A PARALLEL LINE CLIPPING ALGORITHM
AND ITSIMPLEMENTATION

Fuhua Cheng
Department of Computer Science, Whsity of Kentucly, Lexington, Kentuclk 40506

Yue-Kwo Yen
Chung-Shang Institute of Science and Technglbgygtang, Taiwan, R. O. C.

Abstract: A parallel line clipping algorithm and its implementation on a parallel clipping hardweir@m®ment

are presentedWe first develop a simple theory to shothat parallel clipping is possible for all types of lingse
ments. V& then present the architecture of a hardware environment based on which parallel clipping is to be
implemented. The parallel line clipping algorithm and its implementation on the parallel clippingteasivi-

ronment are presented finaljased on our approach, only 141 cycles are required to clip a line segment. The
corresponding figure for the famous J. Clai®&ometry Engine is 160 cycles.

Keywords: Clipping, parallel, pipeline, geometry procesggometry system

1. INTRODUCTION

All the display devices & limited display areas. It is impossible, in general, to display
all the objects defined by the user in a single scré&ée. graphics system has to be informed
explicitly which portion of the scene is to be wied. This visible region, specified by the user
is called the winde (view volume, in 3D graphics). Data not contained in the visildgore
should be discarded to@d overflow of the internal registers of the displaya®. The pro-
cess of remang the portions of an image that lie outside the visible region is called clipping
[5].

Two kinds of clipping process ka been frequently used in graphics, naméhe clip-
ping and polygon clipping.df images composed of straight line segments, only line clipping
is involved. Each line segment of the image is clipped against the widew volume, in
3D graphics), only theisible segment, i.e., the portion of the line gment that lies inside the
window, is autput for displaylf an image comprises not only straight lingsents but also
polygons, then polygon clipping is required. In this case not only the visible segment of each
edge of a polygon has to be output, sometimes additional verticedohbe aitput also to
make the output polygon correct.

Several well known line clipping and polygon clipping algorithms/édeen proposed
(see, e.g., [5],[7],[8],[10],[11]). Some of themvieaeen implemented in hardware (see, e.g.,
[3],[9]). The basic idea used in [5], [10], and [11] ([3] and [9] as well) can be described as fol-
lows. If, say 2D graphics is considered, then therap line segment or polygon is clipped
agpinst each boundary line of the windseparately For each boundary line of the wingdo
we first divide the plane by the boundary line int@ tsdes, visible andinvisible. The half
plane which contains the wingas called the visible side. Thewgn line segment or polygon
is clipped against this boundary line by discarding the portions of the gngesé or polygon
that lie in the invisible side of the boundary line using techniques sumlitcasles, midpoint
subdivision or in-out relationship. The remaining portions (if there arg)aare then clipped
against the other boundary lines of the windasing the same technique. After theemi line

-2-

sgment or polygon has been clipped against all the boundary lines of themtimeio the
remaining portions are the visible portions of theegiline segment or polygon. There

then output for displaySince the clipping of a line segment or polygon against a boundary
line has to be finished first before yhean be clipped agnst another boundary line, this
approach can actually be considered as clipping of a line segment or polygon agatakt se
lines in sequential order.*

The basic approach used in [7] and [8] is different from that of theealb@s. The gien
line segment or each edge of theegi polygon is expressed in parametric form first. Then
parameters of the intersections of the straight line, defined by the parametric equation, with
the boundary lines of the windoare computed and compared together with 0 and 1 to-deter
mine if there is a visible genent. Ifthere is a visible segment then its endpoints are com-
puted. Ifpolygon clipping is considered then sometimes turning vertices [8] alsotihae
found to mak the output correct. Since the process of computing the parameters of the inter
sections does not depend ony grarticular order they can be computed simutaneously
Therefore, this approach ptides us with a possibility of clipping a line segment or polygon
aquinst segeral lines in parallel if the subsequent comparison process can be performed cor
rectly.

In this paper we shall veew the idea presented in [7], andvei®p a more general theory
of line clipping for all types of line segments, such egieal or horizontal line ggnents. V&
shall focus on 2D line clipping onliHoweve, our approach can readily be extended teeco
3D line clipping too. W then present the architecture of a haadwenvironment based on
which parallel line clipping is to be performed and present a parallel line clipping algorithm
for this hardware efronment. Accordingo our algorithm, only 141 cycles are required to
clip a line sgment. Thecorresponding figure for the famous J. Claré&eometry Engine is
160 cycles. Therefore, our approach outperforms J. Glarktem by about 15%. Our algo-
rithm can be etended to include parallel polygon clipping as well [Blowever, it is not
within the scope of this paper.

The remainder of this paper isganized as follavs. In Section 2 we will reiew some
basic concepts and vi#op a general theory of line clipping. The architecture of a harelw
ervironment based on which parallel line clipping is to be implemented is presented in Sec-
tion 3. In Section 4 we will present a parallel line clipping algorithm for the hardwate en
ronment. Thecomputational complexity of the algorithm is shown in Sectior-fally, in
Section 6, we will ma& some Concluding remarks.

2. BASIC IDEA

Let (Xigts Yoottom) @A (Xrignt> Yiop) D€ e laver-left and upper-right corners of a windo
(Fig. 1). A line segment with endpointsy(y,) and (x4, y;) can be represented in parametric
form as follows

[k = xo + AX * t

5’=YO+AY*t @1

where AX = X; — Xo, Ay =y; —yg and 0<t < 1. Any point of the line segment which is
inside the windw must satisfy the following inequalities

*The original idea of Weiler and Atherton [11] was to trace around the border of the polygon only once with
respect to all the boundary lines of the wiwddHowevae, it can also be classified into this category if finding

the intersections of the polygon with the wimdis done for each of the boundary lines of the windpa-

rately.

Fig. 1. A window and a gven line segment.

Xigit < Xo +AX* T < Xyignt

Ybottom s Yo + Ay *t< ytop
or, equivalently

=AX* t < Xg = Xiefts AX* 1< Xignt — Xo
“Ay* 1 < Yo~ Ypottom: Ay * 1< Ytop ~ Yo-

These inequalities can be written as
P*t<Q,, 1=1,23,4 (2.2)
where

Pi=-AX; Q1= Xo~ Xett
P, = AX; Qz = Xight = Xo

2.3
Ps; =—Ay; Q3 = Yo = Ybottom ()
Py= Ay, Q4= Yiop ~ Yo-
Now if P; #0forall 1<i <4 and if we define
ti =] i=1,2,3,4 (2.4)

-4-

thent, andt, represent the parameters of the intersections of the straight line defined by (2.1)
(-oo <t < +00) with the left boundary linex = x, and the right boundary ling = X;jgy Of

the windav, respectrely, and t; andt, represent the parameters of the intersections of the
straight line defined by (2.1) with the bottom boundary e y,..,m and the top boundary
liney= Yiop of the windav, respectiely (Fig. 1). Since the value of eathis independent of

the othert;’s (j #1), the values of;’s can be computed in parallel. It was shown in [7] that if

P; # 0 for alli then the necessary and sufficient condition for thendine segment to va a

visible segment is

ty' <t (2.5)
where
r— _ Qi .
ty =max{t; = = 01<i<4,P, <0 []{0})
Q_i (2.6)
t,' = min{t; = FI O1<i<4,P >0 []{1}).
i
If (2.5) is true then the coordinates of the endpoints of the visible segment are
Xo' = Xt AX* 1o, Yo' = Yo tAYy* 1y (2.7)

X1 = XotAX* 1,y =Yoo tAy* .

Again, ty’ andt;’, and thenx,', X;', o', and y," can all be ealuated in parallel.However, if

P, = 0 for somel, i.e., the gren line segment is vertical or horizontal, then thevabagu-
ment does not work gronger In order to include vertical and horizontal line segments as
well, we hae o modify (2.3), (2.4) and (2.6) in the following way.

First, obsere that if we defineP;’ the following way
P,'=P, =Ax; P3' =P,/ =Ay
thent; defined in (2.4) can be written as

(-1)Q

ti = ,
i Pi’

i=1,23,4 (2.8)

if P,"#0.In caseAx =0 or Ay =0, sayAx =0, i.e., the gien line segment is vertical, we
first think of it as an oblique line gment by replacing the-coordinate of the endpoint
(X0, Yo) by Xo—¢&, where ¢ is a small positie rumber (Fig.2). Since, in this case,
P, =P, = ¢, it follows from (2.8) that

tl = —, t2 = = (29)

and

Fig. 2. A vertical line segment and the oblique line segment
generated from it.

—Qs
tg=—, t
3 P3' 4

=
P,

Then simply tak the limits of (2.9) wherz approachs 0 to get the correspondingndt, for
the original line segment.

. —Q .
t, = lim —=, t,=lim =2
£—>0 E 5—’0 (":

This approach works whehy = 0 dso. In this case, we first replace theoordinate of the
endpoint &y, Yo) by Yo—¢ (¢ >0) and then tak the limits of -Qs/e and Q,/¢ when ¢
approaches 0 to get the correspondi@ndt, for the given horizontal line segment, i.e.,

Therefore, ifP; = 0, t; can simply be defined as

ti =lim

(SOI°] (2.10)
-0 E

wheree is a positve rumber Its value is eithetoo or —oo, depending on the sign of1)'Q..
Consequentlyby combining (2.4) and (2.10), we get a general fornt;fas follows.

-6-

SQ/P,, P, %0

t =00, P =0and (-1)Q <0 2.11)
Ebroo, P, =0and (-1)Q, > 0.

Note that if the gien line segment is vertical, i.&Ax = 0, thenP; is aways considered ha
ing negaive sgn and P, having positve sgn; if the gven line segment is horizontal, i.e.,
Ay = 0, thenP; is aways considered having gdive sgn andP, having positve sgn. There-
fore, we can define a variablGN(i), representing the sign & for eachi as follows

[kign(P;), P;#0

SGN(i) = Y P =0 (2.12)
where
sign(x) = D+1’ x>0
0 1 x<0
and defing," andt,’ the following way
ty =max{ t, 01<i<4, IGN(i) <0} []{0}) (2.13)

t, =min{{ t; 01<i <4, 9GN() >0} []{1})

wheret; is defined in (2.11) an8IGN(i) is defined in (2.12).Then for ay given line s@-
ment defined in (2.1), simply use (2.3), (2.11), (2.12) and (2.13) té,finddt," and then use
(2.4) to determine if it has a visiblegseent. Note that in this case (2.11), (2.12) and (2.13)
can all be implemented in parallel too.

It should be pointed out that the akarethod can readily be extended to 3D line clip-
ping if an orthogonal vie volume is considered. This is done the failag way. If (X, Yo, Z)
and &4, ys,z;) are the endpoints of a 3D linegsaent and an orthogonal wevolume is
defined by the six boundary planes:

X = Xeity X = Xright’ Y = Ybottom» Y = ytop’ Z= Zionts Z = Zpack
then except those defined in (2.3), we also need the following quantities

F)5 =-Az, Q5 =2y~ Ziont
P6 = Az QG = Zpak — Lo
whereAz = z; — z,. But then gerything else is similar to the 2D case.

3. THE ARCHITECTURE OF THE HARDWARE ENVIRONMENT

The parallel clipping hardare environment which we are going to present here is actu-
ally a subsystem of a geometry system called\RPE. PIFA is a Apeline-architectured and
PArallel-hardwired geometry system consists of three pipelined subsystems: Matrix

-7-

Subsystem, Clipping Subsystem and Scaling Subsystem. Each subsystem is composed of a
certain number of Geometry Processors (GPs) [4] arrangeday aonthat matrix multiplica-
tion, clipping and scaling can all be performed in parallel.

Basically each GP is a foucomponent vector function unit implemented on a VLSI
chip. It can be functionally divided into four subunits, as shown in Fig. 3.

(1) Microprogrammed Controller:
O Sequencer
O Microprogram Control Store
(2) Array Processing Unit:
0 4*ALU (Arithematic Logic Units)
(3) I/O Buffer
(4) Registers
04*LR (Local Registers)
0 4*TR (Temporary Registers)
0 4*CR (Cune Regsters)

Fig. 3. Layout of a Geometry Processor.

The Array Processing Unit deserves special attention. It contains four parallel processing
Arithematic Logic Units (ALUs). Each ALU can operate on either 32-bit floating points or
24-bit integers [6]. In floating point arithematic, the processing is divided into gawts,
namely exponent and mantissa. These four microprogrammed ALUs can do parallel addition,
subtraction and tervariable operations on either the mantissa or the exponents, pe., tw
operand floating point operations.

The twele regsters in each GP are grouped into three categories: Local Registars, T
porary Registers and Cu\Regsters. Local Registers are used to store more sensitiues
which will not be erased after each pipeline cycle. €lRegsters are used to store scaling
factors or coordinates of the windoor the viewport. Temporary Registers, as indicated by
their name, are used to store temporary intermediate values in each operation.

The number of GPs required in each subsystem depends on the function of the subsys-
tem. The Matrix Subsystem, performing parallel matrix multiplication and forwar@ cgns
eration, requires four GPs. The Clipping Subsystem, performing parallel line clipping and
polygon clipping, requires four GPs for 2D clipping and requires anotleeGRs if 3D clip-
ping is needed also. The Scaling Subsystem, performing wimeiewport mapping and
generating monographic or stereographiavgierequires only one GFPhe operation within

-8-

each subsystem is controlled by the Preprocessor and ContAgkdining between subsys-
tems is controlled by the Controlléig. 4 shows the layout and datalof a APA.

Fig. 4. Layout and data fioof a APA.

We shall use only four GPs in this paper to illustrate the implemenation of the parallel
line clipping algorithm. The four GPs in the Clipping Subsystem are numbered GP5, GP6,
GP7 and GP8For each GP, 5<i < 8, contained in the Clipping Subsystem, its LocaliRe
ters, Temporary Registers and GarRegsters will be namedLR ;, TR;; and CR
(1< j <4), respectigly. For instanceLRs ; represents the third Local §ieter ofGP5. V\é
shall assume that the contents of thegesters within different GPs of the Clipping Subsys-
tem can be exchanged during each pipeline cycle.

Data to be input from the Matrix Subsystem to the Clipping Subsystem are stored in the
four 1/0 Buffers Buf; ;, 1<i <4, of the Matrix Subsystem. Since the matrix multiplication
executed in the Matrix Subsystem is performed in the homogeneous coordinate system, four
coordinates are presumably to be output to the Clipping Subsystemvédoin order to fix
the coordinates of the windoor view volume and, consequentlymplify the work of Clip-
ping Subsystem, coordinates output from Matrix Subsystem will be normalized by the Matrix
Subsystem first before theare put into the I/O Bdérs. This means that coordinates in the
Normalized VYewing Coordinate System (NVCS) are actually used in the Clipping Subsys-
tem. Thereforepnly the contents oBuf; ;, 1<i < 3, will be needed for the Clipping Subsys-
tem if 3D clipping is desired. In our case, since only 2D clipping is considered, only the con-
tents ofBuf, ; and Buf, ; will be needed for the Clipping Subsystem.

4. THE ALGORITHM

The parallel algorithm to be implemented on thevab@ipping Subsystem will be pre-
sented in this section. In this algorithm, a block of instructions will be calpedatlel step if
it is bounded abee by the key word PARDO and bounded belo by the key word DOPAR.
Any instructions contained in a parallel step are intended tadoeited in parallel. A parallel

-9-

step is said to be at the GRdkif t he instructions contained in this step are expected to be
executed for each Gt is said to be at the registend if t he instructions within this step are
designated to certaingesters of a particular GRf a parallel step is expected to beeeuted

at the GP leel then the statement "for processor GP5,GP6,GP7,GP8" is usually attached to
the key word PARDO. For instance, the following parallel step indicates : for each GPi,
5<i < 8, load registeLR, , with the contents ofR ;.

PARDO for processor GP5,GP6,GP7,GP8
LR,=LR,
DOPAR

If it can be clearly inferred from the context that a parallel stegpeated to bexecuted at
the GP leel then the statement "for processor GP5,GP6,GP7,GP8 " is onftbtednstance,
the following parallel step is at the GRék It indicates : load mgistersLRs; andLRs ; with

the contents oBuf, ; and load rgistersLR; ; andLRg ; with the contents oBufzil, smultane-
ously.

PARDO

LRs;, LRs=Buf;,
LR; 1, LRg;=Buf;,
DOPAR

In a parallel step, if the operations to becuted by each GP are different then we list the
instructions designated to a particular GPi under the statement "[for processor GPi]" as fol-
lows and aw instructions within this block are then considered at the registdrfla this
particular GP.

PARDO for processor GP5,GP6,GP7,GP8
[for processor GP5]

DOPAR

Any instructions not enclosed by theykwords PARDO and DOPAR are assumed to be
executed in sequential ordeérhe algorithm is gien as bllows.

Algorithm PLC: Parallel Line Clipping

-10-

1. [Parallel loading of thex- and y-coordinates]
PARDO
LRs 1, LRs; = Buf;; {x-coordinate in NVCS}
LR; 1, LRg; = Buf,; {y-coordinate in NVCS}
DOPAR

2. [ComputeAx andAy and thert; for eachi]
PARDO for processoGP5,GP6,GP7,GP8

2-1. [forprocessoGP5]

2-1.1.
PARDO
LRs3=LRs; - LRs, {ComputeAx}
LRs 4= LRs > = Xiet {ComputeQ,}
DOPAR
2-1.2.
if (LRs3=0) then {Vertical line segment}
begin
if (LRs4>0) then
TRs1=-00
else
TR =+ 00
Sign(LRs 5) = +
end
else

TRs1 = —(LRs 4/LRs 3) {t; =-Q./AX}

2-2. [forprocessor GP6]

2-2.1.
PARDO

LRe3=LRs1 — LRg> {ComputeAx}
LRs 4 = Xright = LRe 2 {ComputeQ,}
DOPAR

2-2.2.
if (LRs3=10) then {\ertical line segment}

if (LRg4>0) then
TR =+ 00
else
TRs1=—00
else

TRs1 = — (LR 4/LRs 3) {t, = Q,/Ax}

2-3. [forprocessor GP7]

-11-

2-3.1.
PARDO
LR73=LR71— LR7> {ComputeAy}
I-R7,4 = I-R7,2 ~ Yhbottom {ComputeQs}
DOPAR
2-3.2.
if (LR;3=0) then {Horizontal line segment}
begin
if (LR;4>0) then
TR;1=—00
else
TR7,1 =+00
Sgn(LR;3) =+
end
else

TR;1=-(LR74/LR75) {t3 = -Q4/Ay}

2-4. [forprocessor GP8]

2-4.1.
PARDO
LRg3=LRg; — LRg, {ComputeAy}
LRg 4= Yiop = LRg {ComputeQ,}
DOPAR
2-4.2.
if (LRg3=0) then {Horizontal line segment}
if (LRg4>0) then
TRg1=+00
else
TRg1=—00
else
TRg1=—(LRg /LRg) {ts = Q,/Ay}
DOPAR

3. [Rearrangé;’s so0 that the signs oP;’s appear in— + — + form]
PARDO

if (sign(LRs3) =-) then

TRsy « —» TRs {ExchangeTRs; andTRg 1}
if (sign(LR73) =-) then
TRz, « —» TRg; {ExchangeTR;; andTRg 1}

DOPAR

4. [Findthe values of,’ andt;’']

-12-

4.1 PARDO
TRs,=TR;,
TRs2=TRg1
TR72=TRs,
TRe> = TRs 1

DOPAR

4.2 PARDO
TRs 4 = Min (TRs 1, TRy ,, 0) {Putty’ in TRy 2}
TR, , = min (TR, 1, TR; ,, 0) {Putty’ in TRy 2}
TRs.4 = Max (TR 1, TRs», 1) {Putt," in TR 3}

TRg4 =max (TRg 1, TRg 2, 1) {Putt,’ in TRy 4}
DOPAR

5. [Ifty’ <t then compute endpoints of the visible segment]
if (TRs4<TRg4) then

PARDO
LRs 4= LRs2+ LRs 3™ TRs 4 {Computex,'}
LRe4=LRs2+ LRs3™ TRg4 {Computex,'}
LR74=LR72+ LR73* TRy, {Computey,'}
LRgs=LRg2+ LRg3™ TRg4 {Computey,'}

DOPAR

6. [Shiftoperation]
PARDO for processor GP5,GP6,GP7,GP8

LR,=LR
output LR 4
DOPAR

{End of the algorithm}

5. COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

Since the six steps in the algorithm are all parallel steps at thev&Rrid the instruc-
tions involved in each parallel step are essentially the same, it is sufficientltate the
computational complexity of this algorithm simply byakeiating its computational comple
ity on GP5. Implementation of Algorithm PLC on GP5 is shown in Fig. 5.

It is easy to see that scalar operations are required in Step 2 and $no&igp 2, we
need one parallel subtraction for Step 2-1.1, one parallel division for Step 2-1.2 (the opera-
tions done in Step 2-1.2 are dominated by the division). Therefore, one subtraction and one
division are required for Step 2. In Step 5, we need one multiplication and one addition to
compute the coordinates of the end points of a visilgensat. Therefore, totally four scalar
operations are required in our algortihictually, by noticing that Step 1 and Step 6 can be
performed in parallel and thadt that a multiplication (division) needs 51 cycles, an addition
(subtraction) needs Ycles, a data transfer (and 1/O as well) needs 1 cycle, it can & sho

13-

Fig. 5. Implementation of Algorithm PLC on GP5.

that our Clipping Subsystem will require only 141 cycles to clip a line segment (1 cycle for

-14-

Step 1, 65 cycles for Step 2, 4 cycles for step Jcles for Step 4, and 64 cycles for Step 5).
Since J. Clarls system will require 160ycles [6] to clip a line segment, our clipping process
is indeed more efficient.

6. CONCLUSIONS

The architecture of a parallel clipping haat& environment and the associated algo-
rithm are presented. &\first shev that hav should a general theory of line clipping bevde
oped so that parallel line clipping cavestually become possible/Ne then present the archi-
tecture of a hardware environment based on which the process of line clipping is te be per
formed. The associated parallel line clipping algorithm is thgengiUsing this approach,
only four scalar operations: one subtraction, one division, one multiplication, and one addi-
tion, are required to clip a line segment against a winatcan athogonal viev volume.

Our system has been simulated. The simulation is done by describing the system in
ISPS language [1], and then runing a system simulation in Roa Module in ISPS.By
assuming a 4 nga dock rate, our system can process approximately 3800 lip@esds
evay 1/30 second.

Since at most tw parallel arithmetic operations are required within each step of algo-
rithm PLC, only two ALUs are actually needed within each.@R fact, it should be rela-
tively easy to implement the entire Clipping Subsystem on a single chip ®itrafire cost-
effectve and more efficient.

ACKNOWLEDGEMENT

We would like to hank H. C. Fu for helpful discussion during the preparation of this work.

REFERENCES

1. M.R.Barbacci, The ISPS computer description language, Technical Report No. CMU-
CS-79-137, Department of Computer Science, Carnegie-Melloretdity, 1979.

2. E Cheng and Y.K. ¥n,PIPA: A pipeline-architectured and parallel-hardwired geometry
systemfor graphics, in preparation.

3 JH. Clark, The Geometry Engine : A VLSI geometry system for grapkiesyuter
Graphics 16 3 (July 1982), 127-133.

4. J.H.Clark, A VLSI geometry processor for graphitEEEComputer 12 7 (July 1980),
59-68.

5. J.D.Fdey and A. van Dam,Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Reading, Mass., 1982.

6. H.C.Fu, S.C. Lee and C.H. Badhe design of a real time geometry system for graph-
ics, Technical Report No. NCTU-ERSO Project Report RCGS-84-2, Institute of Com-
puter Engineering, National Chiao Tung nil984.

7. Y.D. Liang and B.A. Barsk A new @mncept and method for line clippingCM Trans.
on Graphics 3 1 (Jan. 1984), 1-22.

8. Y.D. Liang and B.A. Bargk An analysis and algorithm for polygon clippinGACM 26
11 (Nov. 1983), 868-877.

9. R.F Sproull and I.E. Sutherland, A clippingwtiler, Proc. 1968 AFIPS FJCC, \ol. 33,
AFIPS Press, Montvale, N.J., 757-764.

10. I.E.Sutherland and G.WHodgman, Reentrant polygon clippir@ACM 17 1 (Jan 1974),
32-43.

-15-

11. K. Weller and P Atherton, Hidden surface rewab using polygon area sorting;on-
puter Graphics, 11 2 Summer 1977), 214.

