo -n -e $i ’\t’

9

http://www.ece.iastate.edu/~gsanthan/crisner.html

5 # Here we use c=9999 as "infinity"; that is, unbounded indegree

6 ./gencpnet -n $i -c 9999 -d 2 --count --quiet .

7 echo

8 done

produces the output:

The number of acyclic, unbounded, binary CP-nets:

n a(n)

1 2

2 12

3 488

4 481776

5 157549032992

6 4059976627283664056256

7 524253448460177960474729517490503566696576

8 1427153634467948627654814418603596566233315529747076624457951655059580698906328832

Note also the use of the --quiet option. The complete script is included in the distribution as count.sh.

5 License

GenCPnet is free software, released under the GNU Public License version 3. You should have received a
copy of gpl-3.0.txt in the archive. If not, see http://www.gnu.org/licenses/.

If you use GenCPnet in your research, we hope you will choose to cite our paper. BIBTEX format is:

@inproceedings{generating_cpnets,

title = {Generating {CP}-nets Uniformly at Random},

author = {Thomas E. Allen and

Judy Goldsmith and Hayden Elizabeth Justice and Nicholas Mattei and Kayla Raines},

booktitle={Procedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16)},

note = {To appear},

year = {2016}

}

References

[1] Thomas E. Allen, Judy Goldsmith, Hayden Elizabeth Justice, Nicholas Mattei, and Kayla Raines. Gener-
ating CP-nets uniformly at random. In Procedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI-16), 2016. To appear.

[2] C. Boutilier, R.I. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. CP-nets: A tool for representing
and reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence
Research, 21:135–191, 2004.

10

http://www.gnu.org/licenses/

	Introduction
	Obtaining GenCPnet
	Installing GenCPnet
	Using the CP-net Generator
	The -n parameter: a simple binary-valued example
	The -d parameter: a two-node multi-valued example
	The -c and -g parameters: multiple CP-nets with bounded indegree
	Generating DT problems with -t and -h
	Other command line parameters

	License

