
Interpolating Meshes of Arbitrary TopologyGraphi
s & Geometri
 Modeling LabAbstra
t. A new method for 
onstru
ting a smoothsurfa
e that interpolates the verti
es of an arbitrarymesh is presented. The mesh 
an be open or 
losed.Normals spe
i�ed at verti
es of the mesh 
an also beinterpolated. The interpolating surfa
e is obtainedby lo
ally adjusting the limit surfa
e of the givenmesh (viewed as the 
ontrol mesh of a Catmull-Clarksubdivision surfa
e) so that the modi�ed surfa
ewould interpolate all the verti
es of the given mesh.The lo
al adjustment pro
ess is a
hieved throughlo
ally blending the limit surfa
e with a surfa
ede�ned by non-uniform transformations of the limitsurfa
e. This lo
al blending pro
ess 
an also be usedto smooth out the shape of the interpolating surfa
e.Hen
e, a surfa
e fairing pro
ess is not needed in thenew method. Be
ause the interpolation pro
ess doesnot require solving a system of linear equations, themethod 
an handle meshes with large number ofverti
es. Test results show that the new method leadsto good interpolation results even for 
ompli
ateddata sets. The new method is demonstrated with theCatmull-Clark subdivision s
heme. But with someminor modi�
ation, one should be albe to apply thismethod to other subdivision s
hemes as well.CR Categories: I.3.5 [Computer Graphi
s℄: Com-putational Geometry and Obje
t Modeling - 
urve,surfa
e, solid and obje
t representations;Keywords: subdivision, subdivision surfa
es,Catmull-Clark subdivision surfa
es, interpolation1 Introdu
tionConstru
ting a smooth surfa
e to interpolate the ver-ti
es of a given mesh is an important task in many ar-eas, in
luding geometri
 modeling, 
omputer graphi
s,
omputer animation, intera
tive design, and s
ienti�
visualization. The interpolating surfa
e sometime isalso required to interpolate normal ve
tors spe
i�edfor some or all of the mesh verti
es. Developing ageneral solution for this task is diÆ
ult be
ause therequired interpolating surfa
e 
ould be of arbitrarytopology and with arbitrary genus. Traditional repre-sentation s
hemes su
h as B-spline or B�ezier surfa
es


an not represent su
h a 
omplex shape with only onesurfa
e.Subdivision surfa
es were introdu
ed as an eÆ
ientte
hnique to model 
omplex shapes [2℄[3℄[10℄. Butbuilding a 
onne
tion between a given mesh and an in-terpolating subdivision surfa
e has never really beensu

essful when the number of verti
es of the givenmesh is large 1. One ex
eption is a work publishedre
ently [11℄. In this paper, an iterative interpolationte
hnique similar to the one used in [8℄ for non-uniformB-spline surfa
es is proposed for subdivision surfa
es.Sin
e the iterative approa
h does not require solving asystem of linear equations, it 
an handle meshes withlarge number of verti
es. But the paper fails to provethe 
onvergen
e of the iterative pro
ess.In this paper we will address the problem of `
on-stru
ting a smooth surfa
e to interpolate the verti
esof a given mesh' and present a new solution to thisproblem. We brie
y review previous work in this area�rst.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfa
e: interpolating subdivision[4, 6, 7, 15, 20℄ or global optimization [5, 13℄. In the�rst 
ase, a subdivision s
heme that interpolates the
ontrol verti
es, su
h as the Butter
y s
heme [4℄, Zorinet al's improved version [20℄ or Kobbelt's s
heme [7℄,is used to generate the interpolating surfa
e. New ver-ti
es are de�ned as lo
al aÆne 
ombinations of nearbyverti
es. This approa
h is simple and easy to imple-ment. It 
an handle meshes with large number of ver-ti
es. However, sin
e no vertex is ever moved on
eit is 
omputed, any distortion in the early stage ofthe subdivision will persist. This makes interpolatingsubdivision very sensitive to irregularity in the givenmesh. In addition, it is diÆ
ult for this approa
h tointerpolate normals or derivatives.The se
ond approa
h, global optimization, usuallyneeds to build a global linear system with some 
on-straints [14℄. The solution to the global linear sys-tem is a 
ontrol mesh whose limit surfa
e interpolates1Interpolating subdivision [4℄ will be addressed shortlyID: papers 18 Page: 1



the verti
es of the given mesh. This approa
h usu-ally requires some fairness 
onstraints in the interpo-lation pro
ess, su
h as the energy fun
tions presentedin [5℄, to avoid undesired undulations. Although thisapproa
h seems more 
ompli
ated, it results in a tra-ditional subdivision surfa
e. For example, the methodin [5℄ results in a Catmull-Clark subdivision surfa
e(CCSS), whi
h is C2-
ontinuous almost everywhereand whose properties are well studied and understood.The problem with this approa
h is that a global linearsystem needs to be built and solved. It is diÆ
ult forthis approa
h to handle meshes with large number ofverti
es.There are also te
hniques that produ
e surfa
esto interpolate given 
urves or surfa
es that near- (orquasi-) interpolate given meshes [9℄. But those te
h-niques are either of di�erent natures or of di�erent
on
erns and, hen
e, will not be dis
ussed here.1.2 OverviewIn this paper a new method for 
onstru
ting a smoothsurfa
e that interpolates the verti
es of a given meshis presented. The mesh 
an be of arbitrary topologyand 
an be open or 
losed. Normal ve
tors spe
i�edfor any verti
es of the mesh 
an also be interpolated.The basi
 idea is to view the given mesh as the 
on-trol mesh of a Catmull-Clark subdivision surfa
e andlo
ally adjust the limit surfa
e of the given mesh sothat the resulting surfa
e would not only interpolateverti
es of the given mesh, but also possess a satis-fa
tory smooth shape. The lo
al adjustment pro
essis a
hieved through blending the limit surfa
e S witha blending surfa
e T de�ned by non-uniform transfor-mations of the limit surfa
e. By performing the blend-ing pro
ess at di�erent sele
ted points, we are able to(1) ensure the modi�ed surfa
e would interpolate thegiven mesh, (2) prevent it from generating unne
es-sary undulations, and (3) smooth out the shape of theresulting surfa
e.The new method has two main advantages. First,sin
e we do not have to 
ompute the interpolating sur-fa
e's 
ontrol mesh, there is no need to solve a systemof linear equations. Therefore, the new method 
anhandle meshes with large number of verti
es, and ismore robust and stable. Se
ond, be
ause the lo
alblending pro
ess 
an be used to smooth out the shapeof the interpolating surfa
e, a surfa
e fairing pro
essis not needed in the new method.An example of this interpolation pro
ess is shownin Figure ??. The surfa
es shown in Figures ??, ??and ?? all interpolate the mesh shown in Figure ??.The blending areas in Figure ?? are automati
ally se-le
ted by the system while Figures ?? and ?? have

user sele
ted blending areas in the upper portion andlower portion of the teapot body afterward. It is easyto see from Figure ?? that lo
al 
ontrol is ne
essarywhen better quality interpolating surfa
es are needed.The new method is demonstrated with Catmull-Clark subdivision surfa
es here (by viewing the givenmesh as the 
ontrol mesh of a Catmull-Clark subdi-vision surfa
e). But with a minor modi�
ation, oneshould be able to apply it to other subdivision s
hemesas well.The remaining part of the paper is arranged as fol-lows. In Se
tion 2, the basi
 idea of our lo
ally 
on-trollable interpolation te
hnique for 
losed meshes ispresented. The 
onstru
tion pro
ess of a blending sur-fa
e is presented in Se
tion 3. In Se
tion 4, a lo
alparametrization is introdu
ed. The blending pro
essaround an extraordinary point or an arbitrarily se-le
ted point is dis
ussed in Se
tion 5 and Se
tion 6,respe
tively. Issues on dealing with normal interpola-tion and handling open meshes are dis
ussed in Se
tion7 and Se
tion 8, respe
tively. Implementation issuesand test results are presented in Se
tion 9. Con
ludingmarks are given in Se
tion 10.2 Basi
 IdeaGiven a meshM and a subdivision s
heme, our task isto �nd a smooth subdivision surfa
e to interpolateM .We use the following notations in the paper: A refersto the matrix that 
al
ulates all the limit points of Mwith respe
t to the given subdivision s
heme, I(M)refers to the subdivision surfa
e that interpolates M ,S(M) refers to the limit surfa
e ofM , and L(M) refersto the limit points of M . Note that I(M) and S(M)are surfa
es and L(M) = A �M is a mesh of the sametopology as M . Without loss of generality, we shallassume the subdivision s
heme 
onsidered here is theCatmull-Clark s
heme. But the 
on
ept works for allsubdivision s
hemes.Let M0 be the given mesh. Then the task is to�nd I(M0), a Catmull-Clark subdivision surfa
e thatinterpolates the verti
es of M0. If we 
an �nd an o�-set surfa
e R that moves S(M0), the Catmull-Clarksubdivision surfa
e of M0, to I(M0) everywhere, i.e.,R+ S(M0) = I(M0)then the interpolation problem is solved. The questionis, how should R be 
onstru
ted?S(M0) 
an be 
onsidered as a Catmull-Clark surfa
ethat interpolates L(M0), i.e., S(M0) = I(L(M0)) =I(A �M0). To move S(M0) to I(M0) everywhere, T1must be able to make up the di�eren
e between L(M0)ID: papers 18 Page: 2



and M0. A natural 
hoi
e is to de�ne T1 as an inter-polating Catmull-Clark subdivision surfa
e ofM1, thedi�eren
e between M0 and L(M0). Hen
e, by repla
-ing T1 with I(M1) in the above equation, we have thefollowing re
urren
e formulaI(M1) + S(M0) = I(M0)where M1 =M0 � L(M0)M1 has the same topology as M0, hen
e I(M0) andI(M1) 
an be 
onstru
ted exa
tly the same way. Byrepeating the re
urren
e formula for i = 1; 2; : : : , weget a sequen
e of meshes Mi (1 � i � 1) su
h thatI(Mi+1) + S(Mi) = I(Mi)and Mi+1 =Mi � L(Mi): (1)Consequently, we haveI(M0) = nXi=0 S(Mi) + I(Mn+1)and Mi = (E �A)iM0where E is the identity matrix and A is the matrixthat 
al
ulats all the limit points of the given matrixM0. It 
an be shown that (E � A)i 
onverges to zerowhen i tends to in�nity (see Appendix for a proof).Hen
e, we have limn!1 I(Mn+1) = 0On the other hand, be
ause A is invertible (see Ap-pendix for a proof), we havenXi=0 S(Mi) = S( nXi=0Mi) = S(A�1(E�(E�A)n+1)M0)By 
ombining the above two equations, we haveI(M0) = S( 1Xi=0Mi) = S(A�1M0) (2)If we de�ne M̂ = 1Xi=0Mi (3)then M̂ = A�1M0 holds as well. Hen
e I(M0) is alsoa subdivision surfa
e and M̂ is the 
ontrol mesh ofI(M0). Traditionally, people �nd M̂ by solving thesystem of linear equations AM̂ = M0 dire
tly [5, 13℄.

It is diÆ
ult to use this approa
h to deal with mesheswith large number of verti
es. With eqs. (2) and (3),this is not a problem any more be
ause M̂ 
an be ob-tained by iteratively applying eq. (1) to get enoughterms in (3) until a desired pre
ision is rea
hed. Thisapproa
h e�e
tively redu
es a global problem to a lo-
al problem be
ause eq. (1) is performed on the ba-sis of individual verti
es. More importantly, just likeFourier transformation, a subdivision surfa
e 
an berepresented as the sum of an in�nite series of subdivi-sion surfa
es. For example, for a given 
ontrol meshM , S(M) 
an be represented asS(M) = I(L(M)) = S( 1Xi=0Mi)where M0 = L(M) and Mi are de�ned by eq. (1) fori � 1. This property 
an be used in appli
ations su
has fairing, smoothing, sharpening, low pass or highpass �ltering, et
.3 SummaryA new interpolation method for meshes with arbitrarytopology is presented. The interpolation pro
ess is alo
al pro
ess, it does not require solving a system oflinear equations. Hen
e, the method 
an handle dataset of any size.The interpolating surfa
e is obtained by lo
ally ad-justing the limit surfa
e of the given mesh (viewed asthe 
ontrol mesh of a Catmull-Clark subdivision sur-fa
e) so that the modi�ed surfa
e interpolates all theverti
es of the given mesh. This lo
al adjustment pro-
ess 
an also be used to smooth out the shape of theinterpolating surfa
e. Hen
e, a surfa
e fairing pro
essis not needed in the new method.The new method 
an handle both open and 
losedmeshes. It 
an interpolate not only verti
es, butnormals and derivatives as well. These normals andderivative 
an be anywhere, not just at the verti
esof the given mesh. Test results show that the newmethod leads to good interpolation results even for
ompli
ated data sets.The resulting interpolating surfa
e is not a Catmull-Clark subdivision surfa
e. It does not even satisfy the
onvex hull property [19℄. But the resulting interpo-lating surfa
e is guaranteed to be C2 
ontinuous ev-erywhere ex
ept at some extraordinary points, whereit is C1 
ontinuous. Using a te
hnique similar to theone presented in [19℄, a C2 
ontinuous interpolatingsurfa
e 
an also be a
hieved.ID: papers 18 Page: 3
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onvergen
e of (E � A)iTo prove this, we just need to show the eigen values�i of A are all positive but smaller than or equal to1. Here we present the proof for Catmull-Clark sub-division s
heme only. Other s
hemes 
an be provedsimilarly. The assumption is the given mesh M has atleast one vertex with a valen
e bigger than 3. Notethat with all the eigen values being positive, the ma-trix A is invertible.First, we perfrom a subdivision on the given meshM to ensure ea
h fa
e is 4-sided. We use V , Ei and Fito denote vertex points, edge points and fa
e pointsof the given mesh and v, ei and fi to denote vertexpoints, edge points and fa
e points in the new mesh.They satisfy the following formulas:v = n� 2n V + 1n2 nXi=1 Ei + 1n2 nXi=1 fiei = V +Ei + fi + fi+14 (4)fi = V +Ei +Ei+1 + F i1 + � � �+ F imi�3miwhere n is the valen
e of V and mi is the number ofverti
es of the fa
e that 
ontains V , Ei and Ei+1.ID: papers 18 Page: 4



Sin
e ea
h fa
e after the subdivision is 4-sided, we
an use the following formula [5℄ to 
al
ulate the limitpoint of v on the limit surfa
e S(M):v1 = n2n(n+ 5)v + 4n(n+ 5) nXi=1 ei + 1n(n+ 5) nXi=1 fiThe relationship between this limit point and verti
esof the original mesh M 
an be obtained by repla
ingthe new vertex point, edges points and fa
e points withthe 
orresponding items in eq.(4). We havev1 = 4n(n+ 5)((n(n� 1)4 + ( nXi=1 1mi ))V+ nXi=1(12 + 1mi + 1mi�1 )Ei (5)+ nXi=1 F i1 + � � �+ F imi�3mi )The matrix A is de�ned by eq. (5). A is of dimensionK�K where K is the number of verti
es ofM . A 
anbe written as A = DSwhere D is a diagonal matrix of the following formD = 266664 4n1(n1+5) 0 � � � 00 4n2(n2+5) � � � 0... ... ...0 0 � � � 4nK(nK+5) 377775and S is a symmetri
, simi-positive de�nite matrix. niin D is the valen
e of vertiex Vi in the given matrixM .To prove the symmetry of S, note that the value ofa non-zero, o�-diagonal entry of S is either of the form( 12 + 1mk + 1mk�1 ) or 1mk . If the value of a non-zero, o�-diagonal entry aij is of the �rst form, it means there isan edge between the verti
es Vi and Vj in the originalmesh and the numbers of verti
es in the two fa
es thatshare this edge are mk and mk�1, respe
tively. Thisholds either i > j or j > i. Hen
e we must haveaij = aji. If the value of a non-zero, o�-diagonal entryaij is of the se
ond form, it means there is a fa
e in theoriginal mesh that 
ontains Vi and Vj as non-adja
entverti
es and the number of verti
es of the fa
e is mk.Again, this hold either i > j or j > i. Hen
e, we musthave aij = aji too. Therefore, S is symmetri
.To prove that S is semi-positive de�nite, we needto show that XTSX � 0 for any ve
tor X =

(x1; x2; � � � ; xK)T in RK . This follows if we 
an provethat XTSX = Xall fa
es (x1 + x2 + � � �+ xmi)2mi+ Xall edges (xi + xj)22 + KXi=1 n2i � 3ni4 x2i= Z1 + Z2 + Z3 (6)Note that from eq. (5) we immediately have the fol-lowing expression for XTSX :XTSX = KXi=1 24(ni(ni � 1)4 + niXj=1 1mj )x2i+ niXj=1(12 + 1mj + 1mj�1 )xei(j)xi+ niXj=1 Pmj�3k=1 xfi;j (k)ximj 35where ei(j) is an indexing fun
tion for the edge pointsof xi and fi;j(k) are indexing fun
tions for the fa
espoints of xi. By re-arranging terms of the above ex-pression, we haveXTSX = KXi=1 ni(ni � 1)4 x2i + KXi=1 niXj=1 xei(j)xi2+ KXi=1 niXj=1 Pmjk=1 xfi;j (k)ximj=W1 +W2 +W3 (7)W2 
an be expressed as follows:W2 = KXi=1 niXj=1 [(xei(j) + xi)2 � x2ei(j) � x2i ℄4= KXi=1 niXj=1 (xei(j) + xi)24 � KXi=1 ni2 x2iEa
h edge is used twi
e in the �rst term on the righthand side of the above equation. Hen
e, we haveW2 = Xall edges (xj + xi)22 � KXi=1 ni2 x2iBy substituting this expression into (7) forW2, we getXTSX = KXi=1 ni(ni � 3)4 x2i + Xall edges (xj + xi)22 +W3ID: papers 18 Page: 5



= Z3 + Z2 +W3where Z3 and Z2 are de�ned in (6). Z1 in (6) 
an beexpressed asZ1 = Xall fa
es miXj=1 xj(x1 + x2 + � � �+ xmi)miThe right side is nothing but W3. Therefore, (6) isproved.Next we prove that S is positive de�nite if the givenmatrixM has at least one vertex with a valen
e greaterthan 3. We prove this by 
ontradi
tion. Without lossof generality we shall assume V1 is a vertex of M witha valen
e greater than 3 and XTSX = 0 for someX 6= 0.Let xi be an 
omponent ofX that is not zero and letVi be the 
orresponding vertex of M . Sin
e M is 
on-ne
ted, there exists a path inM : (V1; Vj1 ), (Vj1 ; Vj2),..., (Vjp ; Vi) that 
onne
ts V1 and Vi. Let x1 and xjkbe the 
orresponding 
omponents of V1 and Vjk in X ,respe
tively. We see that x1 must be equal to zero for,otherwise, we would have XTSX � n1(n1 � 3)x21=4 >0, a 
ontradi
tion. But then sin
eXTSX � (x1 + xj1 )22 + (xj1 + xj2)22 + (xj2 + xj3)22+ � � �+ (xjp + xi)22we must have xj1 = 0 for, otherwise, we would haveXTSX � x2j1=2 > 0, a 
ontradi
tion. By iterating thispro
ess, we would then have xj2 = 0, xj3 = 0, ..., andeventually xi = 0. This 
ontradi
ts to the assumptionthat xi 6= 0. Hen
e, we must haveXTSX > 0 ifX 6= 0and this 
ompletes the proof that S is positive de�nitewhen M has at least one vertex with a valen
e biggerthan 3.As the produ
t of two positive de�nite matri
es Dand S, the eigen values of A are positive. This followsimmediately from the fa
t that DS and SD have thesame eigen values (see, e.g., p.14 of [12℄). On the otherhand, sin
e the sum of ea
h rom of A is 1, we havekAk1 = 1. Hen
e, the eigen values of A are � 1. This
ompletes the proof.
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