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Abstract. In this paper we give an insight to the in-
terpolation method proposed by [1]. First, we point
out that this method is an extension of the progressive
iterative approximation of B-spline surface to subdivi-
sion surface. We also solve the left open problem in [1]:
proving the convergence of the iterative interpolation
for subdivision surfaces. Then based on our analysis,
we give a more simple and efficient modified interpo-
lation algorithm for subdivision surfaces.

CR Categories: 1.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling - curve, sur-
face, solid and object representations;

Keywords: subdivision surfaces, Loop subdivision
surfaces, Catmull-Clark subdivision surfaces, interpo-
lation

1 Introduction

Subdivision surface is popular now in the fields of
Computer Animation, CAD, Geometric Modeling, and
so on. The ability to model arbitrary topology surface
makes it more suitable than classical spline surfaces
in some applications. [3] proposed the Catmull-Clark
subdivision surface which is the generalization of bicu-
bic spline surface. [2] designed the Doo-Sabin subdi-
vision method which is the generalization of quadratic
spline surface. Later, [9] developed the Loop subdi-
vision for triangle mesh which generalized the Box
spline. All these three popular subdivision methods
are approximating schemes. The other type of subdivi-
sion method is interpolating scheme which interpolates
its original mesh. The famous interpolation subdivi-
sion method is the butterfly subdivision method pro-
posed in [7] which was modified to generate smoother
surfaces in [10]. The interpolating scheme for quadri-
lateral mesh was proposed in [19].

Interpolation is one of general approaches in surface
design and shape modeling. There are plenty of lit-
eratures dealing with the interpolation problem with
different surface representations. As the appearance
of recursive subdivision surface, various interpolation
methods based on subdivision surfaces have been de-
veloped. One kind of those methods requires solving a
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global linear system of equations, like [5] and [4]. For
the computational cost of solving a large linear sys-
tem of equations, many researchers developed other
methods. [6] proposed an always worked method by
using a two-phase subdivision method. The method
of [16] avoided the solving a linear equations uses the
concept of similarity. And [8] gave one interpolation
method avoiding solving a linear system of equations
using the quasi-interpolation. Recently, [1] presented
a very simple and efficient interpolation approach by
just moving the vertices of the mesh. But they didn’t
provide the proof of its convergence and left it as an
open question

In this paper, we give insight to [1]’s method and
give the convergence proof of this method. We find
that this method could be viewed as the extension
of the progressive iteration interpolation for uniform
spline proposed in [14] and [11]. This is so called pro-
gressive iterative approximation property of uniform
B-spline bases. More general results for non-uniform
B-spline has been given in [13]. [12] presented that if
the given basis is totally positive, and its correspond-
ing collocation matrix is non-singular, this bases have
the progressive iteration approximation property. [15]
further proved that the normalized B-basis satisfies the
progressive iterative approximation property with the
fastest convergence rates.

In this paper, we will prove that the subdivision
surfaces also satisfy the progressive iterative approxi-
mation property. In section 2, we will analyze the con-
vergence for Loop subdivision surface and give a mod-
ified algorithm. In section 3, we present the similar
result for Catmull-Clark subdivision surface restricted
to quadrilateral mesh. Then we will give some exam-
ples to investigate the convergence rate and give our
conclusion.

2 Iterative for

Loop subdivision surface:

interpolation

The subdivision surface for triangle mesh was pro-
posed in [9]. It also analyzed its continuity and gave
the formula to get the limit point on the limit sur-
face. The limit points of a vertex with valence n as
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Figure 1: A vertex with valence n in Loop subdivision

shown in Fig. 1 on the Loop subdivision surface can
be calculated through the following formula:

Vo :ﬁnv-l' (]-*ﬁn)Q (1)
3 _ 1\

11-8x (£ +(341 cos 27)2) Q=nXia @i

The essential part of the idea of progressive itera-
tive interpolation is to find a corresponding point on
the surface for each interpolated point and use the
differences between them to update the control mesh.
If the interpolated point is V' and the corresponding
point on the surface is V¥ | the updating process could
be written as:

where (3,, =

ek =v vk
Vk+lzvk+ek

Based on the above limit point formula, we can con-
struct the iterative fitting algorithm for Loop subdi-
vision surface by using the limit point of each vertex
as the corresponding point. Assume the current mesh
is M* | and then we can get a mesh M*+! which is a
better approximation to original mesh. For each ver-
tex V¥ of M*, we compute the corresponding limit
point V¥ = B, V* 4+ (1 — 3,)Q*.Then the difference is
calculat as ¥ = V —V*. Now every vertex of M*F*1 is
updated by summing the corresponding vertex of M*
and its difference, that is V¥t = VF +e* . As our be-
low proof shows, the iteration will converge to a mesh
which generates a Loop subdivision surface interpo-
lating the original mesh. The details of the iterative
interpolation algorithm are presented here:

Iterative Interpolation Algorithm

1. Input a triangle mesh M and the maximum error
Eu;
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2. Initialize the CurrentMaxError = Epr + 1;
3. k=0;
4. While (CurrentMazError > Ey) {

For every vertex V in M* {
Calculating the corresponding vertex on
the limit surface VX ;
et =V -Vk,
VL = Yk 4 ek
if (||e*|| > CurrentMazError)
10ptCurrent M azError = ||e||;

}
5 k=k+1;

6. }

We can prove that e**! always less than the e* ,
so it is not necessary to use the local adjusting in [1].
The method here is much simpler than the algorithm
proposed in [1], which needs a complicated shortest
point computation. The convergence of our algorithm
is analyzed in detail next.

2.1 Convergence of the iterative inter-
polation for Loop subdivision sur-
face

Before our proof, a fact about the eigenvalues of the
product of positive definite matrices needs to be men-
tioned. We present this fact in Lemma 1.

Lemma 1 If A and B are positive definite, the eigen-
values of AB are positive.
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The proof of Lemma 1 is quickly followed by the fact
that if P and ) are square matrices of order n, then
PQ@Q and QP have the same eigenvalues (cf. Magnus
and Neudecker [17], 1988, P.14).

We know that the differences of the & + 1-th step
e#*1 could be written as:

et =y -yt
=V = (BaVE+1+(1-4,)Q")
V= (B VF 4 (1 - B,)QFY)
1—fn —
— (Baer + =230 eh,)

i=1

n

ek — (ﬁnek + ! ;fn Z egi)

i=1

Thus in the matrix form, we have

T
[e’f“,eé“, e efLH] = (I — B)

k+1  k+1 k+17T Kl €
lef T es™, . elt] = (1 - B) )

R A )

where [ is one identity matrix and B is

1-Bn
ﬂ"l e n—ll
16,
— . B

ni

Bos

The matrix B has the following properties:
(1) a;; > 0, and 2?21 a;; = 1, that is [[Blloe = 1;

(2) There are n;+1 positive elements in i-th row, and
the positive elements in each row are equal except
the element in the diagonal line.

(3) If A5 = 0 y then Aj; = 0,

Properties (1) and (2) are simply implied from the
formula of e**! | and property (3) is because the dif-
ferences of two consecutive levels could be related to
each other for their vertices constituting an edge in
the mesh. Due to these properties, we can rewrite the
matrix B as

B=DS
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where D is diagonal matrix and S is a symmetric ma-
trix

L, 0
1
0 1—Bny
D= "
1-Bn
0 - k
n18n
mom
S = ) . n; B .
1 PR ﬁ
1k By,
TG,
D is no problem positive definite for % >0(1<

i < k). Now we argue that the matrix S is also posi-
tive definite, which plays a key role in our convergence
proof.

Proposition 1 The matriz S is positive definite.

Proof: To prove S is positive definite, we consider the
corresponding quadric form.

positive for any none zero X, the symmetric matrix S
is positive definite.

We notice that if vertices ¢ and j are the endpoints
of one edge e;; in the mesh, then a;; = a;; = 1 in the
matrix S. And an edge is adjacent to two faces exactly
in a closed triangle mesh. Hence, we have

1
> 5 (@it +1,)?

all faces
b n;f3 n;

+ iPn;  Thi 2132
> (75 3)

where z;, z;, and z, are the corresponding three ver-
tices of a face in the triangle mesh. From the for-
mula 1, we know 1’1’66"" > %n for n > 3. Hence,
f(z1, o, ..., x,) is positive for any none zero X. Thus
S is positive definite.

Based on the above lemma and proposition, we can
easily derive that the iterative interpolation for Loop
subdivision is convergent.

Proposition 2 The iterative fitting algorithm for
Loop subdivision surface is convergent.

Proof: The algorithm is convergent if and only if the
absolute value of all eigenvalues of the matrix P =
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Figure 2: A vertex with valence n in Catmull-Clark subdivision

I — B are less than 1. Hence, if all eigenvalues \;(1 <
i < k) of Bare0 < \; < 1, then all eigenvalues of
Pare 0 <1— X\ < 1(1 <i < k). It means that the
algorithm is convergent.

Since ||Blleoc = 1, we have \; < 1. Also we have
B = DS, where D and S are both positive definite.
Hence all eigenvalues of B are positive. Thus, the
iterative interpolation algorithm is convergent.

3 Convergence of the iteration
interpolation for Catmull-
Clark Subdivision surface

Based on the same idea, we can prove the convergence
of iterative fitting algorithm for Catmull-Clark Subdi-
vision surface. Firstly, the corresponding limit point
of a vertex with valence n in the mesh can be evaluated
by the following equality.

n2

4 n
Vo = 14 E;
n(n+5) +n(n+5);

1 n
* n(n + 5) ;Fl @

where FE; is the edge point of vertex V, Fj is are
the face points of vertex V. This evaluation formula
requires that the faces surrounding vertex V are all
quadrilateral face. Because our proof completely de-
pends on this formula, our convergence proof can only
be applied on the quadrilateral mesh. It could be
viewed as one deficiency of our proof. But in prac-
tice the quadrilateral mesh is also very popular, so
our method has practical effects as well. Through the
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formula 2, we can get the relation of the consecutive
differences as following;:

o+l

V-Vt
2 n

n 4
= V|V gy N g
<n(n-|—5) +n(n+5)z !

i=1
n(n+5) & '

n

n? 4
- v (- vyt N
<n(n+5) R DR

=1
1 ~ n?
- - Fe) [ 2 ok
t T 2 ) <n<n+s>e
4 "L, 1 "L,
+n(n+5);eE"+n(n+5); Fl>

i=1

Then using the matrix form, we have

ey
T e5
[ellc+lae,2c+17-"7efl+l] = (IﬁC) :
[ e ]
€
T e
[e’f“,eé“,...,effl] = -0O)F :
en
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Model | # of vertices | # of iterations | Max Error Ave Error
Horse 233 12 0.000912016 | 0.00022811
Bird 1129 9 0.000766811 8.8345¢-5
Hand 6191 3 0.000914111 | 0.000164207
Boy 17342 6 0.000913795 | 9.5615e-5

Table 1: Interpolating results for Loop subdivision surface.

where I is identity matrix and C is

2

™ 4 1
ni(ni+5) "7 nai(ni+5) n1(n1+5)
4 n}
n; (ni+5) n; (ni+5)
2
N S L T
nj(n;+5) n;(n;+5)

The matrix C could write as the product of two sym-
metric matrices.

C=HM
where H and M are
1
PR CE] 0 - 0
1 0
H— ' (n2+5)
: 1
0 s F)
n? 4 1
4 n?
M =
1 n?

For the matrix M, we know that if vertex v; is the
face point of v;, then v; is also one face point of v;.
This shows that if a;; = 1, then a; = 1. Similarly,
if a;; = 4, then aj; = 4 because one edge shares two
endpoints. Obviously, we have ||C|| = 1 . Thus the
eigenvalues of C' are not bigger than one. If we can
prove that matrix M is positive definite, it is easy to
show the iterative fitting algorithm for Catmull-Clark
subdivision surface is convergent by following the same
way for Loop subdivision surface. Actually, the matrix
M is indeed positive definite. We give our proof here.

Proposition 3 The matrix M is positive definite.
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Proof: The above observation shows why the matrix
M is symmetric. But these observations also give the
hints for our proof. Using the definition of positive
definite matrix, we write down the quadric form for
M.

flzy,ma, ... z) = XTMX

where X = (ml,mg,...,zk)T Thus we can rewrite
f(zly:1:27" '7'7"k) as
f = Z (zi +z; + zp + ;)
all faces
+ Z (x; +x5) + Z (n? — 3n;) 27
all edges all vertices

We also know n; > 3, hence n? — 3n; > 0. This means
f(x1,za,...,2) > 0 for any none zero X. Thus, M
is AT LEAST semipositive definite.

Following the same way of proving the convergence
for Loop subdivision surface, we can easy know that
the iterative interpolation algorithm for Catmull-Clark
subdivision surface is also convergent. We conclude
this in the following proposition.

Proposition 4 The iterative  fitting  algorithm
for  Catmull-Clark subdivision surface is conver-

gent.(NOT COMPLETELY CORRECT !)

4 Results

In this section, we give several examples. Table 1
shows the iteration numbers, maximum and aver-
age errors when using Loop subdivision surfaces. As
pointed out in [1], progressive iterative interpolation
method is very efficient and can handle very huge
meshes, and its complexity is only O(mn) where n is
the number of vertices of the original mesh. Although
no fairness control factor is added in progressive it-
erative interpolation, the results show that it could
produce visually pleasing surface easily. So far the
progressive iterative interpolation for Catmull-Clark
subdivision surface requires that the mesh is quadri-
lateral mesh. Except this limitation, the progressive
iterative interpolation works very well. Figure 7 is the
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result of this method applied on a mushroom mesh
with 226 vertices. The maximum error for the mush-
room mesh is 0.000813821, and the average error is
0.000235506.

5 Conclusion and future work

We have proved the convergence of iterative interpola-
tion method for Loop and Catmull-Clark subdivision
surfaces. This method could be treated as an exten-
sion of the progressive iterative approximation prop-
erty from spline to subdivision. Based on our analy-
sis, we give a modified progressive iterative interpola-
tion algorithm. This modified algorithm is simpler and
more efficient. But our proof to Catmull-Clark subdi-
vision surface is only valid on the quadrilateral mesh.
To extend our proof to arbitrary mesh for Catmull-
Clark subdivision surface is our next concern. How to
make this method effective for open mesh is also an
interesting topic.
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(a) The original mesh with 233 vertices (b) Interpolating Loop surface

Figure 3: Loop subdivision surface interpolating the horse mesh after 12 iterations.

(a) The original mesh with 1129 vertices (b) Interpolating Loop surface

Figure 4: Loop subdivision surface interpolating the bird mesh after 9 iterations.
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(a) The original mesh with 6191 vertices (b) Interpolating Loop surface

Figure 5: Loop subdivision surface interpolating the hand mesh after 3 iterations.

(a) The original mesh with 17342 vertices (b) Interpolating Loop surface

Figure 6: Loop subdivision surface interpolating the boy mesh after 6 iterations.
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(a) The original mesh with 226 vertices (b) Interpolating Loop surface

Figure 7: Catmull-Clark subdivision surface interpolating the mushroom mesh after 8 iterations.
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