
Progressive Iterative Interpolation for Subdivision Surfaesxxx xxxAbstrat. In this paper we give an insight to the in-terpolation method proposed by [1℄. First, we pointout that this method is an extension of the progressiveiterative approximation of B-spline surfae to subdivi-sion surfae. We also solve the left open problem in [1℄:proving the onvergene of the iterative interpolationfor subdivision surfaes. Then based on our analysis,we give a more simple and eÆient modi�ed interpo-lation algorithm for subdivision surfaes.CR Categories: I.3.5 [Computer Graphis℄: Compu-tational Geometry and Objet Modeling - urve, sur-fae, solid and objet representations;Keywords: subdivision surfaes, Loop subdivisionsurfaes, Catmull-Clark subdivision surfaes, interpo-lation1 IntrodutionSubdivision surfae is popular now in the �elds ofComputer Animation, CAD, Geometri Modeling, andso on. The ability to model arbitrary topology surfaemakes it more suitable than lassial spline surfaesin some appliations. [3℄ proposed the Catmull-Clarksubdivision surfae whih is the generalization of biu-bi spline surfae. [2℄ designed the Doo-Sabin subdi-vision method whih is the generalization of quadratispline surfae. Later, [9℄ developed the Loop subdi-vision for triangle mesh whih generalized the Boxspline. All these three popular subdivision methodsare approximating shemes. The other type of subdivi-sion method is interpolating sheme whih interpolatesits original mesh. The famous interpolation subdivi-sion method is the buttery subdivision method pro-posed in [7℄ whih was modi�ed to generate smoothersurfaes in [10℄. The interpolating sheme for quadri-lateral mesh was proposed in [19℄.Interpolation is one of general approahes in surfaedesign and shape modeling. There are plenty of lit-eratures dealing with the interpolation problem withdi�erent surfae representations. As the appearaneof reursive subdivision surfae, various interpolationmethods based on subdivision surfaes have been de-veloped. One kind of those methods requires solving a

global linear system of equations, like [5℄ and [4℄. Forthe omputational ost of solving a large linear sys-tem of equations, many researhers developed othermethods. [6℄ proposed an always worked method byusing a two-phase subdivision method. The methodof [16℄ avoided the solving a linear equations uses theonept of similarity. And [8℄ gave one interpolationmethod avoiding solving a linear system of equationsusing the quasi-interpolation. Reently, [1℄ presenteda very simple and eÆient interpolation approah byjust moving the verties of the mesh. But they didn'tprovide the proof of its onvergene and left it as anopen questionIn this paper, we give insight to [1℄'s method andgive the onvergene proof of this method. We �ndthat this method ould be viewed as the extensionof the progressive iteration interpolation for uniformspline proposed in [14℄ and [11℄. This is so alled pro-gressive iterative approximation property of uniformB-spline bases. More general results for non-uniformB-spline has been given in [13℄. [12℄ presented that ifthe given basis is totally positive, and its orrespond-ing olloation matrix is non-singular, this bases havethe progressive iteration approximation property. [15℄further proved that the normalized B-basis satis�es theprogressive iterative approximation property with thefastest onvergene rates.In this paper, we will prove that the subdivisionsurfaes also satisfy the progressive iterative approxi-mation property. In setion 2, we will analyze the on-vergene for Loop subdivision surfae and give a mod-i�ed algorithm. In setion 3, we present the similarresult for Catmull-Clark subdivision surfae restritedto quadrilateral mesh. Then we will give some exam-ples to investigate the onvergene rate and give ouronlusion.2 Iterative interpolation forLoop subdivision surfae:The subdivision surfae for triangle mesh was pro-posed in [9℄. It also analyzed its ontinuity and gavethe formula to get the limit point on the limit sur-fae. The limit points of a vertex with valene n asID: papers 18 Page: 1



Figure 1: A vertex with valene n in Loop subdivisionshown in Fig. 1 on the Loop subdivision surfae anbe alulated through the following formula:V1 = �nV + (1� �n)Q (1)where �n = 311�8�� 38+( 38+ 14 os 2�n )2� , Q = 1nPni=1Qi.The essential part of the idea of progressive itera-tive interpolation is to �nd a orresponding point onthe surfae for eah interpolated point and use thedi�erenes between them to update the ontrol mesh.If the interpolated point is V and the orrespondingpoint on the surfae is V k , the updating proess ouldbe written as: ek = V � V kV k+1 = V k + ekBased on the above limit point formula, we an on-strut the iterative �tting algorithm for Loop subdi-vision surfae by using the limit point of eah vertexas the orresponding point. Assume the urrent meshis Mk , and then we an get a mesh Mk+1 whih is abetter approximation to original mesh. For eah ver-tex V k of Mk, we ompute the orresponding limitpoint V k1 = �nV k + (1� �n)Qk.Then the di�erene isalulat as ek = V �V k. Now every vertex ofMk+1 isupdated by summing the orresponding vertex of Mkand its di�erene, that is V k+1 = V k+ek . As our be-low proof shows, the iteration will onverge to a meshwhih generates a Loop subdivision surfae interpo-lating the original mesh. The details of the iterativeinterpolation algorithm are presented here:Iterative Interpolation Algorithm1. Input a triangle mesh M and the maximum errorEM ;

2. Initialize the CurrentMaxError = EM + 1;3. k = 0;4. While (CurrentMaxError > EM ) fFor every vertex V in Mk fCalulating the orresponding vertex onthe limit surfae V k1;ek = V � V k1;V k+1 = V k + ek;if (kekk > CurrentMaxError)10ptCurrentMaxError = kekk;g5. k = k + 1;6. gWe an prove that ek+1 always less than the ek ,so it is not neessary to use the loal adjusting in [1℄.The method here is muh simpler than the algorithmproposed in [1℄, whih needs a ompliated shortestpoint omputation. The onvergene of our algorithmis analyzed in detail next.2.1 Convergene of the iterative inter-polation for Loop subdivision sur-faeBefore our proof, a fat about the eigenvalues of theprodut of positive de�nite matries needs to be men-tioned. We present this fat in Lemma 1.Lemma 1 If A and B are positive de�nite, the eigen-values of AB are positive.ID: papers 18 Page: 2



The proof of Lemma 1 is quikly followed by the fatthat if P and Q are square matries of order n, thenPQ and QP have the same eigenvalues (f. Magnusand Neudeker [17℄, 1988, P.14).We know that the di�erenes of the k + 1-th stepek+1 ould be written as:ek+1 = V � V k+11= V � ��nV k + 1 + (1� �n)Qk+1�= V � ��nV k+1 + (1� �n)Qk+1�� ��nek + 1� �nn nXi=1 ekQi�= ek � ��nek + 1� �nn nXi=1 ekQi�Thus in the matrix form, we have�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I �B)26664 ek1ek2...ekn 37775�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I �B)k 26664 e11e12...e1n 37775where I is one identity matrix and B is0BBBBB� �n1 : : : 1��n1n1 : : :... . . .1��nini : : : �ni : : :... �nk
1CCCCCAThe matrix B has the following properties:(1) aij � 0, and Pnj=1 aij = 1, that is kBk1 = 1;(2) There are ni+1 positive elements in i-th row, andthe positive elements in eah row are equal exeptthe element in the diagonal line.(3) If aij = 0 , then aji = 0;Properties (1) and (2) are simply implied from theformula of ek+1 , and property (3) is beause the dif-ferenes of two onseutive levels ould be related toeah other for their verties onstituting an edge inthe mesh. Due to these properties, we an rewrite thematrix B as B = DS

where D is diagonal matrix and S is a symmetri ma-trix D = 0BBBB� 1��n1n1 0 : : : 00 1��n2n2 : : : 0... . . .0 1��nknk
1CCCCA

S = 0BBBBBB� n1�n11��n1 : : : 1 : : :... . . .1 : : : ni�ni1��ni : : :... nk�nk1��nk
1CCCCCCAD is no problem positive de�nite for 1��nini > 0(1 �i � k). Now we argue that the matrix S is also posi-tive de�nite, whih plays a key role in our onvergeneproof.Proposition 1 The matrix S is positive de�nite.Proof: To prove S is positive de�nite, we onsider theorresponding quadri form.f(x1; x2; : : : ; xn) = XTSXwhere X = (x1; x2; : : : ; xn)T . If f(x1; x2; : : : ; xn) ispositive for any none zero X , the symmetri matrix Sis positive de�nite.We notie that if verties i and j are the endpointsof one edge eij in the mesh, then aij = aji = 1 in thematrix S. And an edge is adjaent to two faes exatlyin a losed triangle mesh. Hene, we havef(x1; x2; : : : ; xn) = Xall faes 12 (xi + xj + xr)2+ kXi=1 � ni�ni1� �ni � ni2 �x2iwhere xi, xj , and xr are the orresponding three ver-ties of a fae in the triangle mesh. From the for-mula 1, we know n�n1��n � 23n for n � 3. Hene,f(x1; x2; : : : ; xn) is positive for any none zero X . ThusS is positive de�nite.Based on the above lemma and proposition, we aneasily derive that the iterative interpolation for Loopsubdivision is onvergent.Proposition 2 The iterative �tting algorithm forLoop subdivision surfae is onvergent.Proof: The algorithm is onvergent if and only if theabsolute value of all eigenvalues of the matrix P =ID: papers 18 Page: 3



Figure 2: A vertex with valene n in Catmull-Clark subdivisionI �B are less than 1. Hene, if all eigenvalues �i(1 �i � k) of B are 0 < �i � 1, then all eigenvalues ofP are 0 � 1 � �i < 1(1 � i � k). It means that thealgorithm is onvergent.Sine kBk1 = 1, we have �i � 1. Also we haveB = DS, where D and S are both positive de�nite.Hene all eigenvalues of B are positive. Thus, theiterative interpolation algorithm is onvergent.3 Convergene of the iterationinterpolation for Catmull-Clark Subdivision surfaeBased on the same idea, we an prove the onvergeneof iterative �tting algorithm for Catmull-Clark Subdi-vision surfae. Firstly, the orresponding limit pointof a vertex with valene n in the mesh an be evaluatedby the following equality.V1 = n2n(n+ 5)V + 4n(n+ 5) nXi=1 Ei+ 1n(n+ 5) nXi=1 Fi (2)where Ei is the edge point of vertex V , Fi is arethe fae points of vertex V . This evaluation formularequires that the faes surrounding vertex V are allquadrilateral fae. Beause our proof ompletely de-pends on this formula, our onvergene proof an onlybe applied on the quadrilateral mesh. It ould beviewed as one de�ieny of our proof. But in pra-tie the quadrilateral mesh is also very popular, soour method has pratial e�ets as well. Through the

formula 2, we an get the relation of the onseutivedi�erenes as following:ek+1 = V � V k+11= V �� n2n(n+ 5)V k+1 + 4n(n+ 5) nXi=1 Ek+1i+ 1n(n+ 5) nXi=1 F k+1i �= V �� n2n(n+ 5)V k + 4n(n+ 5) nXi=1 Eki+ 1n(n+ 5) nXi=1 F ki ��� n2n(n+ 5)ek+ 4n(n+ 5) nXi=1 ekEi + 1n(n+ 5) nXi=1 ekFi�= ek �� n2n(n+ 5)ek + 4n(n+ 5) nXi=1 ekEi+ 1n(n+ 5) nXi=1 ekFi�Then using the matrix form, we have�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I � C)26664 ek1ek2...ekn 37775�ek+11 ; ek+12 ; : : : ; ek+1n �T = (I � C)k 26664 e11e12...e1n 37775ID: papers 18 Page: 4



Model # of verties # of iterations Max Error Ave ErrorHorse 233 12 0.000912016 0.00022811Bird 1129 9 0.000766811 8.8345e-5Hand 6191 3 0.000914111 0.000164207Boy 17342 6 0.000913795 9.5615e-5Table 1: Interpolating results for Loop subdivision surfae.where I is identity matrix and C is0BBBBBBBBBBB�
n21n1(n1+5) : : : 4n1(n1+5) : : : 1n1(n1+5) : : :... . . .4ni(ni+5) n2ini(ni+5)... . . .1nj(nj+5) n2jnj(nj+5)... . . .

1CCCCCCCCCCCAThe matrix C ould write as the produt of two sym-metri matries. C = HMwhere H and M areH = 0BBBB� 1n1(n1+5) 0 : : : 00 1n2(n2+5) : : : 0... . . .0 1nk(nk+5) 1CCCCA
M = 0BBBBBBBBB�

n21 : : : 4 : : : 1 : : :... . . .4 n2i... . . .1 n2j... . . .
1CCCCCCCCCAFor the matrix M , we know that if vertex vi is thefae point of vj , then vj is also one fae point of vi.This shows that if aij = 1, then aji = 1. Similarly,if aij = 4, then aji = 4 beause one edge shares twoendpoints. Obviously, we have kCk1 = 1 . Thus theeigenvalues of C are not bigger than one. If we anprove that matrix M is positive de�nite, it is easy toshow the iterative �tting algorithm for Catmull-Clarksubdivision surfae is onvergent by following the sameway for Loop subdivision surfae. Atually, the matrixM is indeed positive de�nite. We give our proof here.Proposition 3 The matrix M is positive de�nite.

Proof: The above observation shows why the matrixM is symmetri. But these observations also give thehints for our proof. Using the de�nition of positivede�nite matrix, we write down the quadri form forM . f(x1; x2; : : : ; xk) = XTMXwhere X = (x1; x2; : : : ; xk)T . Thus we an rewritef(x1; x2; : : : ; xk) asf = Xall faes (xi + xj + xk + xr)+ Xall edges (xi + xj) + Xall verties �n2i � 3ni�x2iWe also know ni � 3, hene n2i � 3ni � 0. This meansf(x1; x2; : : : ; xk) � 0 for any none zero X . Thus, Mis AT LEAST semipositive de�nite.Following the same way of proving the onvergenefor Loop subdivision surfae, we an easy know thatthe iterative interpolation algorithm for Catmull-Clarksubdivision surfae is also onvergent. We onludethis in the following proposition.Proposition 4 The iterative �tting algorithmfor Catmull-Clark subdivision surfae is onver-gent.(NOT COMPLETELY CORRECT !)4 ResultsIn this setion, we give several examples. Table 1shows the iteration numbers, maximum and aver-age errors when using Loop subdivision surfaes. Aspointed out in [1℄, progressive iterative interpolationmethod is very eÆient and an handle very hugemeshes, and its omplexity is only O(mn) where n isthe number of verties of the original mesh. Althoughno fairness ontrol fator is added in progressive it-erative interpolation, the results show that it ouldprodue visually pleasing surfae easily. So far theprogressive iterative interpolation for Catmull-Clarksubdivision surfae requires that the mesh is quadri-lateral mesh. Exept this limitation, the progressiveiterative interpolation works very well. Figure 7 is theID: papers 18 Page: 5



result of this method applied on a mushroom meshwith 226 verties. The maximum error for the mush-room mesh is 0.000813821, and the average error is0.000235506.5 Conlusion and future workWe have proved the onvergene of iterative interpola-tion method for Loop and Catmull-Clark subdivisionsurfaes. This method ould be treated as an exten-sion of the progressive iterative approximation prop-erty from spline to subdivision. Based on our analy-sis, we give a modi�ed progressive iterative interpola-tion algorithm. This modi�ed algorithm is simpler andmore eÆient. But our proof to Catmull-Clark subdi-vision surfae is only valid on the quadrilateral mesh.To extend our proof to arbitrary mesh for Catmull-Clark subdivision surfae is our next onern. How tomake this method e�etive for open mesh is also aninteresting topi.AknowledgementAll the triangle meshes in this paper are from thePrineton Shape Benhmark [18℄ and the quadrilat-eral mesh mushroom is downloaded from internet. Weappreiate those.Referenes[1℄ T. Maekawa, Y. Matsumoto, K. Namiki. Interpo-lation by Geometri Algorithm. Computer-AidedDesign 2007; 39 (4):313-323.[2℄ Doo D, Sabin M. Behaviour of reursive divisionsurfaes near extraordinary points. Computer-Aided Design 1978; 10(6):356-60.[3℄ Catmull E, Clark J. Reursively generated B-spline surfaes on arbitrary topologial meshes.Computer-Aided Design 1978; 10(6):350-5[4℄ Halstead M, Kass M, DeRose T. EÆient, fairinterpolation using CatmullCClark surfaes. In:Proeedings of SIGGRAPH 1993. 1993. p. 47-61[5℄ Nasri, AH. Surfae interpolation on irregular net-works with normal onditions. Computer AidedGeometri Design 1991;8:89-96[6℄ Zheng J, Cai YY. Interpolation over arbitrarytopology meshes using a two-phase subdivisionsheme. IEEE Transations on Visualization andComputer Graphis 2006;12(3):301-10

[7℄ N. Dyn, D. Levin, and J.A. Gregory. A Butter-y Subdivision Sheme for Surfae Interpolationwith Tension Control. ACM Trans. Graphis, vol.9, no. 2, pp. 160-169, Apr. 1990.[8℄ N. Litke, A. Levin, and P. Shr�oder. Fitting Sub-division Surfaes. Pro Visualization 2001, pp. 319-324.[9℄ C. Loop. Smooth Subdivision Surfaes Based onTriangles. Master'thesis, Dept. of Math., Univ. ofUtah, 1987[10℄ D. Zorin, P. Shroder, and W. Sweldens. Inter-polating Subdivision for Meshes with ArbitraryTopology. Computer Graphis, Ann. Conf. Series,vol. 30, pp. 189-192 1996.[11℄ de Boor, C. 1979. How does Agee's method work?In: Proeedings of the 1979 Army NumerialAnalysis and Computers Conferene, ARO Re-port 79-3, Army Researh OÆe, pp. 299-302[12℄ Lin, H., Bao, H., Wang, G. Totally positive basesand progressive iteration approximation. Com-puter & Mathematis with Appliations, 2005;50:575-58[13℄ Lin, H.,Wang, G., Dong, C. Construting it-erative non-uniform B-spline urve and surfaeto �t data points. Siene in China (Series E),2003;33:912-923 (in Chinese)[14℄ Qi, D., Tian, Z., Zhang, Y., Zheng, J.B. Themethod of numeri polish in urve �tting. AtaMathematia Sinia 1975; 18: 173-184 (in Chi-nese)[15℄ J. Delgado , J.M. Pe~na. Progressive iterative ap-proximation and bases with the fastest onver-gene rates. Computer Aided Geometri Design2007; 24 (1):10-18[16℄ S. Lai, F. Cheng. Similarity based Interpolationusing Catmull-Clark Subdivision Surfaes. TheVisual Computer 2006; 22 (9):865-873.[17℄ I.R. Magnus, H. Neudeker. Matrix Di�eren-tial Calulus with Appliations in Statistis andEonometris. New York: John Wiley & Sons.[18℄ P. Shilane, P. Min, M. Kazhdan, and T.Funkhouser. The Prineton Shape Benhmark.Shape Modeling Int'l, 2004[19℄ L. Kobbelt. Interpolatory Subdivision on OpenQuadrilateral Nets with Arbitrary Topology.Comput. Graph. Forum 1996;15(3): 409-420.
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(a) The original mesh with 233 verties (b) Interpolating Loop surfaeFigure 3: Loop subdivision surfae interpolating the horse mesh after 12 iterations.

(a) The original mesh with 1129 verties (b) Interpolating Loop surfaeFigure 4: Loop subdivision surfae interpolating the bird mesh after 9 iterations.
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(a) The original mesh with 6191 verties (b) Interpolating Loop surfaeFigure 5: Loop subdivision surfae interpolating the hand mesh after 3 iterations.

(a) The original mesh with 17342 verties (b) Interpolating Loop surfaeFigure 6: Loop subdivision surfae interpolating the boy mesh after 6 iterations.
ID: papers 18 Page: 8



(a) The original mesh with 226 verties (b) Interpolating Loop surfaeFigure 7: Catmull-Clark subdivision surfae interpolating the mushroom mesh after 8 iterations.
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