
CS535 Fall 2024 
Final exam Solution Set (100 + 10 extra points), December 17, 2024 

 
Name_______Sample______________ 

 

1. Given the normal of a surface at a given point N and an incident ray L, we need to 
compute the specular reflection ray R at that point to compute its shade. Develop 
an incremental method to compute that vector for points of a triangle, assuming R1, 
R2 and R3 at the three vertices of the triangle are already given.  (10 points) 
 

 
 

Sol: 
The normal of a triangle is a constant. Therefore, to compute the intensity/color for 
a point of the triangle, we only need to know the specular reflection vector of that 
point. Computing the real specular reflection vector for each point of the triangle is 
a very expensive process, so one alternative (besides the Phong shading) is to 
estimate the specular reflection vector for each point of the triangle if we know the 
specular reflection vectors at the vertices of the triangle. This can be done as follows. 

For each edge of a polygon, we use a representation as follows: 
 

 
 

Rmin is the specular reflection vector of the lower vertex of the edge. So, for edge 
e2, this entry would be R2 and for edge e3 this entry would be R1. ΔR is the step 
size for specular reflection vector in y direction. So for edge e2, ΔR is computed as 
follows: 

∆𝑅 = (𝑅3 − 𝑅2)/(𝑦3 − 𝑦2) 
 

     For scan line y, once we have Ra and Rb from edge e2 and edge e3 (e2 and e3 
are edges in the Active Edge List now), we compute a step size for the specular 
reflection vector ∆𝑥𝑅 as follows: 

 



∆𝑥𝑅 = (𝑅𝑏 − 𝑅𝑎)/(𝑏 − 𝑎) 
 

Then the specular reflection vector for each subsequent pixel in the span [a, b] would 
simply be the sum of the specular reflection vector of the previous pixel and ∆𝑥𝑅. So, 
the specular reflection vector for x=a+1 would be 

 

𝑅𝑎+1 = 𝑅𝑎 + ∆𝑥𝑅 

 

And the specular reflection vector for x=a+2 would be 
 

𝑅𝑎+2 = 𝑅𝑎+1 + ∆𝑥𝑅. 

 
 

2. Gouraud shading (intensity-interpolation shading) and Phong shading (normal-
iterpolation shading) can both be used to eliminate intensity discontinuities when 
rendering a polygonal mesh. However, Gouraud shading could generate the so-
called Mach band effect and Phong shading would not. Can you think of a reason 
for Gouraud shading to get the Mach band effect?   (10 extra points) 

 
Sol: 
The Mach band effect has something to do with the way the normal of a vertex 𝑣, 𝑁𝑣, 
of the polygon-mesh is defined. Defining the normal of a vertex as the average of 
normals of the adjacent polygons is not the best way to define the normal of a vertex, 
especially when the normal of one adjacent polygon is quite different from normals of 
the other adjacent polygons. In such a case, intensities computed for points (pixels) 
of that particular polygon using “intensity interpolation shading” would be quite 
different from the original value, especially when specular reflection is considered (see 
the above figure). Phong shading wouldn’t have such a problem b/c Phong shading 
interpolates normal vectors directly. 

 

 
 

 
 

3. The shadow volume based 'shadow generation' algorithm can be integrated with 
the scan-line hidden surface elimination process so that we can do hidden surface 
elimination and shadow generation at the same time. How are shadow polygons 
used by the scan-line method to determine if a point (pixel) is in shadow? If 
necessary, draw a figure to illustrate the process.   (10 points) 

 
Sol: See slides 6 and 7 of the notes “Lighting and Shadows II”. 



 
 

4. The shadow map based 'shadow generation' algorithm is easy to implement. But 
it has a potential problem. What is it? What is the reason for getting this potential 
problem? Is there a way to overcome this potential problem?   (10 points) 

 

Sol: For the potential problem and the cause of the problem, see slides 16, 17 and 18 
of the notes “Lighting and Shadows II”. To overcome this potential problem, one way is 
to increase the resolution of the display surface. However, this is not really a solution, 
but a way to reduce the seriousness of the problem. For a real solution to this problem, 
see Question 5 of the solution set for HW5. 
 

 
 

5. When ray trace an instance of an object transformed by a matrix M, we usually 
perform the ray tracing process in the space of the original object/primitive. What 
is the advantage of doing the tracing this way?  (10 points) 

 

Sol:  
Doing it this way, we only need to maintain one ray-object intersection point 
computation procedure for each primitive object, instead of performing a separate 
ray-object intersection point computation for each instance of a primitive object. 

 

 
 

For instance, in the above figure, A is a primitive object and MA is an instance of 
A through the mapping of the transformation matrix M. To find the intersection 
points of the ray a+tb with MA directly, we have to develop separate code to 
perform the ray-object intersection point computation for a+tb and MA. By 
transforming the ray a+tb into the space of A, we can use the ray-object 

intersection point computation procedure for A and the ray 𝑀−1𝑎 + 𝑡（𝑀−1𝑏）, 

and then transform the intersection points into the space of MA by M. This 
approach saves both computation time and software implementation. 
 
 

6. The CSG (Constructive Solid Geometry) tree representation technique introduced 



in Section 10.10 is not unique, i.e., there are usually more than one CSG 
representation for a CSG object. Are there occasions that the CSG representation 
for a CSG object is unique? Either way, justify your answer.    (10 points) 

 

Sol: 
The answer is NO in general unless the object is a primitive itself. In that case the 
CSG tree representation of the object has only one node, a primitive node. 

 
We will use a 2D example to show that in general it is possible to use different 
construction procedures to build a solid. Consider, for instance, the 2D object 
shown below. 
 

 
 

This object can be constructed using two types of primitives: unit block and unit 
circle, through three regular union operations as follows: 
 

 
 

It can also be constructed using two types of primitives: unit block and unit circle, 
but through a regular difference operation and a regular union operation, as follows: 
 



 
 

So the CSG representation technique is not unique for this object. 
 

However, if an object is itself a primitive, such as a unit cube, then the CSG tree 
representation of this object has one node only, a primitive node for the unit cube. 
Here we ignore the possibility of representing the object as the union (or, 
intersection) of two identical unit cubes. 

 
 

7. Can ray tracing reproduce texture of a surface? Justify your answer. (10 points) 
 

Sol. 
Yes, ray tracing can reproduce the texture of a surface. To do this, we need to 
incorporate UV mapping into the ray tracing process so that a texel (or, a set 
of texels) in the texture image can be identified and used in the rendering 
process of the intersected point of the surface, instead of the standard 
approach. 

 
Specifically, first, we generate a ray and find the first intersection point on the 
object as we did in a normal ray tracing process. Then we derive the u and v 
coordinates of the intersection point on the surface. Instead of setting the 
color of the intersected point using the standard approach, we use the UV 
texture coordinates to find the corresponding entry (texel) in the texture 
image and set the initial color of the intersected point to be that entry of the 
texture image. After that, we can calculate diffuse light, specular light and 
refraction as we did in normal ray tracing process. With such modification to 
a normal ray tracing process, proper texture information can be applied to 
each intersection point. 
 
 If the projection type is perspective, we also need to apply the perspective 
correction on the UV mapping. 

 
  



8. Why perspective correction is necessary when doing texture mapping? How 
should it be done? Your answer should address two issues here: 
   (1) Theoretically, how can it be done?  
   (2) Practically, how should it be done efficiently?  
The term "efficiently" means the process is so efficient that it can be integrated 
with the triangle rasterization process without changing its performance much 
at all.  (10 points)  

 
Sol. 
Perspective correction is necessary when doing texture mapping because 
when we do scan conversion, the UV coordinates are calculated by linearly 
interpolating points in the screen space.  So the linearly interpolated UV 
texture coordinates will not give the perspective effect. Consider the following 
graph: 

 

 
 

We get the image on the right if we do interpolation in screen space, which is 
not correct. The correct one is shown on the left which shows the perspective 
effect. 

 
 

To do texture mapping perspective correction, after we derived the incorrect 
UV texture coordinates, u and v, we need to divide them by the depth value Z, 
which is also interpolated. So we can use the new u and v coordinates to find 
the proper texel value from the texture image which will correctly represent 
the perspective effect when mapped to the object. 

 
At each pixel, instead of interpolating the texture coordinates directly, the 
coordinates are divided by their depth Z (relative to the viewer), and the 
reciprocal of the depth value 1/Z is also interpolated. Then, we take the new 
U and V values, index into the texture map and find the appropriate entry for 
the screen pixel. A pseudo code for this process is shown below. 



 
Pseudo-code:  

su = Screen-U = U/Z  
sv = Screen-V = V/Z  
sz = Screen-Z = 1/Z  
for x = startx to endx  

u = su/sz  
v = sv/sz  
PutPixel(x, y, texture[v][u])  
su+ = Δsu  
sv+ = Δsv  
sz+ = Δsz  

end 
 
Note that in the above loop, u=U and v=V only for the start pixel, not for the 

remaining pixels. 
 

 

9. Clipping is not necessary for the ray tracing process? Why?   (10 points) 
 

Sol: 
Even if a portion of an object is outside the view volume (like portion B of the object 
in the following figure), since each viewing ray generated in the ray tracing process 
is bounded by the four bounding planes of the view volume, the first intersection 
point returned by the viewing ray will always be a point on the visible portion of an 
object (the portion of the object that is inside the view volume), such as the point 
P in the figure below. If the specular reflection ray or refraction ray generated for 
an intersection point hits a bounding plane of the view volume, we simply return 
the background color for that specular reflection ray or the refraction ray. So there 
is no need for a clipping process in the ray tracing algorithm.  
 

 
 

 

 

10. A modern CPU can have 4 or 8 cores, but a modern GPU can have thousands. 



These GPU cores can be used for computationally intensive tasks through the 
use of compute shaders. Compute shaders are programmed in GLSL and run 
independently. A computer shader can perform parallel computing in the following 
sense: if a compute shader is required to perform a task on n different data sets, 
one can first creates n copies of the compute shader (invokes the compute shader 
n times) and then assign each copy of the compute shader a different data set 
(assign a different task ID (invocationID)). These copies of the compute shader 
then run in parallel to perform the task on assigned data sets. In the following box, 
explain how these two things are implemented in a computer shader program, 
especially the GLSL commands/variables needed for these two steps. (10 points) 
 

 
 
 
 
 
 
 
 
     

 
 
 
 
 
 
 

11. Given a virtual object represented as a CSG (Constructive Solid Geometry) tree, 
one can use ray casting or even ray tracing technique to render this virtual object 
on screen. To use ray casting technique to render a CSG object, we need to find 
the intersection points of each ray with the object. For instance, for the CSG object 
given below (left figure), for the given ray, we need to find the parameters of the 
intersection points of the ray with the object (right figure). 
 

       
 

In the following, use the two given cases (intersection of a 2D sphere and a 2D cube, 
such as the intersection of B and S in the above CSG representation) to explain 
which two parameters should be reported for each case and why.   (10 points) 

First, one needs to use the following command to define a 1-D, 2D or 3D grid of n 
nodes with each node being a work group (core, but simply think of it as a copy of 
the compute shader program): 

    glDispatchCompute( ) 

Here we assume the size of each work group to be 1. 

Next, in the main() of the compute shader program, each work group will get a 
task ID assigned by the special variable gl_GlobalInvocationID  and then perform 
the assigned task independently.   



 

    
 

 

In case (a), by taking the intersection of intervals [t1, t3] (the portion of the ray 
that is inside B) and [t2, t4] (the portion of the ray that is inside S), we get the 
interval [t2, t3] (note that t1 < t2 < t3 < t4). So the intersection points of the ray 
with B∩S in this case are t2 and t3. 

In case (b), by taking the intersection of intervals [t1, t4] (the portion of the ray 
that is inside S) and [t2, t3] (the portion of the ray that is inside B), we get the 
interval [t2, t3] (note that t1 < t2 < t3 < t4). So the intersection points of the ray 
with B∩S in this case are also t2 and t3. 


