
A PARALLEL LINE CLIPPING ALGORITHM
AND ITS IMPLEMENTATION

Fuhua Cheng
Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506

Yue-Kwo Yen
Chung-Shang Institute of Science and Technology, Lungtang, Taiwan, R. O. C.

Abstract: A parallel line clipping algorithm and its implementation on a parallel clipping hardware environment
are presented.We first develop a simple theory to show that parallel clipping is possible for all types of line seg-
ments. We then present the architecture of a hardware environment based on which parallel clipping is to be
implemented. The parallel line clipping algorithm and its implementation on the parallel clipping hardware envi-
ronment are presented finally. Based on our approach, only 141 cycles are required to clip a line segment. The
corresponding figure for the famous J. Clark’s Geometry Engine is 160 cycles.

Keywords: Clipping, parallel, pipeline, geometry processor, geometry system

1. INTRODUCTION

All the display devices have limited display areas. It is impossible, in general, to display
all the objects defined by the user in a single screen.The graphics system has to be informed
explicitly which portion of the scene is to be viewed. This visible region, specified by the user,
is called the window (view volume, in 3D graphics). Data not contained in the visible region
should be discarded to avoid overflow of the internal registers of the display device. The pro-
cess of removing the portions of an image that lie outside the visible region is called clipping
[5].

Tw o kinds of clipping process have been frequently used in graphics, namely, line clip-
ping and polygon clipping. For images composed of straight line segments, only line clipping
is involved. Each line segment of the image is clipped against the window (view volume, in
3D graphics), only thevisible segment, i.e., the portion of the line segment that lies inside the
window, is output for display. If an image comprises not only straight line segments but also
polygons, then polygon clipping is required. In this case not only the visible segment of each
edge of a polygon has to be output, sometimes additional vertices have to be output also to
make the output polygon correct.

Several well known line clipping and polygon clipping algorithms have been proposed
(see, e.g., [5],[7],[8],[10],[11]). Some of them have been implemented in hardware (see, e.g.,
[3],[9]). The basic idea used in [5], [10], and [11] ([3] and [9] as well) can be described as fol-
lows. If, say, 2D graphics is considered, then the given line segment or polygon is clipped
against each boundary line of the window separately. For each boundary line of the window
we first divide the plane by the boundary line into two sides,visible and invisible. The half
plane which contains the window is called the visible side. The given line segment or polygon
is clipped against this boundary line by discarding the portions of the line segment or polygon
that lie in the invisible side of the boundary line using techniques such asoutcodes, midpoint
subdivision or in-out relationship. The remaining portions (if there are any) are then clipped
against the other boundary lines of the window using the same technique. After the given line

-2-

segment or polygon has been clipped against all the boundary lines of the window then the
remaining portions are the visible portions of the given line segment or polygon. They are
then output for display. Since the clipping of a line segment or polygon against a boundary
line has to be finished first before they can be clipped against another boundary line, this
approach can actually be considered as clipping of a line segment or polygon against several
lines in sequential order.*

The basic approach used in [7] and [8] is different from that of the above ones. The given
line segment or each edge of the given polygon is expressed in parametric form first. Then
parameters of the intersections of the straight line, defined by the parametric equation, with
the boundary lines of the window are computed and compared together with 0 and 1 to deter-
mine if there is a visible segment. If there is a visible segment then its endpoints are com-
puted. Ifpolygon clipping is considered then sometimes turning vertices [8] also have to be
found to make the output correct. Since the process of computing the parameters of the inter-
sections does not depend on any particular order, they can be computed simutaneously.
Therefore, this approach provides us with a possibility of clipping a line segment or polygon
against several lines in parallel if the subsequent comparison process can be performed cor-
rectly.

In this paper we shall review the idea presented in [7], and develop a more general theory
of line clipping for all types of line segments, such as vertical or horizontal line segments. We
shall focus on 2D line clipping only. Howev er, our approach can readily be extended to cover
3D line clipping too. We then present the architecture of a hardware environment based on
which parallel line clipping is to be performed and present a parallel line clipping algorithm
for this hardware environment. Accordingto our algorithm, only 141 cycles are required to
clip a line segment. Thecorresponding figure for the famous J. Clark’s Geometry Engine is
160 cycles. Therefore, our approach outperforms J. Clark’s system by about 15%. Our algo-
rithm can be extended to include parallel polygon clipping as well [2].However, it is not
within the scope of this paper.

The remainder of this paper is organized as follows. In Section 2 we will review some
basic concepts and develop a general theory of line clipping. The architecture of a hardware
environment based on which parallel line clipping is to be implemented is presented in Sec-
tion 3. In Section 4 we will present a parallel line clipping algorithm for the hardware envi-
ronment. Thecomputational complexity of the algorithm is shown in Section 5.Finally, in
Section 6, we will make some Concluding remarks.

2. BASIC IDEA

Let (xleft, ybottom) and (xright, ytop) be the lower-left and upper-right corners of a window
(Fig. 1). A line segment with endpoints (x0, y0) and (x1, y1) can be represented in parametric
form as follows





x = x0 + ∆x * t

y = y0 + ∆y * t
(2.1)

where ∆x = x1 − x0, ∆y = y1 − y0 and 0≤ t ≤ 1. Any point of the line segment which is
inside the window must satisfy the following inequalities

*The original idea of Weiler and Atherton [11] was to trace around the border of the polygon only once with
respect to all the boundary lines of the window. Howev er, it can also be classified into this category if finding
the intersections of the polygon with the window is done for each of the boundary lines of the window sepa-
rately.

-3-

Fig. 1. A window and a given line segment.

xleft ≤ x0 + ∆x * t ≤ xright

ybottom ≤ y0 + ∆y * t ≤ ytop

or, equivalently

−∆x * t ≤ x0 − xleft,

−∆y * t ≤ y0 − ybottom,

∆x * t ≤ xright − x0

∆y * t ≤ ytop − y0.

These inequalities can be written as

Pi * t ≤ Qi, i = 1, 2, 3, 4 (2.2)

where

P1 = − ∆x; Q1 = x0 − xleft

P2 = ∆x; Q2 = xright − x0

P3 = − ∆y; Q3 = y0 − ybottom

P4 = ∆y; Q4 = ytop − y0.

(2.3)

Now if Pi ≠ 0 for all 1≤ i ≤ 4 and if we define

ti =
Qi

Pi
, i = 1, 2, 3, 4 (2.4)

-4-

thent1 andt2 represent the parameters of the intersections of the straight line defined by (2.1)
(−∞ < t < +∞) with the left boundary linex = xleft and the right boundary linex = xright of
the window, respectively, and t3 and t4 represent the parameters of the intersections of the
straight line defined by (2.1) with the bottom boundary liney = ybottom and the top boundary
line y = ytop of the window, respectively (Fig. 1). Since the value of eachti is independent of
the othert j ’s (j ≠ i), the values ofti ’s can be computed in parallel. It was shown in [7] that if
Pi ≠ 0 for all i then the necessary and sufficient condition for the given line segment to have a
visible segment is

t0′ ≤ t1′ (2.5)

where

t0′ = max({ti =
Qi

Pi
 1 ≤ i ≤ 4, Pi < 0} ∪ {0})

t1′ = min({ti =
Qi

Pi
 1 ≤ i ≤ 4, Pi > 0} ∪ {1}).

(2.6)

If (2.5) is true then the coordinates of the endpoints of the visible segment are

x0′ = x0 + ∆x * t0′;
x1′ = x0 + ∆x * t1′;

y0′ = y0 + ∆y * t0′
y1′ = y0 + ∆y * t1′.

(2.7)

Again, t0′ and t1′, and thenx0′, x1′, y0′, and y1′ can all be evaluated in parallel.However, if
Pi = 0 for somei, i.e., the given line segment is vertical or horizontal, then the above argu-
ment does not work any longer. In order to include vertical and horizontal line segments as
well, we have to modify (2.3), (2.4) and (2.6) in the following way.

First, observe that if we definePi′ the following way

P1′ = P2′ = ∆x; P3′ = P4′ = ∆y

thenti defined in (2.4) can be written as

ti =
(−1)iQi

Pi′
, i = 1, 2, 3, 4 (2.8)

if Pi′ ≠ 0. In case∆x = 0 or ∆y = 0, say∆x = 0, i.e., the given line segment is vertical, we
first think of it as an oblique line segment by replacing thex-coordinate of the endpoint
(x0, y0) by x0 − ε , where ε is a small positive number (Fig.2). Since, in this case,
P1′ = P2′ = ε , it follows from (2.8) that

t1 =
−Q1

ε
, t2 =

Q2

ε
(2.9)

and

-5-

Fig. 2. A vertical line segment and the oblique line segment
generated from it.

t3 =
−Q3

P3′
, t4 =

Q4

P4′
.

Then simply take the limits of (2.9) whenε approachs 0 to get the correspondingt1 andt2 for
the original line segment.

t1 =
ε →0
lim

−Q1

ε
, t2 =

ε →0
lim

Q2

ε

This approach works when∆y = 0 also. In this case, we first replace they-coordinate of the
endpoint (x0, y0) by y0 − ε (ε > 0) and then take the limits of −Q3/ε and Q4/ε when ε
approaches 0 to get the correspondingt3 andt4 for the given horizontal line segment, i.e.,

t3 =
ε →0
lim

−Q3

ε
, t4 =

ε →0
lim

Q4

ε
.

Therefore, ifPi = 0, ti can simply be defined as

ti =
ε →0
lim

(−1)iQi

ε
(2.10)

whereε is a positive number. Its value is either+∞ or −∞, depending on the sign of (−1)iQi.
Consequently, by combining (2.4) and (2.10), we get a general form forti as follows.

-6-

ti =







Qi/Pi, Pi ≠ 0

−∞, Pi = 0 and (−1)iQi < 0

+∞, Pi = 0 and (−1)iQi > 0.

(2.11)

Note that if the given line segment is vertical, i.e.,∆x = 0, thenP1 is always considered hav-
ing negative sign and P2 having positive sign; if the given line segment is horizontal, i.e.,
∆y = 0, thenP3 is always considered having negative sign andP4 having positive sign. There-
fore, we can define a variable,SIGN (i), representing the sign ofPi for eachi as follows

SIGN (i) =




sign(Pi), Pi ≠ 0

(−1)i, Pi = 0
(2.12)

where

sign(x) =




+1, x > 0

−1, x < 0

and definet0′ andt1′ the following way

t0′ = max({ ti  1 ≤ i ≤ 4, SIGN (i) < 0} ∪ {0})

t1′ = min({ ti  1 ≤ i ≤ 4, SIGN (i) > 0} ∪ {1})
(2.13)

whereti is defined in (2.11) andSIGN (i) is defined in (2.12).Then for any giv en line seg-
ment defined in (2.1), simply use (2.3), (2.11), (2.12) and (2.13) to findt0′ andt1′ and then use
(2.4) to determine if it has a visible segment. Note that in this case (2.11), (2.12) and (2.13)
can all be implemented in parallel too.

It should be pointed out that the above method can readily be extended to 3D line clip-
ping if an orthogonal view volume is considered. This is done the following way. If (x0, y0, z0)
and (x1, y1, z1) are the endpoints of a 3D line segment and an orthogonal view volume is
defined by the six boundary planes:

x = xleft, x = xright, y = ybottom, y = ytop, z = zfront, z = zback

then except those defined in (2.3), we also need the following quantities

P5 = − ∆z, Q5 = z0 − zfront

P6 = ∆z, Q6 = zback − z0

where∆z = z1 − z0. But then everything else is similar to the 2D case.

3. THE ARCHITECTURE OF THE HARDWARE ENVIRONMENT

The parallel clipping hardware environment which we are going to present here is actu-
ally a subsystem of a geometry system called PIPA [2]. PIPA is a PIpeline-architectured and
PArallel-hardwired geometry system consists of three pipelined subsystems: Matrix

-7-

Subsystem, Clipping Subsystem and Scaling Subsystem. Each subsystem is composed of a
certain number of Geometry Processors (GPs) [4] arranged in a way so that matrix multiplica-
tion, clipping and scaling can all be performed in parallel.

Basically, each GP is a four-component vector function unit implemented on a VLSI
chip. It can be functionally divided into four subunits, as shown in Fig. 3.

(1) Microprogrammed Controller:
Sequencer
Microprogram Control Store

(2) Array Processing Unit:
4*ALU (Arithematic Logic Units)

(3) I/O Buffer
(4) Registers

4*LR (Local Registers)
4*TR (Temporary Registers)
4*CR (Curve Registers)

Fig. 3. Layout of a Geometry Processor.

The Array Processing Unit deserves special attention. It contains four parallel processing
Arithematic Logic Units (ALUs). Each ALU can operate on either 32-bit floating points or
24-bit integers [6]. In floating point arithematic, the processing is divided into two parts,
namely, exponent and mantissa. These four microprogrammed ALUs can do parallel addition,
subtraction and two-variable operations on either the mantissa or the exponents, i.e., two-
operand floating point operations.

The twelve registers in each GP are grouped into three categories: Local Registers, Tem-
porary Registers and Curve Registers. Local Registers are used to store more sensitive values
which will not be erased after each pipeline cycle. Curve Registers are used to store scaling
factors or coordinates of the window or the viewport. Temporary Registers, as indicated by
their name, are used to store temporary intermediate values in each operation.

The number of GPs required in each subsystem depends on the function of the subsys-
tem. The Matrix Subsystem, performing parallel matrix multiplication and forward curve gen-
eration, requires four GPs. The Clipping Subsystem, performing parallel line clipping and
polygon clipping, requires four GPs for 2D clipping and requires another two GPs if 3D clip-
ping is needed also. The Scaling Subsystem, performing window-to-viewport mapping and
generating monographic or stereographic views, requires only one GP. The operation within

-8-

each subsystem is controlled by the Preprocessor and Controller. Pipelining between subsys-
tems is controlled by the Controller. Fig. 4 shows the layout and data flow of a PIPA.

Fig. 4. Layout and data flow of a PIPA.

We shall use only four GPs in this paper to illustrate the implemenation of the parallel
line clipping algorithm. The four GPs in the Clipping Subsystem are numbered GP5, GP6,
GP7 and GP8.For each GPi, 5 ≤ i ≤ 8, contained in the Clipping Subsystem, its Local Regis-
ters, Temporary Registers and Curve Registers will be namedLRi, j, TRi, j and CRi, j
(1 ≤ j ≤ 4), respectively. For instance,LR5,3 represents the third Local Register ofGP5. We
shall assume that the contents of these registers within different GPs of the Clipping Subsys-
tem can be exchanged during each pipeline cycle.

Data to be input from the Matrix Subsystem to the Clipping Subsystem are stored in the
four I/O Buffers Bufi,1, 1 ≤ i ≤ 4, of the Matrix Subsystem. Since the matrix multiplication
executed in the Matrix Subsystem is performed in the homogeneous coordinate system, four
coordinates are presumably to be output to the Clipping Subsystem. However, in order to fix
the coordinates of the window or view volume and, consequently, simplify the work of Clip-
ping Subsystem, coordinates output from Matrix Subsystem will be normalized by the Matrix
Subsystem first before they are put into the I/O Buffers. This means that coordinates in the
Normalized Viewing Coordinate System (NVCS) are actually used in the Clipping Subsys-
tem. Therefore,only the contents ofBufi,1, 1 ≤ i ≤ 3, will be needed for the Clipping Subsys-
tem if 3D clipping is desired. In our case, since only 2D clipping is considered, only the con-
tents ofBuf1,1 andBuf2,1 will be needed for the Clipping Subsystem.

4. THE ALGORITHM

The parallel algorithm to be implemented on the above Clipping Subsystem will be pre-
sented in this section. In this algorithm, a block of instructions will be called aparallel step if
it is bounded above by the key word PARDO and bounded below by the key word DOPAR.
Any instructions contained in a parallel step are intended to be executed in parallel. A parallel

-9-

step is said to be at the GP level if t he instructions contained in this step are expected to be
executed for each GP. It is said to be at the register level if t he instructions within this step are
designated to certain registers of a particular GP. If a parallel step is expected to be executed
at the GP level then the statement "for processor GP5,GP6,GP7,GP8" is usually attached to
the key word PARDO. For instance, the following parallel step indicates : for each GPi,
5 ≤ i ≤ 8, load registerLRi,2 with the contents ofLRi,1.

PARDO for processor GP5,GP6,GP7,GP8
LRi,2 = LRi,1

DOPAR

If it can be clearly inferred from the context that a parallel step is expected to be executed at
the GP level then the statement "for processor GP5,GP6,GP7,GP8 " is omitted.For instance,
the following parallel step is at the GP level. It indicates : load registersLR5,1 andLR6,1 with
the contents ofBuf1,1 and load registersLR7,1 andLR8,1 with the contents ofBuf2,1, simultane-
ously.

PARDO
LR5,1, LR6,1 = Buf1,1

LR7,1, LR8,1 = Buf2,1

DOPAR

In a parallel step, if the operations to be executed by each GP are different then we list the
instructions designated to a particular GPi under the statement "[for processor GPi]" as fol-
lows and any instructions within this block are then considered at the register level for this
particular GP.

PARDO for processor GP5,GP6,GP7,GP8
[for processor GP5]

..........

[for processor GP6]
..........

[for processor GP7]
..........

[for processor GP8]
..........

DOPAR

Any instructions not enclosed by the key words PARDO and DOPAR are assumed to be
executed in sequential order. The algorithm is given as follows.

Algorithm PLC: Parallel Line Clipping

-10-

1. [Parallel loading of thex- and y-coordinates]
PARDO

LR5,1, LR6,1 = Buf1,1 {x-coordinate in NVCS}
LR7,1, LR8,1 = Buf2,1 {y-coordinate in NVCS}

DOPAR

2. [Compute∆x and∆y and thenti for eachi]
PARDO for processorGP5,GP6,GP7,GP8

2-1. [forprocessorGP5]
2-1.1.

PARDO
LR5,3 = LR5,1 − LR5,2 {Compute∆x}
LR5,4 = LR5,2 − xleft {ComputeQ1}

DOPAR
2-1.2.

if (LR5,3 = 0) then {Vertical line segment}
begin
if (LR5,4 > 0) then

TR5,1 = − ∞
else

TR5,1 = + ∞
sign(LR5,3) = +
end

else
TR5,1 = − (LR5,4/LR5,3) { t1 = −Q1/∆x}

2-2. [forprocessor GP6]
2-2.1.

PARDO
LR6,3 = LR6,1 − LR6,2 {Compute∆x}
LR6,4 = xright − LR6,2 {ComputeQ2}

DOPAR
2-2.2.

if (LR6,3 = 0) then {Vertical line segment}
if (LR6,4 > 0) then

TR6,1 = + ∞
else

TR6,1 = − ∞
else

TR6,1 = − (LR6,4/LR6,3) { t2 = Q1/∆x}

2-3. [forprocessor GP7]

-11-

2-3.1.
PARDO

LR7,3 = LR7,1 − LR7,2 {Compute∆y}
LR7,4 = LR7,2 − ybottom {ComputeQ3}

DOPAR
2-3.2.

if (LR7,3 = 0) then {Horizontal line segment}
begin
if (LR7,4 > 0) then

TR7,1 = − ∞
else

TR7,1 = + ∞
sign(LR7,3) = +
end

else
TR7,1 = − (LR7,4/LR7,3) { t3 = −Q3/∆y}

2-4. [forprocessor GP8]
2-4.1.

PARDO
LR8,3 = LR8,1 − LR8,2 {Compute∆y}
LR8,4 = ytop − LR8,2 {ComputeQ4}

DOPAR
2-4.2.

if (LR8,3 = 0) then {Horizontal line segment}
if (LR8,4 > 0) then

TR8,1 = + ∞
else

TR8,1 = − ∞
else

TR8,1 = − (LR8,4/LR8,3) { t4 = Q4/∆y}

DOPAR

3. [RearrangePi ’s so that the signs ofPi ’s appear in − + − + form]
PARDO

if (sign(LR5,3) = −) then
TR5,1 ←→ TR6,1 {ExchangeTR5,1 andTR6,1}

if (sign(LR7,3) = −) then
TR7,1 ←→ TR8,1 {ExchangeTR7,1 andTR8,1}

DOPAR

4. [Findthe values oft0′ andt1′]

-12-

4.1 PARDO
TR5,2 = TR7,1

TR6,2 = TR8,1

TR7,2 = TR5,1

TR8,2 = TR6,1

DOPAR

4.2 PARDO
TR5,4 = min (TR5,1, TR5,2, 0) { Put t0′ in TR5,4}
TR7,4 = min (TR7,1, TR7,2, 0) { Put t0′ in TR7,4}
TR6,4 = max (TR6,1, TR6,2, 1) { Put t1′ in TR6,3}
TR8,4 = max (TR8,1, TR8,2, 1) { Put t1′ in TR8,4}

DOPAR

5. [If t0′ < t1′ then compute endpoints of the visible segment]
if (TR5,4 < TR6,4) then

PARDO
LR5,4 = LR5,2 + LR5,3 * TR5,4 {Computex0′}
LR6,4 = LR6,2 + LR6,3 * TR6,4 {Computex1′}
LR7,4 = LR7,2 + LR7,3 * TR7,4 {Computey0′}
LR8,4 = LR8,2 + LR8,3 * TR8,4 {Computey1′}

DOPAR

6. [Shift operation]
PARDO for processor GP5,GP6,GP7,GP8

LRi,2 = LRi,1

output LRi,4

DOPAR

{End of the algorithm}

5. COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

Since the six steps in the algorithm are all parallel steps at the GP level and the instruc-
tions involved in each parallel step are essentially the same, it is sufficient to evaluate the
computational complexity of this algorithm simply by evaluating its computational complex-
ity on GP5. Implementation of Algorithm PLC on GP5 is shown in Fig. 5.

It is easy to see that scalar operations are required in Step 2 and 5 only. In Step 2, we
need one parallel subtraction for Step 2-1.1, one parallel division for Step 2-1.2 (the opera-
tions done in Step 2-1.2 are dominated by the division). Therefore, one subtraction and one
division are required for Step 2. In Step 5, we need one multiplication and one addition to
compute the coordinates of the end points of a visible segment. Therefore, totally four scalar
operations are required in our algortihm.Actually, by noticing that Step 1 and Step 6 can be
performed in parallel and the fact that a multiplication (division) needs 51 cycles, an addition
(subtraction) needs 9 cycles, a data transfer (and I/O as well) needs 1 cycle, it can be shown

-13-

Fig. 5. Implementation of Algorithm PLC on GP5.

that our Clipping Subsystem will require only 141 cycles to clip a line segment (1 cycle for

-14-

Step 1, 65 cycles for Step 2, 4 cycles for step 3, 7 cycles for Step 4, and 64 cycles for Step 5).
Since J. Clark’s system will require 160 cycles [6] to clip a line segment, our clipping process
is indeed more efficient.

6. CONCLUSIONS

The architecture of a parallel clipping hardware environment and the associated algo-
rithm are presented. We first show that how should a general theory of line clipping be devel-
oped so that parallel line clipping can eventually become possible.We then present the archi-
tecture of a hardware environment based on which the process of line clipping is to be per-
formed. The associated parallel line clipping algorithm is then given. Using this approach,
only four scalar operations: one subtraction, one division, one multiplication, and one addi-
tion, are required to clip a line segment against a window or an orthogonal view volume.

Our system has been simulated. The simulation is done by describing the system in
ISPS language [1], and then runing a system simulation in Run Time Module in ISPS.By
assuming a 4 mega clock rate, our system can process approximately 3800 line segments
ev ery 1/30 second.

Since at most two parallel arithmetic operations are required within each step of algo-
rithm PLC, only two ALUs are actually needed within each GP. In fact, it should be rela-
tively easy to implement the entire Clipping Subsystem on a single chip to make it more cost-
effective and more efficient.

ACKNOWLEDGEMENT

We would like to thank H. C. Fu for helpful discussion during the preparation of this work.

REFERENCES

1. M.R. Barbacci,The ISPS computer description language, Technical Report No. CMU-
CS-79-137, Department of Computer Science, Carnegie-Mellon University, 1979.

2. F. Cheng and Y.K. Yen,PIPA: A pipeline-architectured and parallel-hardwired geometry
system for graphics, in preparation.

3 J.H. Clark, The Geometry Engine : A VLSI geometry system for graphics,Computer
Graphics 16 3 (July 1982), 127-133.

4. J.H.Clark, A VLSI geometry processor for graphics,IEEEComputer 12 7 (July 1980),
59-68.

5. J.D.Foley and A. van Dam,Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Reading, Mass., 1982.

6. H.C.Fu, S.C. Lee and C.H. Bao,The design of a real time geometry system for graph-
ics, Technical Report No. NCTU-ERSO Project Report RCGS-84-2, Institute of Com-
puter Engineering, National Chiao Tung Univ., 1984.

7. Y.D. Liang and B.A. Barsky, A new concept and method for line clipping,ACM Trans.
on Graphics 3 1 (Jan. 1984), 1-22.

8. Y.D. Liang and B.A. Barsky, An analysis and algorithm for polygon clipping,CACM 26
11 (Nov. 1983), 868-877.

9. R.F. Sproull and I.E. Sutherland, A clipping divider, Proc. 1968 AFIPS FJCC, Vol. 33,
AFIPS Press, Montvale, N.J., 757-764.

10. I.E.Sutherland and G.W. Hodgman, Reentrant polygon clipping,CACM 17 1 (Jan 1974),
32-43.

-15-

11. K. Weiler and P. Atherton, Hidden surface removal using polygon area sorting,Com-
puter Graphics, 11 2 (Summer 1977), 214.

