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Abstract. The undercut in 3-axis and 5-axis milling causes serious
problems because of unexpected damages of the machined surface.
Possible solutions for indication of this problem in advance can be
based on (general) offset surfaces. This paper presents an algorithm
for indication of the undercut problem in the milling for surfaces with
rational parametrization for which also a (general) offset surface has
rational parametrization (so-called RC surfaces). The method uses
algebraic geometry (Gröbner bases or Dixon (dialytic) resultant) and
computation of a (general) offset surface self-intersection.
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1 Introduction

Milling is a process which is used in mechanical engineering to produce a
surface of the desired shape. The path of the milling machine has to be
planned on a so-called (general) offset surface which contains all position
of a reference point on the milling machine axis during the milling.

There are two main types of milling: 3-axis milling (a milling ma-
chine is able to do only translational movement, not rotational) and 5-axis
milling (a milling machine can do not only translational movement but
also rotational movement around two different axes). One of the problems
that occurs during milling (in both types, 3-axis and also 5-axis) is the
so-called undercut problem. This means that during the movement around
the desired surface the milling machine may cause irreversible damage to
the already machined part of the desired surface.

One of the possible mathematical approaches to solve (or at least to
indicate) this problem is based on the study of properties of (general)
offset surfaces, especially properties of offset surfaces for the case of 5-
axis milling and properties of general offset surfaces for the case of 3-axis
milling.

Several papers have dealt with the undercut problem in milling, and
even with the (general) offset surfaces. Wallner et al. discuss in [8] the
self-intersections of offset curves and surfaces mainly from the differen-
tial geometry point of view and show how to determine maximum offset
distance such that the offset does not neither locally nor globally self-
intersect. Glaeser et al. in [4] then focus on finding conditions for col-
lision free 3-axis milling of surfaces and also on the selection of cutting
tools for a given surface using general offset surfaces and differential ge-
ometry. Wallner in [7] studies the connection between singularities and



self-intersections of a general offset surface and the possible collision of
milling machine with the desired surface during the motion, again mainly
from the differential geometry point of view.

This paper is devoted to the connection of the undercut problem in
milling to (general) offset surfaces and to identification (and/or computa-
tion) of self-intersections of these surfaces, especially for the special class
of surfaces called RC surfaces. Thus, the main objective is to present so-
lution to the indication of the undercut problem for all surfaces belonging
to the class of RC surfaces.

2 Offset surfaces and general offset surfaces

The definition of an offset surface using a surface normal is well-known,
that’s why we focus only on general offset surfaces.

During the 3-axis milling the milling machine can perform only trans-
lational motion in directions of all three coordinate axes x, y, z in R

3.
Hence, without loss of generality we can simplify the situation such that
from now X (representing the surface which we want to make) will be
a smooth surface which can be represented in explicit form z = f(x, y)
and Σ (representing the cutter, i.e. milling machine) can be similarly
represented in explicit form z = e(x, y). Both these surfaces represent
boundary of corresponding solids and they are oriented such that their
normals has positive z-coordinate. Moreover, we will consider that Σ is
strictly convex. Then the 3-axis milling means that the cutter Σ moves
such that its axis is still parallel to z-axis of coordinate system and concur-
rently Σ always touches the surface X. This condition in fact corresponds
to the so-called general offset surface.

Definition 1 Let X and Σ be surfaces with the properties mentioned
above. Let r be a reference point chosen on the axis of surface Σ and
let τ(x; p), x ∈ X, p ∈ Σ be a translation such that τ(x; Σ) touches X.
Then the set

S = {τ(x; r)|x ∈ X}

is called the general offset surface of X with respect to Σ.

Hence, we can study properties of general offset surfaces in order to be
able to indicate the undercut in 3-axis milling.

From the definition of a general offset surface it is not clear how to
find it. The answer gives so-called convolution surface/hypersurface which
has very close relation to the general offset surface, especially in case
whether sets A and B and their boundaries are given as smooth sur-
faces/hypersurfaces.



Figure 1: General offset surface (upper surface) of the Bézier surface
(lower surface) with respect to the paraboloid

Definition 2 Let A and B be smooth hypersurfaces in R
n. Then the set

C = A ? B = {a + b|a ∈ A, b ∈ B ∧ t(a) ‖ t(b)}

is called the convolution surface A ? B and t(a), t(b) are tangent hyper-
planes of A and B at a ∈ A and b ∈ B which are called corresponding
points.

The reader can find more information on convolution surfaces e.g. in [5].
Here we only mention the connection of the convolution surface to general
offset surfaces and 3-axis milling.

In fact, the general offset surface C can be computed as a convolution
surface of the surface X and the cutter −Σ, i.e. C = X ? (−Σ), where
−Σ represents so-called reflected cutter To illustrate defined notion, Fig.
1 displays the general offset surface obtained as the convolution surface
of the Bézier surface BS with the paraboloid PS, i.e. it corresponds to
the computation of the convolution surface BS ? (−PS).

3 Solution of the undercut problem for RC surfaces

In the main part of this paper we focus on the solution of the undercut
problem for a special class of so-called RC surfaces. The method is based
on a computation (or at least indication) of a (general) offset surface
self-intersection using algebraic geometry, especially variable elimination
methods like Gröbner bases (see [2] for more details) or Dixon (Dixon
dialytic) resultants (see [3] for more details). The presence of the self-
intersection on a (general) offset surface indicates the undercut during
the milling process.



3.1 RC surfaces

The aim of this subsection is to explain the first point of the algorithm
presented in the next subsection, i.e. to give basic definitions and ex-
planations of the notions GRC hypersurface and SRC hypersurface which
together belong among RC surfaces/hypersurfaces. Let us start with exact
definitions of these two classes of surfaces.

Definition 3 Let A be a rational hypersurface in R
n parametrized by

a(u1, . . . , un−1). This parametrization is called a GRC parametrization,
if and only if the convolution hypersurface A ? B has an explicit rational
parametrization for an arbitrary hypersurface B with rational parametriza-
tion. Further, A is called a GRC hypersurface, if and only if it possesses
a GRC parametrization.

Definition 4 Let A be a rational hypersurface in R
n parametrized by

a(u1, . . . , un−1). This parametrization is called a SRC parametrization, if
and only if there exists a hypersurface B with proper rational parametriza-
tion such that the convolution surface A ? B has an explicit rational
parametrization. Further, A is called a SRC hypersurface, if and only
if it possesses a SRC parametrization.

Roughly speaking, RC surfaces are surfaces with rational parametriza-
tion for which either

• the convolution surface with arbitrary rational surface is also ra-
tional — these RC surfaces are called GRC surfaces and typical
example of GRC surfaces are LN surfaces, i.e. surfaces with lin-
ear normals (see [6] for more details). However, the class of GRC
surfaces contain many other surfaces, not just LN surfaces;

or

• the convolution surface with at least one another rational surface
(parametrized by proper parametrization) is rational — these RC
surfaces are called SRC surfaces and typical example of SRC sur-
faces are PN surfaces, i.e. surfaces with pythagorean normal which
yield rational convolution with sphere.

Let us remember here the close relation of the convolution surface and
the (general) offset surface mentioned in Section 2, stating the identity
between the general offset surface of surface X and cutter Σ and a con-
volution surface C = X ? (−Σ). This means that rational general offset
surface and offset surface are obtained for all GRC surfaces, indepen-
dently on the surface representing the cutter, and there exists the surface
representing the cutter for which the general offset surface is rational for
all SRC surfaces (but not for all cutters).



As an example of GRC surfaces which certainly do not belong among
LN surfaces we can name non-quadric (surfaces of degree 3 and 4) quadratic
polynomial parametric surfaces — there exist 9 affine classes of such sur-
faces and all these classes belong among GRC surfaces (more details in
[5]).

Interested reader can find more details on GRC and SRC surfaces in
[5], for example how to decide if rational surface belongs among GRC
surfaces, SRC surfaces or whether it does not belong in any of these
classes.

3.2 Algorithm

This subsection is devoted to the main algorithm for identification of the
undercut during the milling of RC surfaces.

Input: Parametrization X of the surface which should be machined, type
of the milling (3-axis or 5-axis), parametrization E of boundary surface of
the milling machine (only for 3-axis milling) or radius rc of the ball cutter
(for 5-axis milling).
Output: “The surface can be machined without any undercut” or “Dur-
ing milling the cutter damages the surface” or “We can not decide by this
algorithm”
1. Decide if the input parametrization X is:

1. GRC → Continue to Step 3,

2. SRC → Continue to Step 2,

3. Neither GRC, nor SRC → We can not decide, end.
2. If the type of milling is 3-axis → Check if the parametrization E of
the milling machine provides the rational general offset surface of surface
X. Answer is:

1. Yes → Continue to Step 3,

2. No → We can not decide, end.
Otherwise Check if the surface X provides rational offset surface. An-
swer is:

1. Yes → Continue to Step 3,

2. No → We can not decide, end.
3. If the type of milling is 3-axis → Construct the general offset
surface for surface X as a convolution surface X ? (−E).
Otherwise Construct the offset surface for surface X in distance rc, either
by definition or as a convolution surface X ? S where S is a rational
parametrization of sphere.
4. Compute surface self-intersection of (general) offset surface. Denote
the set of points containing the self-intersection points by Y .
5. If Y ≡ ∅ → The surface can be machined without any undercut.
Otherwise During milling the cutter damages the surface.



The details of the subalgorithm mentioned in point 4 of the main
algorithm for the computation of the self-intersection of surfaces with
rational parametrization can be found in [1].

4 Conclusion

This paper has presented one possible solution to the identification of the
undercut problem in 3-axis and 5-axis milling for surfaces with rational
parametrization for which also the (general) offset surface is rational. As
an example we have mentioned that among GRC surfaces belong all non-
quadric quadratic polynomial parametric surfaces. It is a challenge for fur-
ther research to prove that also at least some bicubic polynomial/rational
parametric surfaces belong among GRC or SRC surfaces because they are
usually used in CAD and CAM systems. At this point we can only say
that unfortunately neither all bicubic polynomial parametric surfaces nor
bicubic rational parametric surfaces belong among GRC surfaces.
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