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Abstract. A new method for constructing a smooth
surface that interpolates the vertices of an arbitrary
mesh is presented. The mesh can be open or closed.
Normals specified at vertices of the mesh can also be
interpolated. The interpolating surface is obtained
by locally adjusting the limit surface of the given
mesh (viewed as the control mesh of a Catmull-Clark
subdivision surface) so that the modified surface
would interpolate all the vertices of the given mesh.
The local adjustment process is achieved through
locally blending the limit surface with a surface
defined by non-uniform transformations of the limit
surface. This local blending process can also be used
to smooth out the shape of the interpolating surface.
Hence, a surface fairing process is not needed in the
new method. Because the interpolation process does
not require solving a system of linear equations, the
method can handle meshes with large number of
vertices. Test results show that the new method leads
to good interpolation results even for complicated
data sets. The new method is demonstrated with the
Catmull-Clark subdivision scheme. But with some
minor modification, one should be albe to apply this
method to other subdivision schemes as well.

CR Categories: 1.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling - curve,
surface, solid and object representations;

Keywords: subdivision, subdivision surfaces,
Catmull-Clark subdivision surfaces, interpolation

1 Introduction

Constructing a smooth surface to interpolate the ver-
tices of a given mesh is an important task in many ar-
eas, including geometric modeling, computer graphics,
computer animation, interactive design, and scientific
visualization. The interpolating surface sometime is
also required to interpolate normal vectors specified
for some or all of the mesh vertices. Developing a
general solution for this task is difficult because the
required interpolating surface could be of arbitrary
topology and with arbitrary genus. Traditional repre-
sentation schemes such as B-spline or Bézier surfaces
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can not represent such a complex shape with only one
surface.

Subdivision surfaces were introduced as an efficient
technique to model complex shapes [2][3][10]. But
building a connection between a given mesh and an in-
terpolating subdivision surface has never really been
successful when the number of vertices of the given
mesh is large '. One exception is a work published
recently [11]. In this paper, an iterative interpolation
technique similar to the one used in [8] for non-uniform
B-spline surfaces is proposed for subdivision surfaces.
Since the iterative approach does not require solving a
system of linear equations, it can handle meshes with
large number of vertices. But the paper fails to prove
the convergence of the iterative process.

In this paper we will address the problem of ‘con-
structing a smooth surface to interpolate the vertices
of a given mesh’ and present a new solution to this
problem. We briefly review previous work in this area
first.

1.1 Previous Work: A Brief Review

There are two major ways to interpolate a given mesh
with a subdivision surface: interpolating subdivision
[4, 6, 7, 15, 20] or global optimization [5, 13]. In the
first case, a subdivision scheme that interpolates the
control vertices, such as the Butterfly scheme [4], Zorin
et al’s improved version [20] or Kobbelt’s scheme [7],
is used to generate the interpolating surface. New ver-
tices are defined as local affine combinations of nearby
vertices. This approach is simple and easy to imple-
ment. It can handle meshes with large number of ver-
tices. However, since no vertex is ever moved once
it is computed, any distortion in the early stage of
the subdivision will persist. This makes interpolating
subdivision very sensitive to irregularity in the given
mesh. In addition, it is difficult for this approach to
interpolate normals or derivatives.

The second approach, global optimization, usually
needs to build a global linear system with some con-
straints [14]. The solution to the global linear sys-
tem is a control mesh whose limit surface interpolates

Hnterpolating subdivision [4] will be addressed shortly
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the vertices of the given mesh. This approach usu-
ally requires some fairness constraints in the interpo-
lation process, such as the energy functions presented
in [5], to avoid undesired undulations. Although this
approach seems more complicated, it results in a tra-
ditional subdivision surface. For example, the method
in [5] results in a Catmull-Clark subdivision surface
(CCSS), which is C2-continuous almost everywhere
and whose properties are well studied and understood.
The problem with this approach is that a global linear
system needs to be built and solved. It is difficult for
this approach to handle meshes with large number of
vertices.

There are also techniques that produce surfaces
to interpolate given curves or surfaces that near- (or
quasi-) interpolate given meshes [9]. But those tech-
niques are either of different natures or of different
concerns and, hence, will not be discussed here.

1.2 Overview

In this paper a new method for constructing a smooth
surface that interpolates the vertices of a given mesh
is presented. The mesh can be of arbitrary topology
and can be open or closed. Normal vectors specified
for any vertices of the mesh can also be interpolated.
The basic idea is to view the given mesh as the con-
trol mesh of a Catmull-Clark subdivision surface and
locally adjust the limit surface of the given mesh so
that the resulting surface would not only interpolate
vertices of the given mesh, but also possess a satis-
factory smooth shape. The local adjustment process
is achieved through blending the limit surface S with
a blending surface 7' defined by non-uniform transfor-
mations of the limit surface. By performing the blend-
ing process at different selected points, we are able to
(1) ensure the modified surface would interpolate the
given mesh, (2) prevent it from generating unneces-
sary undulations, and (3) smooth out the shape of the
resulting surface.

The new method has two main advantages. First,
since we do not have to compute the interpolating sur-
face’s control mesh, there is no need to solve a system
of linear equations. Therefore, the new method can
handle meshes with large number of vertices, and is
more robust and stable. Second, because the local
blending process can be used to smooth out the shape
of the interpolating surface, a surface fairing process
is not needed in the new method.

An example of this interpolation process is shown

and 7?7 all interpolate the mesh shown in Figure ?7.

The blending areas in Figure ?? are automatically se-
lected by the system while Figures ?? and 7?7 have
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user selected blending areas in the upper portion and
lower portion of the teapot body afterward. It is easy
to see from Figure ?? that local control is necessary
when better quality interpolating surfaces are needed.

The new method is demonstrated with Catmull-
Clark subdivision surfaces here (by viewing the given
mesh as the control mesh of a Catmull-Clark subdi-
vision surface). But with a minor modification, one
should be able to apply it to other subdivision schemes
as well.

The remaining part of the paper is arranged as fol-
lows. In Section 2, the basic idea of our locally con-
trollable interpolation technique for closed meshes is
presented. The construction process of a blending sur-
face is presented in Section 3. In Section 4, a local
parametrization is introduced. The blending process
around an extraordinary point or an arbitrarily se-
lected point is discussed in Section 5 and Section 6,
respectively. Issues on dealing with normal interpola-
tion and handling open meshes are discussed in Section
7 and Section 8, respectively. Implementation issues
and test results are presented in Section 9. Concluding
marks are given in Section 10.

2 Basic Idea

Given a mesh M and a subdivision scheme, our task is
to find a smooth subdivision surface to interpolate M.
We use the following notations in the paper: A refers
to the matrix that calculates all the limit points of M
with respect to the given subdivision scheme, I(M)
refers to the subdivision surface that interpolates M,
S (M) refers to the limit surface of M, and L(M) refers
to the limit points of M. Note that I(M) and S(M)
are surfaces and L(M) = Ax M is a mesh of the same
topology as M. Without loss of generality, we shall
assume the subdivision scheme considered here is the
Catmull-Clark scheme. But the concept works for all
subdivision schemes.

Let My be the given mesh. Then the task is to
find I(My), a Catmull-Clark subdivision surface that
interpolates the vertices of My. If we can find an off-
set surface R that moves S(My), the Catmull-Clark
subdivision surface of My, to I(My) everywhere, i.e.,

R+ S(My) = I(M,)

then the interpolation problem is solved. The question
is, how should R be constructed?

S(My) can be considered as a Catmull-Clark surface
that interpolates L(My), i.e., S(My) = I(L(My)) =
I(A % My). To move S(My) to I(My) everywhere, T}
must be able to make up the difference between L(M))
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and M. A natural choice is to define T; as an inter-
polating Catmull-Clark subdivision surface of My, the
difference between My and L(Mj). Hence, by replac-
ing T1 with I(M;) in the above equation, we have the
following recurrence formula

I(My) + S(Mo) = I(Mo)
where
M = My — L(Mp)

M, has the same topology as My, hence I(My) and
I(M;) can be constructed exactly the same way. By
repeating the recurrence formula for ¢+ = 1,2, ..., we
get a sequence of meshes M; (1 <14 < oc) such that

I(Mi1) + S(M;) = I(M;)
and
M1 = M; — L(M,). (1)

Consequently, we have
I(Mo) =) S(M;) + I(My41)
i=0

and .
M; = (E — A)' M,y

where F is the identity matrix and A is the matrix
that calculats all the limit points of the given matrix
M. It can be shown that (E — A)* converges to zero
when 7 tends to infinity (see Appendix for a proof).
Hence, we have

lim (M) =0

n— oo

On the other hand, because A is invertible (see Ap-
pendix for a proof), we have

D S(M) =S M) = S(ATH(E—(B=A)"") My)

By combining the above two equations, we have

I(My) = S(Z M;) = S(A™' M) (2)
If we define -
M=) M, (3)

then M = A1 M, holds as well. Hence I(M,) is also
a subdivision surface and M is the control mesh of
I(My). Traditionally, people find M by solving the
system of linear equations AM = M, directly [5, 13].
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It is difficult to use this approach to deal with meshes
with large number of vertices. With eqs. (2) and (3),
this is not a problem any more because M can be ob-
tained by iteratively applying eq. (1) to get enough
terms in (3) until a desired precision is reached. This
approach effectively reduces a global problem to a lo-
cal problem because eq. (1) is performed on the ba-
sis of individual vertices. More importantly, just like
Fourier transformation, a subdivision surface can be
represented as the sum of an infinite series of subdivi-
sion surfaces. For example, for a given control mesh
M, S(M) can be represented as

where My = L(M) and M; are defined by eq. (1) for
1 > 1. This property can be used in applications such
as fairing, smoothing, sharpening, low pass or high
pass filtering, etc.

3 Summary

A new interpolation method for meshes with arbitrary
topology is presented. The interpolation process is a
local process, it does not require solving a system of
linear equations. Hence, the method can handle data
set of any size.

The interpolating surface is obtained by locally ad-
justing the limit surface of the given mesh (viewed as
the control mesh of a Catmull-Clark subdivision sur-
face) so that the modified surface interpolates all the
vertices of the given mesh. This local adjustment pro-
cess can also be used to smooth out the shape of the
interpolating surface. Hence, a surface fairing process
is not needed in the new method.

The new method can handle both open and closed
meshes. It can interpolate not only vertices, but
normals and derivatives as well. These normals and
derivative can be anywhere, not just at the vertices
of the given mesh. Test results show that the new
method leads to good interpolation results even for
complicated data sets.

The resulting interpolating surface is not a Catmull-
Clark subdivision surface. It does not even satisfy the
convex hull property [19]. But the resulting interpo-
lating surface is guaranteed to be C? continuous ev-
erywhere except at some extraordinary points, where
it is C! continuous. Using a technique similar to the
one presented in [19], a C? continuous interpolating
surface can also be achieved.
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Appendix

A. Proof of convergence of (£ — A)'

To prove this, we just need to show the eigen values
A; of A are all positive but smaller than or equal to
1. Here we present the proof for Catmull-Clark sub-
division scheme only. Other schemes can be proved
similarly. The assumption is the given mesh M has at
least one vertex with a valence bigger than 3. Note
that with all the eigen values being positive, the ma-
trix A is invertible.

First, we perfrom a subdivision on the given mesh
M to ensure each face is 4-sided. We use V', E; and F;
to denote vertex points, edge points and face points
of the given mesh and v, e; and f; to denote vertex
points, edge points and face points in the new mesh.
They satisfy the following formulas:

-2 1 — 1 «
v o= nn V—|—EZE2+ﬁ;ﬂ

i=1

V+E+fi+fi
e; = + +f +f+1 (4)
4
_V+E+Ea+F+---+F),

m;

fi

where n is the valence of V and m; is the number of
vertices of the face that contains V, E; and F;;1.
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Since each face after the subdivision is 4-sided, we
can use the following formula [5] to calculate the limit
point of v on the limit surface S(M):

n?
Y _n(n-|-5) n-|-5 Zel

+5 Zf’

The relationship between this limit point and vertices
of the original mesh M can be obtained by replacing
the new vertex point, edges points and face points with
the corresponding items in eq.(4). We have

oo (("(”‘”Hzinv

n(n +5) 4 — m;
1
+Z m; mifl)Ei 5)
\Fi+---+F
Py b,

i=1

The matrix A is defined by eq. (5). A is of dimension
K x K where K is the number of vertices of M. A can
be written as

A=DS

where D is a diagonal matrix of the following form

4
P CYE] 55 2 - 0
D= " nQ(n.2+5) - "
: : :;
0 0 P 7nx(nk+5)

and S is a symmetric, simi-positive definite matrix. n;
in D is the valence of vertiex V; in the given matrix
M.

To prove the symmetry of S, note that the value of
a non-zero, oﬁ—diagonal entry of S is either of the form
(3 qu ) or —. If the value of a non-zero, off-
diagonal entry a;; is of the first form, it means there is
an edge between the vertices V; and V; in the original
mesh and the numbers of vertices in the two faces that
share this edge are my and mj_1, respectively. This
holds either # > j or 7 > i. Hence we must have
a;; = aj;. 1f the value of a non-zero, off-diagonal entry
a;; is of the second form, it means there is a face in the
original mesh that contains V; and V; as non-adjacent
vertices and the number of vertices of the face is my,.
Again, this hold either ¢ > j or 7 > 4. Hence, we must
have a;; = aj; too. Therefore, S is symmetric.

To prove that S is semi-positive definite, we need
to show that XTSX > 0 for any vector X =
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(1,29, - ,zx)T in RE. This follows if we can prove

that

+ T+t Tm,)?
XTsx= % (@2 :

my;
all faces

K
1:2 + €5 n
vy lmtnk
all edges i=1
= Zl + ZQ + Z3 (6)

Note that from eq. (5) we immediately have the fol-
lowing expression for XTSX:

XTSX = i {(77“(71;— Dy i: —)a?

+Z(1+i+ !

)'Tei j)Li
mj_y (4)

mj—3

T x;
+Z k=1 f”()

where e;(j) is an indexing function for the edge points
of z; and f; ;j(k) are indexing functions for the faces
points of z;. By re-arranging terms of the above ex-
pression, we have

XTSX = Z" i z3+227"

i=1 i=1 j=1

Zk 128 5(
o33 B

i=1 j=1
=W + Wy + W5 (7)

W5 can be expressed as follows:

K0 (o) 42 a2 — o
WQ:ZZ[(ZE (4) ZE)4 ml(]) ZE]
i=1 j=1
K n;
- ('Tei j +Tl) 1
-y el s
i=1 j=1 =1

Each edge is used twice in the first term on the right
hand side of the above equation. Hence, we have

K
Wy = Z 7(% -;TZ)z — Z %’E?

all edges i=1

By substituting this expression into (7) for Ws, we get

K
XTSX:Z”’(’ m—i— 3

i=1 all edges

$J+$Z W
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=Z3+ Zy+ Ws

where Z3 and Zs are defined in (6). Z; in (6) can be
expressed as

L= Y imj(xl-f-ﬂ?zn-;"'-l-mmi)

all faces j=1

The right side is nothing but W5. Therefore, (6) is
proved.

Next we prove that S is positive definite if the given
matrix M has at least one vertex with a valence greater
than 3. We prove this by contradiction. Without loss
of generality we shall assume Vj is a vertex of M with
a valence greater than 3 and XTSX = 0 for some
X #0.

Let x; be an component of X that is not zero and let
Vi be the corresponding vertex of M. Since M is con-
nected, there exists a path in M: (V1, V;,), (V;,, V},),
- (Vjp, Vi) that connects Vi and V. Let 21 and z;,
be the corresponding components of V; and Vj, in X,
respectively. We see that z; must be equal to zero for,
otherwise, we would have XTSX > nq(n; — 3)z3/4 >
0, a contradiction. But then since

XTgx > (z1 +;)° n (zj, +5,)° n (2, +2;,)°
- 2 2 2
€ri 4+ x; 2
+...+%

we must have z; = 0 for, otherwise, we would have
XTSX >3 /2> 0, acontradiction. By iterating this
process, we would then have z;, =0, z;, =0, ..., and
eventually z; = 0. This contradicts to the assumption
that z; # 0. Hence, we must have XTSX >0if X #0
and this completes the proof that S is positive definite
when M has at least one vertex with a valence bigger
than 3.

As the product of two positive definite matrices D
and S, the eigen values of A are positive. This follows
immediately from the fact that DS and SD have the
same eigen values (see, e.g., p.14 of [12]). On the other
hand, since the sum of each rom of A is 1, we have
[[All~c = 1. Hence, the eigen values of A are < 1. This
completes the proof.
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