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Abstract

The problem of constructing a parametric triangular patch to smoothly connect three surface patches
is studied. Usually, these surface patches are defined on different parameter spaces. Therefore, it is
necessary to define interpolation conditions, with values from the given surface patches, on the boundary
of the triangular patch that can ensure smooth transition between different parameter spaces. In this
paper we present a new method to define boundary conditions. Boundary conditions defined by the
new method have the same parameter space if the three given surface patches can be converted into the
same form through parameter transformation. Consequently, any of the classic methods for constructing
functional triangular patches can be used directly to construct a parametric triangular patch to connect
given surface patches with G! continuity. The resulting parametric triangular patch preserves precision
of the applied classic method.
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1 Introduction

Construction of surfaces plays an important role in computer aided geometric design (CAGD),
free-form surface modeling and computer graphics (CG). To make the process of constructing
complex surfaces simple, piecewise techniques are frequently used, with four-sided and triangular
patches being the most popular choices. This paper studies the problem of boundary condition
determination in the process of constructing parametric triangular patches to smoothly connect
three given surface patches.

A curved triangular patch that interpolates the boundary interpolation conditions was first
proposed by Barnhill, Birkhoff and Gordon [1]. The triangular patch is constructed using the
Boolean sum scheme. Gregory [2] used the convex combination method to construct a triangular
patch. The triangular patch is formed by the convex combination of three interpolation operators,
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each of which satisfies the interpolation conditions on two sides of a triangle. The idea [2]
was further extended in papers [3, 4]. Nielson [5] presented a side-vertez method to construct
a curved triangular patch using combination of three interpolation operators, each satisfying
the given boundary conditions at a vertex and its opposite side. Hagen [6] extended Nielson’s
approach to construct geometric patches. These results have been generalized to triangular patches
with first and second order geometric continuity [7, 8]. The problem of constructing non-four-
sided patches including curved triangular patches was also studied in [9, 10]. In [11] a method
to construct a curved triangular patch by combining four interpolation operators: an interior
interpolation operator and three side-vertex operators [5] is presented. The constructed triangular
patch reproduces polynomial surfaces of degree four. Another method proposed recently [12]
constructs a triangular patch by a basic approrimation operator and an interpolation operator.
The constructed triangular patch satisfies C!' boundary condition and reproduces polynomial
surfaces of degree five.

The above methods all work on the assumption that the interpolation conditions on the bound-
ary of the triangle are defined on the same parameter space. In practice, however, this is usually
not the case. It is therefore necessary to have a method to determine suitable interpolation condi-
tions so that the methods [1]-[12] can be used directly to construct triangular patches. In [13], a
method is presented to construct the cross-boundary conditions. The constructed cross-boundary
conditions have suitable magnitudes, but not suitable directions on the boundary of the trian-
gle. This paper overcomes this problem by presenting a simple but efficient method to construct
cross-boundary conditions which have both suitable magnitudes and directions. The combination
of the new method and the classic functional triangular patch construction methods [1]-[12] can
be used to construct a G' parametric triangular patch to connect three surface patches. The con-

structed parametric triangular patch has the same interpolation precision as the classic methods
[1]-[12].

2 Problem description

Suppose P;(s;,t;) = (xi(si, ts), yi(si, i), zi(si, t5)), (0 < s;,t; < 1), 4 = 1,2,3, are three given
surface patches, defined on different s;t;-parametric planes. The three patches meet in the way
shown in Figure 1. The goal is to construct a triangular patch Pyp(s,t) to connect the three
patches P;(s;, t;), i = 1,2,3, with G' continuity. Prz(s,t) and P;(s;,t;), i = 1,2,3, being G*
continuous means that they have a common boundary and the normal vectors of them on the
common boundary have the same direction.

If these three patches are defined on the same parametric st-plane, then the methods for con-
structing functional triangular patches can be used directly to construct a parametric triangular
patch to connect these patches with C! continuity. In most applications of CAGD, CG and related
areas, however, these three patches usually are not defined on the same parameter space. In this
case, one needs to define C! boundary conditions by the three patches so that the constructed
parametric triangular patch can smoothly connect these patches with a ”visually pleasing shape”
suggested by these three patches. After the C' boundary conditions are defined, the functional
methods of constructing triangular patches can be used to construct parameter triangular patch
directly. As Pr(s,t) and P;(s;, t;), 1 = 1,2,3, are defined on different parameter spaces, Pp(s,1),
satisfying C! boundary conditions, will connect these three patches with G continuity.



Fig. 1. Three surfaces meet

Let T be an equilateral triangle with vertices v; = (0,0), v, = (1,0) and v3 = (1/2,v/3/2)
in the st-parametric space, e; denote the opposite side of v; and 7; is the unit outward normal
vector of e;, as shown in Figure 2. Let o; denote the unit vector from v, to v3. 09 and o3 are
defined similarly. The sides e;, © = 1,2, 3, can be parameterized as follows:

e (u) = (1 — u)vy + uvs,
ex(u) = (1 —uw)vy +uvs, 0<u<l (1)
es3(u) = (1 — u)vy + uvs,

The parametric triangular patch Pp(s,t) to be constructed will be defined on the equilateral
triangle 7', as shown in Figure 2. On the three sides of T', the boundary curve and cross-boundary
slope conditions given by the three surfaces, P;(s;, t;), i = 1,2,3 are as follows

OP;
881'

Pl(el(u))a (ei(u))v 1=1,2,3 (2)

OP;
where e;(u)’s are defined in Eq. (1), P;(e;(u)) and 5 (e;(u)) denote the boundary value and
Si

the cross-boundary slope of P;(s;,t;) on the side e;, respectively.
As the boundary conditions (2) cannot be used directly to construct the triangular patch on
T, we will use them to define the new boundary conditions. Let the new boundary conditions be

OPr

Pr(ei(u)), or,

(ei(u)), i=1,2,3. (3)

The new boundary conditions (3) should be defined in a way so that if the three patches
P;(s;,t;),i =1,2,3 are defined by the same surface P(s,t), but with different parameter spaces,

then Pyp(e;(u)), ——=(e;(u)), i = 1,2,3 on the three sides of 7" in Figure 2 can be defined by
Ti
P(s,t), i.e., by
Pr(ei(u)) = P(ei(u)),
oP oP ;1 =1,2,3 (4)
“(eiw) = 2 —(eilu)),
oT; or;
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Fig. 2. Three patches meet on 7.

3 Constructing the boundary Conditions

OPr
87’2'

We show how to determine Pr(e;(u)), (ei(u)), i = 1,2,3, in this section. As Pr(s,t) and

oP
P;(s;,t;) are G' continuous on the common boundary, Pz(e;(u)), 5 T (ei(u)), i = 1,2,3 can be
Ti
defined by P;(s;,t;), i = 1,2, 3 as follows:
Pr(ei(u)) = Pi(ei(u)),
OP; OP; oP,; ,i=1,2,3 (5)

7 () = nles()) s (u)) + () T (e )
where «;(e;(u)) and f;(e;(u)) are functions of u to be constructed, respectively.

For simplicity, we shall show the construction process of a;(e;(u)) and S;i(e;(u)) only. The
a;(e;(u)) and B;(e;(u)), i = 2,3 can be constructed similarly.

oP oP
87'1T (e1(u)) and 8t1T

As (e1(u)) satisfy

G ertu) - S erlw) = 0

where (a - b) denotes the dot product of vectors a and b.
It follows from (5) that

Ay (ex(w)) + By (ex () = 0 (6)
where

Ay = (G el - e ()

B = (G er(w) - S ()

The Eq. (6) gives the function relation between «;(e;(u)) and Si(e1(u)). If one of ay(ej(u))
and (;(ej(u)) is defined, the rest one is defined. In the following we show how to construct
ai(er(u)) and fBi(er(u)). At point vs, we have

8PT aPl
on 0s1

0P,

(). ")

(v2) + Bi(v2)

(v2) = 1 (v2)
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The angle 6; between vectors 7, and t3 is 30, thus

LT R LT I L
8t3 2 2 67’1 2 2 80'1 2
From
P () = P
60’1 2 6t1 2
we have
OPr B %ap3 V3 0P,

o ") = T3y T gy () (®)

It follows from Eq. (7) and Eq. (8) that a;(vs) and f31(vs) in Eq. (5), denoted of and 37, can be
determined by the following equations.

oP oP oP oP oP oP
(g (o0 Gt ol (Gt S = () ol
0P, 0P, 0 0P, 0P, 0o
< 631 (’Ug) 8t1 (v2)>a1 + < 6t1 ('U2) atl (,U2)>ﬂ1 - 0
On the other hand, at v3 we have
oP oP oP
871T (v3) = a1 (v3) 6311 (v3) + B1(vs) 6t11 (v3),
oPr )_7@6P2( )7§apl( ) (10)
87’1 vs) = 3 8t2 s 3 6t1 v3)-

Thus «a;(vs) and By (v3) in Eq. (5), denoted a7 and 3, can also be determined by the following
equations.

oP, oP, . 0P, oP, 0P oP,

<631 (’Ug) 831 (’U3)>Of1 +< atl ('U3) 631 (,U3)>ﬂ1 < 67'1 ('U3) 631 (v3)>7 (11)
O ) - 2 vt + (T 0g) - T (g = 0
881 s 6t1 314 8t1 5 8t1 s 1=
Now a4 (ei(u)) and fy(er(u)) can be defined by a linear interpolation as follows:
_ (1 0 1
ar(er(u)) = (1 —u)al + uag, 0<u<l1 (12)

Pr(er(u) = (1 —u)py +upy.”’

where of and B¢, i = 0,1 are defined by (9) and (11).

Based on (6) and (12), there are two ways to define a;(e;(u)) and f1(ei(u)). They are shown

below:
ar(er(u)) = (1 — u)af + uayg,

Bi(er(u)) = — Arar(ey(u))/By.* 0SUST (13)

Piler(u)) = (1 —u)B +up,
ar(er(u)) = —Bifi(ei(u))/Ar. O<us<l (14)

The final defination of a;(e;(u)) and Sy (e1(u)) is formed by the combination of (13) and (14),
i.e., by



(BIB? - Ala(l))(l - U) + (Blﬁll — Ala})u : (15)

9B,

(e (u)) =

Pi(er(u)) =

Similarly, one can define «;(e;(u)) and §;(e;(u)) for i = 2,3 as follows:

(Agay — Byf39)(1 — u) + (Agary — Baf3y)u

as(ex(u)) = =
a(eau)) — PoPB— A1~ w) + (Bafl — Asad)u
o N 2B,
ay(eg(u)) = As0s — BeBy)(L —w) + (Asay — ByfiyJu (16)
94, 1 1
Bs(es(u)) = (Bsfly — Asag)(1 22)3"‘ (B3f5 — Asas)u

The above construction process of C! boundary conditions shows that when the methods for
constructing C' functional triangular patch are directly applied to the boundary conditions in
Eq. (5), a parameter patch Pp(s,t) is constructed, which connects P;(s;, t;), i = 1,2,3 with G*
continuity and smooth shape.

4 Discussion

In this section, we will show that the cross-boundary slopes defined by Eqgs. (5), (15) and (16) are
well defined. To do this, one only needs to prove that if the three surfaces P;(s;, t;), i = 1,2, 3,
are defined by the same surface P(s,t) but in different forms, then the new boundary conditions
are defined by (4), i.e., by P(s,t). This means that if a method reproduces polynomials of
degree n when it is used to construct functional triangular patches, then when it is used with
the boundary conditions (5) to construct a parametric triangular patch Pr(s,t), Pr(s,t) will
reproduce parametric polynomials of degree n.

Theorem 1 If surface patches P;(s;,t;), i = 1,2,3, are defined by the same surface P(s,t), and
the transformations from coordinate system st to coordinate system s;t; are linear, then there exist
unique constants ¢; and d; satisfying the following conditions

o = 1/c;,

Bi = —di/ci

where «; and fB; satisfy a;(e;(u)) = a; and Bi(e;(u)) = B;, which means c;(e;(u)) and Bi(e;(u))
in Eq. (5) are constants in this case.

(17)

Proof Only the case ¢ = 1 will be considered. The other two cases can be handled similarly. Let
V be any point in parametric space, in 7y0; and s;¢; coordinate systems, the coordinates of V' be
(11,01) and (s1,t1), respectively. As the transformation from coordinate system st to coordinate
system s;t; is linear, so the relationship between (71, 07) and (s1,%;) can be written as

71 = C151,

18
o1 = d181 + tl. ( )
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As P;(s1,t;) is defined by P(s,t), it follows from Eq. (18) that P;(s1,%;) can be expressed as

Pl(Sl,tl) = P(clsl,dlsl +t1) = P(Tl,O'l).

Now
aPl(sl,tl) _ ClaP(Tl,O'l) +d18P(T1,01)
651 87’1 60'1
6P1(81,t1) _ 8P(T1,0'1)
6t1 60’1
Thus
OP(1,01) B lap(sl,h) _ ﬂap(sl,tl)
87’1 N C1 881 C1 atl )
6P(T1,0'1) . 6P(81,t1)
60’1 N 6t1

and this completes the proof of the theorem.

Theorem 1 shows that if surfaces P;(s;, t;), i = 1,2, 3, are defined by the same surface, then
o) and ) in Eq.(9) and o] and ] in Eq. (11) satisfy o) = o7 and 8} = ], so the functions
a;(e;(u)) and S;(e;(u)) in Eq.(5), i = 1,2, 3, are uniquely determined, i.e., determined by Eq.(40).
Consequently, the interpolation conditions are determined uniquely, thus the triangular patch to
be constructed is determined uniquely. Therefore the following theorem follows.

Theorem 2 If the method of constructing functional triangular patch reproduces polynomials of
degree n, and the method is directly applied on the interpolation conditions in Eq.(5), then the
constructed parametric triangular patch Pr(s,t) reproduces parametric polynomials of degree n.

5 Experiment

Experiment results presented in this section are carried out by constructing a parametric triangu-
lar patch to connect three four-sided patches. The triangular patches are produced by Nielson’s
method [5]. In Figures 3 and 4, the triangular patch in (a) is produced by directly applying
Nielson’s method [5] on the boundary curves and cross-boundary slopes defined by the three rect-
angle patches. The triangular patches in (b) and (c) are produced by using the method presented
in [13] and the technique presented in this paper, respectively, to redefine the cross-boundary
slopes taken from the three given rectangular patches, then applying Nielson’s method [5] on the
boundary curves and the redefined cross-boundary slopes. In Figures 3 and 4, some portions of
the surfaces on the common boundary of the triangular patch with the three rectangular patches
are visually not very smooth. This is the result of Mach band phenomenon. Figures 3 and 4 show
that surfaces in (c) have less Mach band phenomenon than those of (b).

Highlight lines [14] have been proved to be effective tool in assessing the quality of a surface. In
Figures 5 and 6, the highlight line model is used to compare the above three methods. The figures
in Figure 5 are highlight lines of the horizontal fillets of the surfaces in Figure 3. The figures in
Figure 6 are highlight lines of the horizontal fillets of the surfaces in Figure 4. The figures in
Figures 5 and 6 show that the new method gets better results than the other two methods.



Fig. 3: Example 1

Fig. 4: Example 2

Fig. 5: Example 3
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(c)

Fig. 6: Example 4

6 Conclusions

A new method that uses functional triangular patch construction methods to construct parametric
priangular patches is presented. The new method improves previous methods in both surface
shape and surface quality. This is testified by examining Mach band effect and highlight line
models of the resulting surface patches. The key in achieving the improvement is a technique
to define the cross-boundary conditions. The resulting cross-boundary conditions have not only
suitable magnitudes but suitable directions as well.

With the new method, one can directly apply any of the classic functional triangular patch
construction methods to construct a C' parametric triangular patch to smoothly connect three
surface patches. The new method preserves precision of the classic methods. If the applied classic
method has a precision of polynomials of degree m, then the constructed parametric triangle
patches have a precision of parametric polynomials of degree n.

References

[1] R. E. Barnhill, G. Birkhoff, and W. J. Gordon, Smooth interpolation in triangles, J. Approx.
Theory 8 (1973) 114-128.

[2] J. A. Gregory, Smooth interpolation without twist constraints, in: R. E. Barnhill and R. F.
Riesenfeld (Eds.), Computer Aided Geometric Design, Academic Press, New York, 1974, 71-88.

[3] J. A. Gregory, C! rectangular and non-rectangular surface patches. in: R. E. Barnhill and W.
Boehm (Eds.), Surfaces in Computer Aided Geometric Design, North-Holland, Amsterdam, 1983.



P. Charrot, and J. A. Gregory, A pentagonal surface patch for computer aided geometric design,
Computer Aided Geometric Design 1 (1984) 87-94.

G. M. Nielson, The side vertex method for interpolation in triangles, J. Approx. Theory 25 (1979)
318-336.

H. Hagen, Geometric surface patches without twist constraints, Computer Aided Geometric Design
3 (1986) 179-184.

G. M. Nielson, A transfinite, visually continuous, triangular interpolant, in: G. Farin (Ed.), Geo-
metric Modeling, Applications and New Trends, STAM, Philadelphia, 1987, pp. 235-246.

H. Hagen, Curvature continuous triangular interpolants, in: T. Lyche and L. Schumaker (Eds.),
Methods in CAGD, Academic Press, Oslo, 1989, pp. 373-384.

S. Kuriyama, Surface modeling with an irregular network of curves via sweeping and blending,
Computer Aided Design 26(8) (1994) 597-606.

T. Varady, Overlap patches: a new scheme for interpolating curve networks with n-sided regions,
Computer Aided Geometric Design 8 (1991) 7-27.

C. Zhang, F. Cheng, Triangular patch modeling using combination method, Computer Aided
Geometric Design 19(8) (2002) 645-662.

Caiming Zhang, Xiuhua Ji and Xingqgiang Yang, Constructing triangular patch by basic approxima-
tion operator plus additional interpolation operator, Science in China Ser. F Information Sciences
48(2) (2005) 263-272.

Caiming Zhang , Huijjian Han, Yi Liu, Determining Boundary Interpolation Conditions in Con-
structing Triangular Patch, Journal of Information & Computitational Science 2(3)(2005) 597-604.

Beier, K.-P and Chen, Y, The highlight-line algorithm for real-time surface-quality assessment,
Computer-Aided Design, 1994, 26(4): 268-278.

10



