Is Subdivision the Representation Scheme for Future Visualization & Animation Applications

Fuhua (Frank) Cheng Department of Computer Science University of Kentucky • Objective:

Presenting a subdivision based representation scheme

So, you can judge:

If this is the ultimate representation scheme we need for all graphics applications, including visualization and animation.

What is subdivision based representation? **Subdivision Surfaces**

One piece representation[™]

another example

Covers both polygon form and surface form (Uniformity of representation)

• : vertices from mesh M⁰

•, •, • : vertices to be generated for M^1

Generating new face points Face point: centroid of each face

Generating new edge points

Generating new vertex points

$$v^{1} = \frac{n-2}{n}v^{0} + \frac{1}{n^{2}}\sum e_{i}^{0} + \frac{1}{n^{2}}\sum f_{i}^{1}$$

Forming new edges

Modeling made much easier. Why?

- No restrictions on the topology of the control points
- Local refinement is possible

Example of control meshes of Catmull-Clark subdivision surfaces

Can model any kind of special features (by modifying the subdivision rules)

Most importantly, can represent any shape with just one surface (one piece representation TM)

One Piece

Multi-Piece

Solid Modeling

Is One Piece RepresentationTM Good?

Data Management:

Rendering:

Machining:

Animation:

Simpler

More efficient

More precise

Crack free

One Piece Representation is good <u>ONLY IF</u>

the representation is precise

Am I giving you a confusing picture?

What is subdivision based representation? Subdivision Surfaces

What is missing in the picture?

- 1. No parameterization
- 2. No error control
- 3. No adaptive tessellation

- Without parameterization Difficult to perform picking, rendering, texture mapping
- Without error control No CAD/CAM applications
- Without adaptive tessellation
 Too expensive to use

A major breakthrough happened in 1998

Jos Stam

- Parameterization of Catmull-Clark
 Subdivision Surfaces
- 1998

Work on Subdivision Surface Parameterization

- 1. J. Stam (1998)
- 2. D. Zorin, D. Kristjansson (2002)
- 3. S. Lai, F. Cheng (2005)

The Extended Subdivision Diagram

Applications of the new parameterization technique

- Surface Evaluation
- Texture Mapping
- Boolean Operations
- Surface Trimming
- Adaptive Tessellation
- Animation

Surface Evaluation

Fast, Exact Rendering

Texture Mapping¹

Texture Mapping¹

Texture Mapping¹

Boolean Operations²

Real time Boolean Operations

Surface Trimming²

Special Features: Corners, Creases, Darts, Edges

Animation

What is error control?

Error Control: Given $\varepsilon > 0$, when would $|| M^n - S || < \varepsilon$?

Cross-Sectional View

A solution is finally available...

- F. Cheng, G. Chen, J. Yong
- Subdivision Depth Computation for Catmull-Clark Subdivision Surfaces
- 2005

This work is also important for adaptive subdivision⁵.

Control Mesh

Limit Surface

Uniform Subdivision

Adaptive Subdivision

Basic Idea: Use unbalanced subdivision⁶ to provide smooth transition between areas with different densities

6: F. Cheng, J. Jaromczyk et al (1989)

Example of adaptive subdivision

 Subdivision surfaces have already been used in

-Pixar's Renderman
-Alias | Wavefront's Maya
-Nichimen's Mirai
-Micropace' Lightwave 3D

My question:

"Is subdivision the representation scheme for future visualization & animation applications?"

Acknowledgement:

- Research work presented here is supported by NSF (DMS-0310645, DMI-0422126).
- Some datasets are taken from P. Schroeder, D. Zorin, L. Kobbelt, H. Hoppe.
- S. Lai helped prepare the PPT file.

