
Interpolating Meshes of Arbitrary TopologyGraphis & Geometri Modeling LabAbstrat. A new method for onstruting a smoothsurfae that interpolates the verties of an arbitrarymesh is presented. The mesh an be open or losed.Normals spei�ed at verties of the mesh an also beinterpolated. The interpolating surfae is obtainedby loally adjusting the limit surfae of the givenmesh (viewed as the ontrol mesh of a Catmull-Clarksubdivision surfae) so that the modi�ed surfaewould interpolate all the verties of the given mesh.The loal adjustment proess is ahieved throughloally blending the limit surfae with a surfaede�ned by non-uniform transformations of the limitsurfae. This loal blending proess an also be usedto smooth out the shape of the interpolating surfae.Hene, a surfae fairing proess is not needed in thenew method. Beause the interpolation proess doesnot require solving a system of linear equations, themethod an handle meshes with large number ofverties. Test results show that the new method leadsto good interpolation results even for ompliateddata sets. The new method is demonstrated with theCatmull-Clark subdivision sheme. But with someminor modi�ation, one should be albe to apply thismethod to other subdivision shemes as well.CR Categories: I.3.5 [Computer Graphis℄: Com-putational Geometry and Objet Modeling - urve,surfae, solid and objet representations;Keywords: subdivision, subdivision surfaes,Catmull-Clark subdivision surfaes, interpolation1 IntrodutionConstruting a smooth surfae to interpolate the ver-ties of a given mesh is an important task in many ar-eas, inluding geometri modeling, omputer graphis,omputer animation, interative design, and sienti�visualization. The interpolating surfae sometime isalso required to interpolate normal vetors spei�edfor some or all of the mesh verties. Developing ageneral solution for this task is diÆult beause therequired interpolating surfae ould be of arbitrarytopology and with arbitrary genus. Traditional repre-sentation shemes suh as B-spline or B�ezier surfaes

an not represent suh a omplex shape with only onesurfae.Subdivision surfaes were introdued as an eÆienttehnique to model omplex shapes [2℄[3℄[10℄. Butbuilding a onnetion between a given mesh and an in-terpolating subdivision surfae has never really beensuessful when the number of verties of the givenmesh is large 1. One exeption is a work publishedreently [11℄. In this paper, an iterative interpolationtehnique similar to the one used in [8℄ for non-uniformB-spline surfaes is proposed for subdivision surfaes.Sine the iterative approah does not require solving asystem of linear equations, it an handle meshes withlarge number of verties. But the paper fails to provethe onvergene of the iterative proess.In this paper we will address the problem of `on-struting a smooth surfae to interpolate the vertiesof a given mesh' and present a new solution to thisproblem. We briey review previous work in this area�rst.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfae: interpolating subdivision[4, 6, 7, 15, 20℄ or global optimization [5, 13℄. In the�rst ase, a subdivision sheme that interpolates theontrol verties, suh as the Buttery sheme [4℄, Zorinet al's improved version [20℄ or Kobbelt's sheme [7℄,is used to generate the interpolating surfae. New ver-ties are de�ned as loal aÆne ombinations of nearbyverties. This approah is simple and easy to imple-ment. It an handle meshes with large number of ver-ties. However, sine no vertex is ever moved oneit is omputed, any distortion in the early stage ofthe subdivision will persist. This makes interpolatingsubdivision very sensitive to irregularity in the givenmesh. In addition, it is diÆult for this approah tointerpolate normals or derivatives.The seond approah, global optimization, usuallyneeds to build a global linear system with some on-straints [14℄. The solution to the global linear sys-tem is a ontrol mesh whose limit surfae interpolates1Interpolating subdivision [4℄ will be addressed shortlyID: papers 18 Page: 1



the verties of the given mesh. This approah usu-ally requires some fairness onstraints in the interpo-lation proess, suh as the energy funtions presentedin [5℄, to avoid undesired undulations. Although thisapproah seems more ompliated, it results in a tra-ditional subdivision surfae. For example, the methodin [5℄ results in a Catmull-Clark subdivision surfae(CCSS), whih is C2-ontinuous almost everywhereand whose properties are well studied and understood.The problem with this approah is that a global linearsystem needs to be built and solved. It is diÆult forthis approah to handle meshes with large number ofverties.There are also tehniques that produe surfaesto interpolate given urves or surfaes that near- (orquasi-) interpolate given meshes [9℄. But those teh-niques are either of di�erent natures or of di�erentonerns and, hene, will not be disussed here.1.2 OverviewIn this paper a new method for onstruting a smoothsurfae that interpolates the verties of a given meshis presented. The mesh an be of arbitrary topologyand an be open or losed. Normal vetors spei�edfor any verties of the mesh an also be interpolated.The basi idea is to view the given mesh as the on-trol mesh of a Catmull-Clark subdivision surfae andloally adjust the limit surfae of the given mesh sothat the resulting surfae would not only interpolateverties of the given mesh, but also possess a satis-fatory smooth shape. The loal adjustment proessis ahieved through blending the limit surfae S witha blending surfae T de�ned by non-uniform transfor-mations of the limit surfae. By performing the blend-ing proess at di�erent seleted points, we are able to(1) ensure the modi�ed surfae would interpolate thegiven mesh, (2) prevent it from generating unnees-sary undulations, and (3) smooth out the shape of theresulting surfae.The new method has two main advantages. First,sine we do not have to ompute the interpolating sur-fae's ontrol mesh, there is no need to solve a systemof linear equations. Therefore, the new method anhandle meshes with large number of verties, and ismore robust and stable. Seond, beause the loalblending proess an be used to smooth out the shapeof the interpolating surfae, a surfae fairing proessis not needed in the new method.An example of this interpolation proess is shownin Figure ??. The surfaes shown in Figures ??, ??and ?? all interpolate the mesh shown in Figure ??.The blending areas in Figure ?? are automatially se-leted by the system while Figures ?? and ?? have

user seleted blending areas in the upper portion andlower portion of the teapot body afterward. It is easyto see from Figure ?? that loal ontrol is neessarywhen better quality interpolating surfaes are needed.The new method is demonstrated with Catmull-Clark subdivision surfaes here (by viewing the givenmesh as the ontrol mesh of a Catmull-Clark subdi-vision surfae). But with a minor modi�ation, oneshould be able to apply it to other subdivision shemesas well.The remaining part of the paper is arranged as fol-lows. In Setion 2, the basi idea of our loally on-trollable interpolation tehnique for losed meshes ispresented. The onstrution proess of a blending sur-fae is presented in Setion 3. In Setion 4, a loalparametrization is introdued. The blending proessaround an extraordinary point or an arbitrarily se-leted point is disussed in Setion 5 and Setion 6,respetively. Issues on dealing with normal interpola-tion and handling open meshes are disussed in Setion7 and Setion 8, respetively. Implementation issuesand test results are presented in Setion 9. Conludingmarks are given in Setion 10.2 Basi IdeaGiven a meshM and a subdivision sheme, our task isto �nd a smooth subdivision surfae to interpolateM .We use the following notations in the paper: A refersto the matrix that alulates all the limit points of Mwith respet to the given subdivision sheme, I(M)refers to the subdivision surfae that interpolates M ,S(M) refers to the limit surfae ofM , and L(M) refersto the limit points of M . Note that I(M) and S(M)are surfaes and L(M) = A �M is a mesh of the sametopology as M . Without loss of generality, we shallassume the subdivision sheme onsidered here is theCatmull-Clark sheme. But the onept works for allsubdivision shemes.Let M0 be the given mesh. Then the task is to�nd I(M0), a Catmull-Clark subdivision surfae thatinterpolates the verties of M0. If we an �nd an o�-set surfae R that moves S(M0), the Catmull-Clarksubdivision surfae of M0, to I(M0) everywhere, i.e.,R+ S(M0) = I(M0)then the interpolation problem is solved. The questionis, how should R be onstruted?S(M0) an be onsidered as a Catmull-Clark surfaethat interpolates L(M0), i.e., S(M0) = I(L(M0)) =I(A �M0). To move S(M0) to I(M0) everywhere, T1must be able to make up the di�erene between L(M0)ID: papers 18 Page: 2



and M0. A natural hoie is to de�ne T1 as an inter-polating Catmull-Clark subdivision surfae ofM1, thedi�erene between M0 and L(M0). Hene, by repla-ing T1 with I(M1) in the above equation, we have thefollowing reurrene formulaI(M1) + S(M0) = I(M0)where M1 =M0 � L(M0)M1 has the same topology as M0, hene I(M0) andI(M1) an be onstruted exatly the same way. Byrepeating the reurrene formula for i = 1; 2; : : : , weget a sequene of meshes Mi (1 � i � 1) suh thatI(Mi+1) + S(Mi) = I(Mi)and Mi+1 =Mi � L(Mi): (1)Consequently, we haveI(M0) = nXi=0 S(Mi) + I(Mn+1)and Mi = (E �A)iM0where E is the identity matrix and A is the matrixthat alulats all the limit points of the given matrixM0. It an be shown that (E � A)i onverges to zerowhen i tends to in�nity (see Appendix for a proof).Hene, we have limn!1 I(Mn+1) = 0On the other hand, beause A is invertible (see Ap-pendix for a proof), we havenXi=0 S(Mi) = S( nXi=0Mi) = S(A�1(E�(E�A)n+1)M0)By ombining the above two equations, we haveI(M0) = S( 1Xi=0Mi) = S(A�1M0) (2)If we de�ne M̂ = 1Xi=0Mi (3)then M̂ = A�1M0 holds as well. Hene I(M0) is alsoa subdivision surfae and M̂ is the ontrol mesh ofI(M0). Traditionally, people �nd M̂ by solving thesystem of linear equations AM̂ = M0 diretly [5, 13℄.

It is diÆult to use this approah to deal with mesheswith large number of verties. With eqs. (2) and (3),this is not a problem any more beause M̂ an be ob-tained by iteratively applying eq. (1) to get enoughterms in (3) until a desired preision is reahed. Thisapproah e�etively redues a global problem to a lo-al problem beause eq. (1) is performed on the ba-sis of individual verties. More importantly, just likeFourier transformation, a subdivision surfae an berepresented as the sum of an in�nite series of subdivi-sion surfaes. For example, for a given ontrol meshM , S(M) an be represented asS(M) = I(L(M)) = S( 1Xi=0Mi)where M0 = L(M) and Mi are de�ned by eq. (1) fori � 1. This property an be used in appliations suhas fairing, smoothing, sharpening, low pass or highpass �ltering, et.3 SummaryA new interpolation method for meshes with arbitrarytopology is presented. The interpolation proess is aloal proess, it does not require solving a system oflinear equations. Hene, the method an handle dataset of any size.The interpolating surfae is obtained by loally ad-justing the limit surfae of the given mesh (viewed asthe ontrol mesh of a Catmull-Clark subdivision sur-fae) so that the modi�ed surfae interpolates all theverties of the given mesh. This loal adjustment pro-ess an also be used to smooth out the shape of theinterpolating surfae. Hene, a surfae fairing proessis not needed in the new method.The new method an handle both open and losedmeshes. It an interpolate not only verties, butnormals and derivatives as well. These normals andderivative an be anywhere, not just at the vertiesof the given mesh. Test results show that the newmethod leads to good interpolation results even forompliated data sets.The resulting interpolating surfae is not a Catmull-Clark subdivision surfae. It does not even satisfy theonvex hull property [19℄. But the resulting interpo-lating surfae is guaranteed to be C2 ontinuous ev-erywhere exept at some extraordinary points, whereit is C1 ontinuous. Using a tehnique similar to theone presented in [19℄, a C2 ontinuous interpolatingsurfae an also be ahieved.ID: papers 18 Page: 3
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Sine eah fae after the subdivision is 4-sided, wean use the following formula [5℄ to alulate the limitpoint of v on the limit surfae S(M):v1 = n2n(n+ 5)v + 4n(n+ 5) nXi=1 ei + 1n(n+ 5) nXi=1 fiThe relationship between this limit point and vertiesof the original mesh M an be obtained by replaingthe new vertex point, edges points and fae points withthe orresponding items in eq.(4). We havev1 = 4n(n+ 5)((n(n� 1)4 + ( nXi=1 1mi ))V+ nXi=1(12 + 1mi + 1mi�1 )Ei (5)+ nXi=1 F i1 + � � �+ F imi�3mi )The matrix A is de�ned by eq. (5). A is of dimensionK�K where K is the number of verties ofM . A anbe written as A = DSwhere D is a diagonal matrix of the following formD = 266664 4n1(n1+5) 0 � � � 00 4n2(n2+5) � � � 0... ... ...0 0 � � � 4nK(nK+5) 377775and S is a symmetri, simi-positive de�nite matrix. niin D is the valene of vertiex Vi in the given matrixM .To prove the symmetry of S, note that the value ofa non-zero, o�-diagonal entry of S is either of the form( 12 + 1mk + 1mk�1 ) or 1mk . If the value of a non-zero, o�-diagonal entry aij is of the �rst form, it means there isan edge between the verties Vi and Vj in the originalmesh and the numbers of verties in the two faes thatshare this edge are mk and mk�1, respetively. Thisholds either i > j or j > i. Hene we must haveaij = aji. If the value of a non-zero, o�-diagonal entryaij is of the seond form, it means there is a fae in theoriginal mesh that ontains Vi and Vj as non-adjaentverties and the number of verties of the fae is mk.Again, this hold either i > j or j > i. Hene, we musthave aij = aji too. Therefore, S is symmetri.To prove that S is semi-positive de�nite, we needto show that XTSX � 0 for any vetor X =

(x1; x2; � � � ; xK)T in RK . This follows if we an provethat XTSX = Xall faes (x1 + x2 + � � �+ xmi)2mi+ Xall edges (xi + xj)22 + KXi=1 n2i � 3ni4 x2i= Z1 + Z2 + Z3 (6)Note that from eq. (5) we immediately have the fol-lowing expression for XTSX :XTSX = KXi=1 24(ni(ni � 1)4 + niXj=1 1mj )x2i+ niXj=1(12 + 1mj + 1mj�1 )xei(j)xi+ niXj=1 Pmj�3k=1 xfi;j (k)ximj 35where ei(j) is an indexing funtion for the edge pointsof xi and fi;j(k) are indexing funtions for the faespoints of xi. By re-arranging terms of the above ex-pression, we haveXTSX = KXi=1 ni(ni � 1)4 x2i + KXi=1 niXj=1 xei(j)xi2+ KXi=1 niXj=1 Pmjk=1 xfi;j (k)ximj=W1 +W2 +W3 (7)W2 an be expressed as follows:W2 = KXi=1 niXj=1 [(xei(j) + xi)2 � x2ei(j) � x2i ℄4= KXi=1 niXj=1 (xei(j) + xi)24 � KXi=1 ni2 x2iEah edge is used twie in the �rst term on the righthand side of the above equation. Hene, we haveW2 = Xall edges (xj + xi)22 � KXi=1 ni2 x2iBy substituting this expression into (7) forW2, we getXTSX = KXi=1 ni(ni � 3)4 x2i + Xall edges (xj + xi)22 +W3ID: papers 18 Page: 5



= Z3 + Z2 +W3where Z3 and Z2 are de�ned in (6). Z1 in (6) an beexpressed asZ1 = Xall faes miXj=1 xj(x1 + x2 + � � �+ xmi)miThe right side is nothing but W3. Therefore, (6) isproved.Next we prove that S is positive de�nite if the givenmatrixM has at least one vertex with a valene greaterthan 3. We prove this by ontradition. Without lossof generality we shall assume V1 is a vertex of M witha valene greater than 3 and XTSX = 0 for someX 6= 0.Let xi be an omponent ofX that is not zero and letVi be the orresponding vertex of M . Sine M is on-neted, there exists a path inM : (V1; Vj1 ), (Vj1 ; Vj2),..., (Vjp ; Vi) that onnets V1 and Vi. Let x1 and xjkbe the orresponding omponents of V1 and Vjk in X ,respetively. We see that x1 must be equal to zero for,otherwise, we would have XTSX � n1(n1 � 3)x21=4 >0, a ontradition. But then sineXTSX � (x1 + xj1 )22 + (xj1 + xj2)22 + (xj2 + xj3)22+ � � �+ (xjp + xi)22we must have xj1 = 0 for, otherwise, we would haveXTSX � x2j1=2 > 0, a ontradition. By iterating thisproess, we would then have xj2 = 0, xj3 = 0, ..., andeventually xi = 0. This ontradits to the assumptionthat xi 6= 0. Hene, we must haveXTSX > 0 ifX 6= 0and this ompletes the proof that S is positive de�nitewhen M has at least one vertex with a valene biggerthan 3.As the produt of two positive de�nite matries Dand S, the eigen values of A are positive. This followsimmediately from the fat that DS and SD have thesame eigen values (see, e.g., p.14 of [12℄). On the otherhand, sine the sum of eah rom of A is 1, we havekAk1 = 1. Hene, the eigen values of A are � 1. Thisompletes the proof.
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