
Progressive Iterative Interpolation for Subdivision Surfa
esxxx xxxAbstra
t. In this paper we give an insight to the in-terpolation method proposed by [1℄. First, we pointout that this method is an extension of the progressiveiterative approximation of B-spline surfa
e to subdivi-sion surfa
e. We also solve the left open problem in [1℄:proving the 
onvergen
e of the iterative interpolationfor subdivision surfa
es. Then based on our analysis,we give a more simple and eÆ
ient modi�ed interpo-lation algorithm for subdivision surfa
es.CR Categories: I.3.5 [Computer Graphi
s℄: Compu-tational Geometry and Obje
t Modeling - 
urve, sur-fa
e, solid and obje
t representations;Keywords: subdivision surfa
es, Loop subdivisionsurfa
es, Catmull-Clark subdivision surfa
es, interpo-lation1 Introdu
tionSubdivision surfa
e is popular now in the �elds ofComputer Animation, CAD, Geometri
 Modeling, andso on. The ability to model arbitrary topology surfa
emakes it more suitable than 
lassi
al spline surfa
esin some appli
ations. [3℄ proposed the Catmull-Clarksubdivision surfa
e whi
h is the generalization of bi
u-bi
 spline surfa
e. [2℄ designed the Doo-Sabin subdi-vision method whi
h is the generalization of quadrati
spline surfa
e. Later, [9℄ developed the Loop subdi-vision for triangle mesh whi
h generalized the Boxspline. All these three popular subdivision methodsare approximating s
hemes. The other type of subdivi-sion method is interpolating s
heme whi
h interpolatesits original mesh. The famous interpolation subdivi-sion method is the butter
y subdivision method pro-posed in [7℄ whi
h was modi�ed to generate smoothersurfa
es in [10℄. The interpolating s
heme for quadri-lateral mesh was proposed in [19℄.Interpolation is one of general approa
hes in surfa
edesign and shape modeling. There are plenty of lit-eratures dealing with the interpolation problem withdi�erent surfa
e representations. As the appearan
eof re
ursive subdivision surfa
e, various interpolationmethods based on subdivision surfa
es have been de-veloped. One kind of those methods requires solving a

global linear system of equations, like [5℄ and [4℄. Forthe 
omputational 
ost of solving a large linear sys-tem of equations, many resear
hers developed othermethods. [6℄ proposed an always worked method byusing a two-phase subdivision method. The methodof [16℄ avoided the solving a linear equations uses the
on
ept of similarity. And [8℄ gave one interpolationmethod avoiding solving a linear system of equationsusing the quasi-interpolation. Re
ently, [1℄ presenteda very simple and eÆ
ient interpolation approa
h byjust moving the verti
es of the mesh. But they didn'tprovide the proof of its 
onvergen
e and left it as anopen questionIn this paper, we give insight to [1℄'s method andgive the 
onvergen
e proof of this method. We �ndthat this method 
ould be viewed as the extensionof the progressive iteration interpolation for uniformspline proposed in [14℄ and [11℄. This is so 
alled pro-gressive iterative approximation property of uniformB-spline bases. More general results for non-uniformB-spline has been given in [13℄. [12℄ presented that ifthe given basis is totally positive, and its 
orrespond-ing 
ollo
ation matrix is non-singular, this bases havethe progressive iteration approximation property. [15℄further proved that the normalized B-basis satis�es theprogressive iterative approximation property with thefastest 
onvergen
e rates.In this paper, we will prove that the subdivisionsurfa
es also satisfy the progressive iterative approxi-mation property. In se
tion 2, we will analyze the 
on-vergen
e for Loop subdivision surfa
e and give a mod-i�ed algorithm. In se
tion 3, we present the similarresult for Catmull-Clark subdivision surfa
e restri
tedto quadrilateral mesh. Then we will give some exam-ples to investigate the 
onvergen
e rate and give our
on
lusion.2 Iterative interpolation forLoop subdivision surfa
e:The subdivision surfa
e for triangle mesh was pro-posed in [9℄. It also analyzed its 
ontinuity and gavethe formula to get the limit point on the limit sur-fa
e. The limit points of a vertex with valen
e n asID: papers 18 Page: 1



Figure 1: A vertex with valen
e n in Loop subdivisionshown in Fig. 1 on the Loop subdivision surfa
e 
anbe 
al
ulated through the following formula:V1 = �nV + (1� �n)Q (1)where �n = 311�8�� 38+( 38+ 14 
os 2�n )2� , Q = 1nPni=1Qi.The essential part of the idea of progressive itera-tive interpolation is to �nd a 
orresponding point onthe surfa
e for ea
h interpolated point and use thedi�eren
es between them to update the 
ontrol mesh.If the interpolated point is V and the 
orrespondingpoint on the surfa
e is V k , the updating pro
ess 
ouldbe written as: ek = V � V kV k+1 = V k + ekBased on the above limit point formula, we 
an 
on-stru
t the iterative �tting algorithm for Loop subdi-vision surfa
e by using the limit point of ea
h vertexas the 
orresponding point. Assume the 
urrent meshis Mk , and then we 
an get a mesh Mk+1 whi
h is abetter approximation to original mesh. For ea
h ver-tex V k of Mk, we 
ompute the 
orresponding limitpoint V k1 = �nV k + (1� �n)Qk.Then the di�eren
e is
al
ulat as ek = V �V k. Now every vertex ofMk+1 isupdated by summing the 
orresponding vertex of Mkand its di�eren
e, that is V k+1 = V k+ek . As our be-low proof shows, the iteration will 
onverge to a meshwhi
h generates a Loop subdivision surfa
e interpo-lating the original mesh. The details of the iterativeinterpolation algorithm are presented here:Iterative Interpolation Algorithm1. Input a triangle mesh M and the maximum errorEM ;

2. Initialize the CurrentMaxError = EM + 1;3. k = 0;4. While (CurrentMaxError > EM ) fFor every vertex V in Mk fCal
ulating the 
orresponding vertex onthe limit surfa
e V k1;ek = V � V k1;V k+1 = V k + ek;if (kekk > CurrentMaxError)10ptCurrentMaxError = kekk;g5. k = k + 1;6. gWe 
an prove that ek+1 always less than the ek ,so it is not ne
essary to use the lo
al adjusting in [1℄.The method here is mu
h simpler than the algorithmproposed in [1℄, whi
h needs a 
ompli
ated shortestpoint 
omputation. The 
onvergen
e of our algorithmis analyzed in detail next.2.1 Convergen
e of the iterative inter-polation for Loop subdivision sur-fa
eBefore our proof, a fa
t about the eigenvalues of theprodu
t of positive de�nite matri
es needs to be men-tioned. We present this fa
t in Lemma 1.Lemma 1 If A and B are positive de�nite, the eigen-values of AB are positive.ID: papers 18 Page: 2



The proof of Lemma 1 is qui
kly followed by the fa
tthat if P and Q are square matri
es of order n, thenPQ and QP have the same eigenvalues (
f. Magnusand Neude
ker [17℄, 1988, P.14).We know that the di�eren
es of the k + 1-th stepek+1 
ould be written as:ek+1 = V � V k+11= V � ��nV k + 1 + (1� �n)Qk+1�= V � ��nV k+1 + (1� �n)Qk+1�� ��nek + 1� �nn nXi=1 ekQi�= ek � ��nek + 1� �nn nXi=1 ekQi�Thus in the matrix form, we have�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I �B)26664 ek1ek2...ekn 37775�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I �B)k 26664 e11e12...e1n 37775where I is one identity matrix and B is0BBBBB� �n1 : : : 1��n1n1 : : :... . . .1��nini : : : �ni : : :... �nk
1CCCCCAThe matrix B has the following properties:(1) aij � 0, and Pnj=1 aij = 1, that is kBk1 = 1;(2) There are ni+1 positive elements in i-th row, andthe positive elements in ea
h row are equal ex
eptthe element in the diagonal line.(3) If aij = 0 , then aji = 0;Properties (1) and (2) are simply implied from theformula of ek+1 , and property (3) is be
ause the dif-feren
es of two 
onse
utive levels 
ould be related toea
h other for their verti
es 
onstituting an edge inthe mesh. Due to these properties, we 
an rewrite thematrix B as B = DS

where D is diagonal matrix and S is a symmetri
 ma-trix D = 0BBBB� 1��n1n1 0 : : : 00 1��n2n2 : : : 0... . . .0 1��nknk
1CCCCA

S = 0BBBBBB� n1�n11��n1 : : : 1 : : :... . . .1 : : : ni�ni1��ni : : :... nk�nk1��nk
1CCCCCCAD is no problem positive de�nite for 1��nini > 0(1 �i � k). Now we argue that the matrix S is also posi-tive de�nite, whi
h plays a key role in our 
onvergen
eproof.Proposition 1 The matrix S is positive de�nite.Proof: To prove S is positive de�nite, we 
onsider the
orresponding quadri
 form.f(x1; x2; : : : ; xn) = XTSXwhere X = (x1; x2; : : : ; xn)T . If f(x1; x2; : : : ; xn) ispositive for any none zero X , the symmetri
 matrix Sis positive de�nite.We noti
e that if verti
es i and j are the endpointsof one edge eij in the mesh, then aij = aji = 1 in thematrix S. And an edge is adja
ent to two fa
es exa
tlyin a 
losed triangle mesh. Hen
e, we havef(x1; x2; : : : ; xn) = Xall fa
es 12 (xi + xj + xr)2+ kXi=1 � ni�ni1� �ni � ni2 �x2iwhere xi, xj , and xr are the 
orresponding three ver-ti
es of a fa
e in the triangle mesh. From the for-mula 1, we know n�n1��n � 23n for n � 3. Hen
e,f(x1; x2; : : : ; xn) is positive for any none zero X . ThusS is positive de�nite.Based on the above lemma and proposition, we 
aneasily derive that the iterative interpolation for Loopsubdivision is 
onvergent.Proposition 2 The iterative �tting algorithm forLoop subdivision surfa
e is 
onvergent.Proof: The algorithm is 
onvergent if and only if theabsolute value of all eigenvalues of the matrix P =ID: papers 18 Page: 3



Figure 2: A vertex with valen
e n in Catmull-Clark subdivisionI �B are less than 1. Hen
e, if all eigenvalues �i(1 �i � k) of B are 0 < �i � 1, then all eigenvalues ofP are 0 � 1 � �i < 1(1 � i � k). It means that thealgorithm is 
onvergent.Sin
e kBk1 = 1, we have �i � 1. Also we haveB = DS, where D and S are both positive de�nite.Hen
e all eigenvalues of B are positive. Thus, theiterative interpolation algorithm is 
onvergent.3 Convergen
e of the iterationinterpolation for Catmull-Clark Subdivision surfa
eBased on the same idea, we 
an prove the 
onvergen
eof iterative �tting algorithm for Catmull-Clark Subdi-vision surfa
e. Firstly, the 
orresponding limit pointof a vertex with valen
e n in the mesh 
an be evaluatedby the following equality.V1 = n2n(n+ 5)V + 4n(n+ 5) nXi=1 Ei+ 1n(n+ 5) nXi=1 Fi (2)where Ei is the edge point of vertex V , Fi is arethe fa
e points of vertex V . This evaluation formularequires that the fa
es surrounding vertex V are allquadrilateral fa
e. Be
ause our proof 
ompletely de-pends on this formula, our 
onvergen
e proof 
an onlybe applied on the quadrilateral mesh. It 
ould beviewed as one de�
ien
y of our proof. But in pra
-ti
e the quadrilateral mesh is also very popular, soour method has pra
ti
al e�e
ts as well. Through the

formula 2, we 
an get the relation of the 
onse
utivedi�eren
es as following:ek+1 = V � V k+11= V �� n2n(n+ 5)V k+1 + 4n(n+ 5) nXi=1 Ek+1i+ 1n(n+ 5) nXi=1 F k+1i �= V �� n2n(n+ 5)V k + 4n(n+ 5) nXi=1 Eki+ 1n(n+ 5) nXi=1 F ki ��� n2n(n+ 5)ek+ 4n(n+ 5) nXi=1 ekEi + 1n(n+ 5) nXi=1 ekFi�= ek �� n2n(n+ 5)ek + 4n(n+ 5) nXi=1 ekEi+ 1n(n+ 5) nXi=1 ekFi�Then using the matrix form, we have�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I � C)26664 ek1ek2...ekn 37775�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I � C)k 26664 e11e12...e1n 37775ID: papers 18 Page: 4



Model # of verti
es # of iterations Max Error Ave ErrorHorse 233 12 0.000912016 0.00022811Bird 1129 9 0.000766811 8.8345e-5Hand 6191 3 0.000914111 0.000164207Boy 17342 6 0.000913795 9.5615e-5Table 1: Interpolating results for Loop subdivision surfa
e.where I is identity matrix and C is0BBBBBBBBBBB�
n21n1(n1+5) : : : 4n1(n1+5) : : : 1n1(n1+5) : : :... . . .4ni(ni+5) n2ini(ni+5)... . . .1nj(nj+5) n2jnj(nj+5)... . . .

1CCCCCCCCCCCAThe matrix C 
ould write as the produ
t of two sym-metri
 matri
es. C = HMwhere H and M areH = 0BBBB� 1n1(n1+5) 0 : : : 00 1n2(n2+5) : : : 0... . . .0 1nk(nk+5) 1CCCCA
M = 0BBBBBBBBB�

n21 : : : 4 : : : 1 : : :... . . .4 n2i... . . .1 n2j... . . .
1CCCCCCCCCAFor the matrix M , we know that if vertex vi is thefa
e point of vj , then vj is also one fa
e point of vi.This shows that if aij = 1, then aji = 1. Similarly,if aij = 4, then aji = 4 be
ause one edge shares twoendpoints. Obviously, we have kCk1 = 1 . Thus theeigenvalues of C are not bigger than one. If we 
anprove that matrix M is positive de�nite, it is easy toshow the iterative �tting algorithm for Catmull-Clarksubdivision surfa
e is 
onvergent by following the sameway for Loop subdivision surfa
e. A
tually, the matrixM is indeed positive de�nite. We give our proof here.Proposition 3 The matrix M is positive de�nite.

Proof: The above observation shows why the matrixM is symmetri
. But these observations also give thehints for our proof. Using the de�nition of positivede�nite matrix, we write down the quadri
 form forM . f(x1; x2; : : : ; xk) = XTMXwhere X = (x1; x2; : : : ; xk)T . Thus we 
an rewritef(x1; x2; : : : ; xk) asf = Xall fa
es (xi + xj + xk + xr)+ Xall edges (xi + xj) + Xall verti
es �n2i � 3ni�x2iWe also know ni � 3, hen
e n2i � 3ni � 0. This meansf(x1; x2; : : : ; xk) � 0 for any none zero X . Thus, Mis AT LEAST semipositive de�nite.Following the same way of proving the 
onvergen
efor Loop subdivision surfa
e, we 
an easy know thatthe iterative interpolation algorithm for Catmull-Clarksubdivision surfa
e is also 
onvergent. We 
on
ludethis in the following proposition.Proposition 4 The iterative �tting algorithmfor Catmull-Clark subdivision surfa
e is 
onver-gent.(NOT COMPLETELY CORRECT !)4 ResultsIn this se
tion, we give several examples. Table 1shows the iteration numbers, maximum and aver-age errors when using Loop subdivision surfa
es. Aspointed out in [1℄, progressive iterative interpolationmethod is very eÆ
ient and 
an handle very hugemeshes, and its 
omplexity is only O(mn) where n isthe number of verti
es of the original mesh. Althoughno fairness 
ontrol fa
tor is added in progressive it-erative interpolation, the results show that it 
ouldprodu
e visually pleasing surfa
e easily. So far theprogressive iterative interpolation for Catmull-Clarksubdivision surfa
e requires that the mesh is quadri-lateral mesh. Ex
ept this limitation, the progressiveiterative interpolation works very well. Figure 7 is theID: papers 18 Page: 5



result of this method applied on a mushroom meshwith 226 verti
es. The maximum error for the mush-room mesh is 0.000813821, and the average error is0.000235506.5 Con
lusion and future workWe have proved the 
onvergen
e of iterative interpola-tion method for Loop and Catmull-Clark subdivisionsurfa
es. This method 
ould be treated as an exten-sion of the progressive iterative approximation prop-erty from spline to subdivision. Based on our analy-sis, we give a modi�ed progressive iterative interpola-tion algorithm. This modi�ed algorithm is simpler andmore eÆ
ient. But our proof to Catmull-Clark subdi-vision surfa
e is only valid on the quadrilateral mesh.To extend our proof to arbitrary mesh for Catmull-Clark subdivision surfa
e is our next 
on
ern. How tomake this method e�e
tive for open mesh is also aninteresting topi
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(a) The original mesh with 233 verti
es (b) Interpolating Loop surfa
eFigure 3: Loop subdivision surfa
e interpolating the horse mesh after 12 iterations.

(a) The original mesh with 1129 verti
es (b) Interpolating Loop surfa
eFigure 4: Loop subdivision surfa
e interpolating the bird mesh after 9 iterations.
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(a) The original mesh with 6191 verti
es (b) Interpolating Loop surfa
eFigure 5: Loop subdivision surfa
e interpolating the hand mesh after 3 iterations.

(a) The original mesh with 17342 verti
es (b) Interpolating Loop surfa
eFigure 6: Loop subdivision surfa
e interpolating the boy mesh after 6 iterations.
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(a) The original mesh with 226 verti
es (b) Interpolating Loop surfa
eFigure 7: Catmull-Clark subdivision surfa
e interpolating the mushroom mesh after 8 iterations.
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