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Thin Structure Segmentation and Visualization
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A Shape-Based Approach
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Abstract—This paper presents a shape-based approach in extracting thin structures, such as lines and sheets, from three-
dimensional (3D) biomedical images. Of particular interest is the capability to recover cellular structures, such as microtubule spindle
fibers and plasma membranes, from laser scanning confocal microscopic (LSCM) data. Hessian-based shape methods are reviewed.
A synthesized linear structure is used to evaluate the sensitivity of the multiscale filtering approach in extracting closely positioned
fibers. We find that the multiscale approach tends to fuse lines together, which makes it unsuitable for visualizing mouse egg spindle
fibers. Single-scale Gaussian filters, balanced between sensitivity and noise resistance, are adopted instead. In addition, through an
ellipsoidal Gaussian model, the eigenvalues of the Hessian matrix are quantitatively associated with the standard deviations of the
Gaussian model. Existing shape filters are simplified and applied to LSCM data. A significant improvement in extracting closely
positioned thin lines is demonstrated by the resultant images. Further, the direct association of shape models and eigenvalues makes
the processed images more understandable qualitatively and quantitatively.

Index Terms—Angiography, biomedical image processing, Hessian matrix, image enhancement, laser scanning confocal microscopy,

multiscale filtering, segmentation, visualization.

1 INTRODUCTION

HIN structures such as lines and sheets are important

features in many biological and medical imaging
applications. Medical examples include blood vessels in
angiography, bronchi in chest computed tomography (CT)
scan, and cortices in brain magnetic resonance imaging
(MRI) scan. Visualization of such structures provides
crucial information in planning and navigation during
interventional therapy and biopsy as well as for diagnostic
purposes. Biological examples include plasma membranes
and cellular scaffolds [2] in confocal microscopy data.
Visualization of their spatial arrangement and temporal
transformations can help biologists to study cellular
organelles and mechanisms. There has been a considerable
amount of work done on the enhancement and extraction of
blood vessels. It should be a straightforward task to apply
existing blood vessel extraction algorithms to similar line
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structures such as microtubule spindle fibers. However,
biological images in the microscopic scale are much noisier
and remain a challenge to the use of existing methods.

Fig. 1 demonstrates the challenge posed by biological
data. Fig. 1la is a volume rendering [6], [19], [20] image of
the meiotic microtubule spindle fibers of a mouse egg data
set obtained from a laser scanning confocal microscope
(LSCM) [12], [25], [31]. The bundle of spindle fibers appears
as a barrel-shaped structure which has distinguishable lines
in the central region and fused blobs at each end. Fig. 1b is
an isosurface extraction of the fibers from the same original
data set rendered by the marching cubes (MC) algorithm
[21], [24]. As the intensity values of spindle fibers detected
by an LSCM vary greatly, without proper image processing
and enhancement, volume rendering barely provides a
vague 3D line image, while isosurface rendering cannot
even depict the targeted structures properly. In order to
recover the fibers buried in a noisy background, a shape-
based multiscale line filtering method, as suggested by
Sato et al. in [26] and [27], is applied to enhance the spindle
fibers. The extracted isosurfaces of the filtered fibers are
shown in Fig. 1c. Although line structures in Fig. 1c are
more visible compared to Fig. 1b, a great portion of
anticipated fibers are still fused and indistinguishable near
both poles.

This paper reviews shape-related work and examines the
Hessian-based multiscale filtering approach in extracting
thin structures, such as lines and sheets, from 3D
biomedical images. Of particular interest is the capability
to recover cellular structures such as microtubule spindle
fibers and plasma membranes from 3D confocal microscopy
data. A synthesized linear structure, which mimics spindle

Published by the IEEE Computer Society



94 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1,

(©) (d

Fig. 1. Meiotic microtubule spindle fibers of a mouse egg. (a) Volume
rendering of the spindle fibers. (b) Surface rendering of the original data.
(c) Surface rendering of the spindle fibers enhanced by multiscale line
filtering. (d) Surface rendering of the spindle fibers extracted by applying
our new method.

fibers, is used to evaluate the performance of a multiscale
line filtering implementation suggested in [27] in extracting
closely placed fibers. We find that the multiscale approach
tends to fuse lines together, which makes it unsuitable for
mouse egg spindle fiber segmentation and visualization.
Based on the evaluation, single-scale Gaussian filters,
balanced between sensitivity and noise resistance, are
adopted for mouse egg spindle fiber segmentation and
visualization where multiscale filtering falls short. In
addition, through an ellipsoidal Gaussian function model,
the eigenvalues of the Hessian matrix are quantitatively
associated with the standard deviations of the Gaussian
model. Based on the analytically derived information,
existing shape filters are simplified. Sheet, line, and blob
structures are defined by specific, negative eigenvalues and
segmented by thresholding. Fig. 1d depicts a much
improved image of the extracted spindle fibers by using
the proposed enhancement/segmentation methods. More
spindle fibers are distinguishable from one end to the other.
The proposed methods are tested on synthetic, LSCM, and
angiography data. A significant improvement in extracting
closely positioned thin lines is demonstrated by the
resultant images. Further, the direct association of shape
models and eigenvalues makes the processed images more
understandable qualitatively and quantitatively.

2 SHAPE-RELATED WORK

There are at least two viewpoints for “shape” in the context
of image segmentation and visualization. The first view-
point is in the forms of curves and surfaces. It is an intuitive
human reflection, as Farin describes in [8], that the
appearance of an object is judged by the flow of its curves.
In this definition, lines have no width and surfaces have no
thickness. This viewpoint corresponds to the boundary
output from the image segmentation process. Based on this
viewpoint and definition, surface models have been
developed to construct computerized shape descriptions
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for geometric objects from a variety of measurements. The
marching cubes [21], [24] algorithm and surface reconstruc-
tion from cross sections [4], [18] for volume data, point
cloud fitting [7], [11], [14] for range images, and active
deformable surfaces [17], [22], [23] for both range images
and volume data are just some examples. In addition to
surface reconstruction, shape-related characteristics are also
applied to the realms of archeology and computer-aided
analysis and diagnosis. Curvature, a local geometric
property for shape description, is used as an index to
analyze and categorize curves and surfaces of archeology
artifacts [28]. It is also applied to brain cortex folding study
[29] and automatic colonic polyp detection [16], [30], [32].

The second viewpoint of shape corresponds to the
output from the image segmentation process in the forms
of sets of data elements. In this viewpoint, curves have
width and surfaces have thickness because they represent
the internal regions which are enclosed by the curves or
surfaces themselves. Take font design, for example. The
shape of the boundary curves of a letter “a” is the main
feature in the design process. However, it is the line width
that makes a bold-faced letter “a” appear as different from a
regular “a” to the human eye. In many medical applica-
tions, the shape features such as the width and thickness of
line and sheet structures are equally important as curve and
surface descriptions. The thickness and density changes in
the white and gray matter detected in brain MRI scans can
provide physical evidence to diagnose the onset of early
Alzheimer’s disease or the effectiveness of clinical drug
trials. The structures of blood vessels have measurable
abnormalities in diameter such as stenoses and aneurysms.
Such abnormalities reveal further information regarding the
state of various diseases. For these diagnostic reasons, blood
vessel detection and segmentation methods have been
developed for years. Among many research efforts, shape-
related methods stand out as some of the most successful
and proven approaches.

As observed in Fig. 2a, the blood vessels in retinal
angiography typically appear as a tree-like pattern. Such a
pattern consists of piecewise linear segments with a
Gaussian-like profile. This means that the cross section of
a blood vessel in a grayscale image appears as a Gaussian
distribution function (see Figs. 2b and 2c, for example).
Chaudhuri et al. [5] illustrate three distinctive shape
characteristics of blood vessels in retinal images: 1) Blood
vessels usually have small curvatures and can be approxi-
mated by piecewise linear segments. 2) The grayscale
profile along the direction perpendicular to a blood vessel
as shown in Fig. 2¢ looks like a Gaussian function. 3) The
width of a vessel is relatively constant within a range of a
few (2 to 10) pixels.

A precise shape model for blood vessels in angiography
is difficult to develop because of variations in tissue
characteristics, light sources, and imaging systems” optical
and electronic components. However, an approximation
that conforms to principal features while maintaining
calculation simplicity will be sufficient and acceptable for
practical applications. The Gaussian vessel profile is a very
popular model. It is generally described by a function
similar to
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Fig. 2. (a) Fluorescein angiogram obtained from a fundus camera. (b) The magnified image of the bounded region. (c) The grayscale profile of a

blood vessel sampled along the dotted line shown in (b).

F(m,y)-A{l-i—kexp(—Qd—;)}, (1)

where dis the perpendicular distance between the point (z, y)
and the axis of the blood vessel, o is the standard deviation, A
is the local background intensity, and % is a measure of the
relative intensity between the vessel and its neighborhood.
Gang et al. provide a statistical evaluation in [10] to prove the
fitness of estimating vessel profiles with Gaussian functions.
A comparison of various shape-related methods applied to
retinal blood vessel images is given in [15].

For 3D angiography, Sato et al. [26], [27] propose shape-
selective filters based on the eigenvalues of the 3D Hessian

F Tx F, Ty F’m
H=|F, F, Fg.|, @)
F 2T F 2y FZZ

where the second partial derivatives of a volume intensity
function F(z, y, z) are represented as F,, = d"—;z F,F, = #{1 F,
and so on. The Hessian matrix describes the second-order
structure of local intensity variations in the neighborhood of

each point of the intensity function F. Let A, Ao, and A3

(A1 > A2 > A3) be the eigenvalues of H and e, ey, e their
corresponding eigenvectors, respectively. The eigenvector e;
represents the direction along which F' has the maximum
directional second-derivative value \;. Similarly, along the
direction e;, F has the minimum directional second-
derivative value A;. The eigenvector e, is orthogonal to e;
and e3; A, is the corresponding directional second-derivative
value. Assuming the targeted structures are brightened in
contrast to the background, the conditions for categorizing

local structures are summarized in Table 1.
Sato et al. propose sheet, line, and blob filters as

_ sl w(AaAs) - w(Ms As) - A3 <0
Sshc‘,el - {07 otherwise, (3)
S = J Pal -9 2) -0 de) Ag<ho <0 )
line O, otherwise,
Sy = 4 Pl 90120 U A) A SN <0
blob 0, otherwise.
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TABLE 1

Basic Conditions for Local Structures
Local Eigenvalue Examoles
Structure Conditions P

~ 7 ~ cortex,

sheet << =4=z0 membrane
line A=A, << A =0 | vessel, bronchus
blob A=A =4 <<0 | nodule

1 and w are weight functions written as

= AT A <A <0
P(Ass M) = {07 otherwise, ©
and
(L+ A/ A <A <0

W) =4 L —aX/IN) IN/a>A>0  (7)

0, otherwise,

where 7 controls the sharpness of selectivity for the
conditions of each local structure and 0 < o <1, which
makes w asymmetric. They suggest a = 0.25 and v = 0.5 (or
1) for typical applications. Extensive analysis of the
measurement, including the effects of parameters o and ~,
can be found in [27].

Frangi et al. apply a similar approach to both 2D and 3D
vessel images with a modified line filter in [9]. The line
filtering with the eigenvalues of the Hessian presented in
[9], [26], [27] all takes a multiscale approach to detect
vessels over a large size range. In this framework,
differentiation is defined as a normalized convolution with
derivatives of Gaussians:

Fr’y/zk' (.T}, Y, % Uj)
ik ai+]‘+k
:{O'f WG(x,y,z,af)}*F(x,y,z)

o d 8
= ajf‘”k d -G (z507)* ®)

dz
d ¢
{iv

Glyiop) + {%G(z; o))« Fla.y. z)}}

where G is an isotropic 3D Gaussian function with standard
deviation o and a;ﬂ*k the normalization factor. Let the filter

response obtained from the normalized derivatives (8)
represented by

Se(ay), 9)

where £ € {sheet, line, blob}. The diameter of vessels can be
determined by the o; which generates a maximum
response.

Besides eigenvalues, the eigenvectors of the Hessian
provide local orientation information which is adopted by
various tracing algorithms [1], [33], [34] for curvilinear object
recovery. Alyward et al. [1] apply both the eigenvalues and
eigenvectors of the Hessian in extracting tubular structures as
intensity ridges. The width information is then obtained
through multiscale responses from normalized convolutions.

Recently, a new technique, called diffusion tensor
magnetic resonance imaging (DT-MRI) [3], has been found
able to measure the anisotropic diffusion properties of
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biological tissues for classification. Diffusion tensor, which
is represented as

D Tx D Ty D Tz
D=|D, D, D, (10)
D zr D 2y D 2z

has a notation similar to the Hessian. However, its elements
have different physical meanings. Its diagonal terms repre-
sent correlations between molecular displacements in the
same directions, where its off-diagonal terms reflect correla-
tions between molecular displacements in orthogonal direc-
tions. In the case of an elongated cell, the tissue will have a
preferred diffusion direction along the primary axis of the
cell. Similar to the Hessian analysis, the preferred direction
and diffusion can be derived from the eigenvalues and
eigenvectors of D. Zhukov and Barr apply a fiber tracing
method to recover and visualize the structure of the heart
muscle fibers in [33] and white matter fibers in [34]. Differing
from Gaussian convolution schemes, they compute weighted
averages of tensor fields by using a least squares fitting to low
polynomials with dynamic adjusted weights. The weights are
determined based on directional information (eigenvectors),
shape (eigenvalues), and intensity value.

In this paper, we present work on thin structure
modeling using an ellipsoidal Gaussian function. We find
that the eigenvalues of the Hessian are quantitatively
associated with the standard deviations. Based on quanti-
tative information, existing shape filter definitions are
simplified. Regarding numerical differentiation, the multi-
scale approach, which tends to fuse closely positioned fibers
in LSCM data, is replaced by single-scale filtering. Although
good performance for low-resolution, noisy data such as
DT-MRI is reported in [33], we keep our approach simple
for two reasons. First, the complexity in selecting various
parameters in [33] is high and the level of applicability to
different image modules (such as LSCM) is unknown.
Second, part of our project goal is to discover unknown
cellular organelles. Therefore, we choose simple algorithms
such as enhancement/thresholding type of edge detectors
over more sophisticated line tracing methods to prevent
introducing artifacts.

This paper is derived from [13] with additional work on
ellipsoidal shape modeling and multiscale filtering evalua-
tion. The derivation of simplified shape structure extraction
methods from an ellipsoidal model is delineated in
Section 3.1. The line filtering performance is evaluated in
Section 3.2. Last, experimental results and conclusions are
presented in Sections 4 and 5.

3 METHODS

3.1 Ellipsoidal Model

A sheet, line, or blob structure summarized in Table 1 can
be modeled by an ellipsoidal Gaussian function

2 2 2

x Yy z
Y z

= Llellipsoid +C+ N(:L', Y, Z)a
where C' is the constant noise term and N(z, y, z) represents
the nonconstant noise. With proper choices of standard

deviations o, 0,, 0., and coordinate system rearrangement,
a local sheet (0, =1, 0,~0.>>0), line (0, 20,1,
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0. >>0), or blob (0, 20,~0,21) structure can be
represented by (11).
The second partial derivatives of (11) are

1 m?
o2 + ot Fiipsoia + Nom (2,9, 2) (12

m m

~

En,m(xa Y, Z) = (_

and

mn
an(‘xv Y, Z) = (m) E’,llipsuid + Nmn(mv Y, Z)v

m-n

(13)

where m,n € {z,y, z}. The noise terms C' + N(z,y, z) in (11)
will diminish faster than the signal through the differential
operation by two well-known processes. The high frequency
noise will be minimized by the smoothing process of
derivative estimations. The differential operator will remove
low frequency noise such as the constant and ramp
components. Accordingly, noise terms in the second deriva-
tives will be relatively insignificant and can be neglected. In
addition, (13) and the second term of (12) can be omitted if
point (z, y, 2) is close to the origin where m? /o), and mn /o2 o2
are small.

Multiply the 3D Hessian matrix H by unit vectors v,,

(m € {mayv Z}/ Vi = (170a0)T/ Vy = (07 1aO)T/ VvV, = (0707 1)T)/

Farx ny sz
Fp By Fy | v
Fu' Fzy Fzz
r_ 1 4 a2 zy 2z
U% + ot a% a% J:,Z,:UZ
~ - 2y 1.,y yz
~ Lellipsoid 0—%,,—5 (,.3 + 0,; 0303 Vm
Tz Yz _L+i
2 2 7 y
SLE 7,02 CEAC (14)
—% 0 0
o2
_ 1
= Lellipsoid 0 0’21 0 Vi
0 0 -4
1

- T 5 Eﬁllipsoidvm

m

= >\m(x7 Y, Z)Vm~

By definition, the scalar function A,, is an eigenvalue of the
Hessian matrix H and v, is the corresponding eigenvector.
Observed from (11) and (14), the eigenvalue A,, of the Hessian
matrix derived from the Gaussian model F' is simply an
approximation to the model scaled by a constant —1/02,.

Based on these quantative meanings of the eigenvalues
of the Hessian from the Gaussian model, we propose a
simple procedure for segmenting LSCM data by threshold-
ing on the images of eigenvalues. Let A;, Xy, and A3
(A1 > A2 > A3) be the eigenvalues of H. The sets of sheet,
line, and blob structures are defined as

Sanheet (03 13) = {vi|A3(vi) < 13 < 0}, (15)
Siine(03 1) = {vil Ao (vi) < 1 < 0}, (16)
Eion (03 11) = {vi| i (vs) < 71 <0}, (17)

where ¢ is the standard deviation of the Gaussian filters,
v; = (z,y,2) a volume element, and 7; the threshold. For

I,l
|
\l
@ ® @© @ @@ O @

M ® 0O & O (m (0

Fig. 3. A linear structure of three Gaussian lines with standard
deviation o equal to 1.6. The distance between any lines is decreased
from 5 o at the top to 2.2 o at the bottom. (a)-(g) Volume rendered
images: (a) The noise-free data, (b) 40 dB Gaussian noise added,
(©) Siine(0=1), (d) Siine(c=V2), (€) Sine(0=2), () Siine (0 =2V2),
and (g) M. (h)-(n) Surface rendered images corresponding to (a)-(g).

comparison, (15), (16), and (17) are just simplified versions
of (3), 4), and (5) with v = w(As; A) = 1.

Although (3), (4), and (5) are able to distinguish one
shape from the other, they are not mutually exclusive. Take
(4) and (5), for example. The only difference between them
is the weight function of A\; and X. It is easy to depict that
the function curves of w(A1; A2) and (A;; A2) intersect each
other at some point between 0< A/ <1, where
)\2 S )\1 < 0. Whlle Eshset (7_3)1 Eline (7_2)/ and Eblob(Tl) are
neither shape-selective nor mutually exclusive, however,
there exist inclusive relationships between them. In fact,

Xpiob C Biine C Bsheet (18)

for 1 = m = 73. With the inclusive property, it is more
intuitive to visualize the transition perceptively from one
shape category to the other for diffused structures such as
cellular organelles.

3.2 Line Filtering Evaluation

A line filter with a single scale can give a high response in
only a narrow range around the chosen scale. Therefore, it is
impractical to detect line structures with various widths.
Instead, multiple, normalized filters with different scales
are generally applied to the same data set and the
maximum response is collected. This multiscale approach
can be summarized by

Miipe = max Slzne(ol) (19)

While the width response curve for (19) can be perfectly
uniform if continuous variation values are used, it is
reported in [27] that the response curve deviates less than
3 percent between o, =1 and o; = 2v2 using a set of
discrete values o; € {1,V/2,2,2v/2}. This range is appro-
priate for most applications.

Next, we examine the multiscale filtering approach with
a linear structure which consists of three closely placed
lines. Fig. 3a illustrates a linear structure of three Gaussian
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S =
G
(a) (b) (c) (d)

Fig. 4. Four cross sections of the resultant image of M;;,. (Fig. 3g) at z
equal to (a) 0 (bottom), (b) 0.34, (c) 0.74, and (d) 1 (top) colored by blue,
green, yellow, and red based on the maximum responses by o = 1, v/2,
2, and 2v/2, respectively.

line functions which have standard deviation o equal to 1.6.
The distance between any two lines is decreased from 5 o at
the top to 2.2 ¢ at the bottom. The test data is added with
40 dB Gaussian noise as shown in Fig. 3b. (We use the
definition SNR = 20log "~ with o2 , , the variance of the

Gaussian noise, and S the maximum signal strength.) The

multiscale filtering method described in [27], summarized
by (4) and (19) with a = 0.25 and v = 0.5, is then applied to
the noisy data (Fig. 3b). The single-scale line filtering
responses S, for o =1, V2, 2, 2¢/2 and the multiscale
response M;;,. are shown in Figs. 3¢, 3d, 3e, 3f, and 3g by
volume rendering. The isosurface rendered images are
shown in Figs. 3h, 3i, 3j, 3k, 31, 3m, and 3n, correspondingly.
The resultant images indicate that, the larger o is, the less
likely the filter would be able to distinguish closely
positioned line structures.

Fig. 4 displays four cross sections of the resultant image of
Miine at z equal to 0 (bottom), 0.34, 0.74, and 1 (top). The
coloring scheme for Fig. 4 is based on the value ¢ generating
the maximum response Sj,.(c). Voxels with maximum
response at o =1, V2, 2, and 2v/2 are assigned with color
blue, green, yellow, and red, respectively. Fig. 4a shows that
the filter with o = 2v/2 (colored red) dominates the multiple
responses as the lines get closer and, therefore, makes the
multiscale approach less sensitive to closely,positioned line
structures.

Alternatively, we apply the simplified line segmentation
scheme Y., (16), to the same data set (Fig. 3b) by six
single-scale Gaussian filters with standard deviations o = 1,
V2, 1.6, 1.8, 2, and 2v/2. Fig. 5 illustrates the results by
thresholding on eigenvalue \,. It shows the same trend as
the implementation of Sj;,. that, the larger o is, the less
sensitive the line filter ¥;,.. It also shows that there is a high

degree of resemblance between the results of ¥, and Sy
forc =1, v/2, 2, and 2v2.

@ (0 © @ @ ®

Fig. 5. Surface rendered images of simplified line segmentation scheme
Yiine (o) applied to the data shown in Fig. 3b with o equal to (a) 1, (b) v/2,
(c) 1.6, (d) 1.8, (e) 2, and (f) 2v/2.
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(© (d) (e)

<=

() (9 (h)

Fig. 6. A branch model created with standard deviation o = 1.6 and 40 dB
noise added. (a) Volume rendered image. (b) Surface rendered image.
(c), (d), and (e) Surface rendered images of M;;,. at high, medium, and
low thresholds. (f), (g), and (h) Surface rendered images of
Siine(0 = 1.6) at high, medium, and low thresholds.

Last, we test methods Mj;,, and Y,.(c = 1.6) with a
branch model which is created with o equal to 1.6 and 40dB
Gaussian noise added. The results are shown in Fig. 6. As
the ellipsoidal Gaussian model is no longer accurate at the
intersection, the filtering response becomes smaller at the
intersection and could cause disconnection (Figs. 6¢ and 6f),
or a hole (Figs. 6d and 6g) with a high threshold. The
problem can be erased by lowering the thresholding value.
However, this will cause thickening effects as in Figs. 6e
and 6h. Fig. 6e requires a lower thresholding value to
recover the hole at the branching point and appears thicker
than Fig. 6h. This is because the size of the hole is
proportional to o and Mj;,. is dominated by large o.

4 RESULTS

First, the Hessian-based, normalized line filter Sj;,.(c) with
scale o = 1, v/2, 2, and 2v/2 is applied to a LSCM mouse egg
data set (Fig. 1a). The line filtering responses are shown in
Figs. 7a, 7b, 7c, and 7d by volume rendering. The volume
rendered images of eigenvalue X\, (which defines the
simplified line filter ¥,.(0)) acquired by the same set of
scales are shown in Figs. 7e, 7f, 7g, and 7h. Both of them
show that the sensitivity of detecting closely positioned
fibers decreases as larger ¢ is applied. This trend is
consistent with the results obtained from the synthesized
linear structure evaluation in Section 3.2. However, the
mouse egg spindle image is much noisier where filter
responses by small o appear bumpy and fragmentary.
Images of eigenvalue Ay computed by Gaussian filters with
o = 1.6 and 1.8 are shown in Figs. 7i and 7j for comparison.
They appear smoother with a slight loss of sensitivity.
Figs. 7a, 7b, 7c, and 7d and Figs. 7e, 7f, 7g, and 7h share a
great degree of resemblance except that the latter ones contain
some “thorns” at the right pole of the spindle and some fibers.
The isosurface rendered images are shown in Fig. 8. The
thorns are more visible in Figs. 8f and 8g, compared to Figs. 8b
and 8c. These short thorn structures appear like blobs and are
more likely to be removed by filter Sj;,.. Although the



HUANG ET AL.: THIN STRUCTURE SEGMENTATION AND VISUALIZATION IN THREE-DIMENSIONAL BIOMEDICAL IMAGES: A SHAPE-BASED...

99

Fig. 7. Volume rendering of mouse egg spindle fibers from LSCM.

(a) Slme(a' = 1) (b) Slz'nc (0' = \/5) (C) Slmf(a— = 2) (d) Sline (0' = 2\/5)

(e) EZNLH(U = 1) (f) Elm(: (J = \/i) (g) Elm(i(‘j = 2) (h) Zlmf' (U = 2\/5) (I) Eluzc(a = 16) (J) Elml?(a = 18) (k) A/[Izmz-

scientific significance of polar thorns in a mouse egg spindle
remains to be explored and studied, the simplified shape
filter j,.(0) has the inclusive property that short line
structures can be observed and quantitatively related to the
ellipsoidal model’s standard deviations. Therefore, it is a
better filter for cellular structure visualization.

The maximum response Mj;,. is shown in Figs. 7k and
8k. Several cross sections of the spindle structure are
displayed in Figs. 9a, 9b, 9¢, 9d, 9e, 9%, and 9g. The scale

which generates the maximum response at each voxel on
these cross sections is illustrated in Figs. 9h, 9i, 9j, 9k, 91, 9m,
and 9n. The maximum responses by o = 1, V2,2, 0r 24/2 are
colored by blue, green, yellow, or red, respectively. Again,
we observe that the large scale tends to dominate the
response as the spindle fibers get nearer to both poles. The
results are all consistent with the ellipsoid modeling and
synthetic data evaluation in Section 3.

)

Fig. 8. Surface rendering of mouse egg spindle fibers from LSCM.

(k)

)

(a) Slina(a = 1) (b) Sine (U = \/5) (c) S[irm(g = 2) (d) Siine (U = 2\/5)

(e) El,»m(a = 1) (f) Elimf (O’ = \/i) (g) E[mc((f = 2) (h) le‘,m (O’ = 2\/5) (I) E[,‘”c(o' = 16) (j) Elmn(o' = 18) (k) ]Lfli,,(;.
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Fig. 9. (a), (b), (c), (d), (e), (f), and (g) Cross sections of the spindle structure (LSCM data). (h), (i), (j) (k), (1), (m), and (n) Cross sections of M;;,.
colored by blue, green, yellow, and red based on the maximum responses by o = 1, /2, 2, and 2v/2, respectively.

(@) (b)

(©)

Fig. 10. Plasma membrane and spindle fiber images generated by simplified segmentation schemes X, and X, with scale o= 1.8.

(@) Zspeet(0 = 1.8). (b) yine(0 = 1.8). (c) Composite image of (a) and (b).

(@) (b)

(©

Fig. 11. A blood vessel data set. (a) Rendered by maximum intensity projection. (b) Surface rendered image of M;;,,. at a high threshold with holes at
branches. (c) Surface rendered image of M;;,. at a lower threshold with fused vessels.

Next, we apply the new, simplified sheet filter
Ysheet (0 = 1.8) and line filter 3j,.(0c = 1.8) to the same
mouse egg spindle with partial plasma membrane nearby.
Ysneer and Xy, are simply the images of eigenvalues A\ and
A2 by thresholding. These terms are used interchangeably
here to name the processed images. Fig. 10a shows the
image of ¥u.; by volume rendering with a step opacity
function of \3. Besides sheet-like membrane, Fig. 10a shows
that 3.+ also encloses the whole spindle. This corresponds
with the inclusive property, 2y C ijine C Lsheer, discussed
in Section 3.1. To extract line structure, the same rendering

procedure is applied to X; using an adjusted opacity
function and a different color table. Fig. 10b shows the
rendered image of Yj,.. Similarly, image X, can be
derived this way. However, the blob structures are not
targeted by this LSCM module and, therefore, omitted in
this experiment. Fig. 10c shows the combined image of
Esheet and Eline-

Last, we examine a blood vessel data set with the
multiscale approach. Fig. 1la is a blood vessel image
rendered by maximum intensity projection. Figs. 11b and
11c are surface rendered images of the maximum response
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Miine by thresholding on two different values. At a high
threshold, the hole problem appears at two branching areas
shown in Fig. 11b. As the thresholding value is lowered to
recover small holes at the branching points, the effects of
line fusion appear in Fig. 11c.

5 CONCLUSIONS

This paper presents a case where the multiscale approach
falls short. A linear structure of closely positioned fibers is
used to evaluate the sensitivity of normalized line filtering
and the maximum response. We find that sensitivity in
detecting closely placed lines decreases as the standard
deviation (filter scale) increases. We also find that the
maximum response at closely placed lines tends to be
dominated by large scale filters. Therefore, the multiscale
approach is unsuitable to detect spindle fibers. In addition,
we simplify existing shape filters through an ellipsoidal
Gaussian model. We find that the eigenvalues of the Hessian
matrix are quantitatively associated with the standard
deviations of the ellipsoid model. The sheet, line, and blob
filters are replaced by the eigenvalues of the Hessian matrix
instead. Our new methods are implemented with a single-
scale filter, balanced between resistance to noise and
sensitivity. They are able to detect cellular fibers and plasma
membranes as well. Although they are unable to discriminate
line or blob structures from a sheet structure, they have an
inclusive property o C Xiine C Lgneer- With the inclusive
property, it is more intuitive to perceptively visualize the
transition from one shape category to the other for diffused
structures such as cellular organelles. Further, without
suppressing short fibers as blobs, we are able to visualize a
polar thorn phenomenon.

ACKNOWLEDGMENTS

This work was done while A. Huang was a graduate
student at Arizona State University (ASU). It was supported
by the US National Science Foundation (NSF IIS-9980166
and ACI-0083609), the US Office of Naval Research
(N00014-00-1-0281), and the US Defense Advanced Re-
search Projects Agency (MDA972-00-1-0027). The authors
would like to thank the PRISM Laboratory, the W.M. Keck
Biolmaging Laboratory, and the Cell Biology Laboratory at
ASU for providing the laboratory and computing resources.
Retinal vessel image comes from the Biomedical Image
Archive, University of Bristol, United Kingdom, and is
provided by Professor Hirst at Princess Alexandra Hospital,
Brisbane. Brain vessel data comes from www.volvis.org and
is provided by Philips Research, Hamburg, Germany. The
volume rendered images are created by VolView 2.0
provided by Kitware Inc., Clifton Park, New York.

REFERENCES

[1] S. Aylward, S.M. Pizer, E. Bullitt, and D. Eberly, “Intensity Ridge
and Widths for 3D Object Segmentation and Description,” Proc.
IEEE Workshop Math. Methods in Biomedical Image Analysis, pp. 131-
138, 1996.

[2] D.P. Baluch and D.G. Capco, “Cellular Scaffolds in Mammalian
Eggs,” Frontiers in Bioscience, vol. 7, pp. 1653-1661, July 2002.

[3] P.J. Basser, ]J. Mattiello, and D. LeBihan, “MR Diffusion Tensor
Spectroscopy and Imaging,” Biophyisical ]., vol. 66, pp. 259-267,
1994.

[4] J.-D. Boissonnat, “Shape Reconstruction from Planar Cross-
Sections,” Computer Vision, Graphics, and Image Processing, vol. 44,
pp. 1-29, 1988.

5]

(o]
[
(8]
&)

[10]

(1]

(12]

(13]

(14]

[15]

(o]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

(23]

[26]

[27]

101

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M.
Goldbaum, “Detection of Blood Vessels in Retinal Images Using
Two-Dimensional Matched Filters,” IEEE Trans. Medical Imaging,
vol. 8, no. 3, pp. 263-269, Sept. 1989.

R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,”
Computer Graphics (Proc. SIGGRAPH ’88), vol. 22, pp. 65-73, 1988.
H. Edelsbrunner and E.P. Muecke, “Three-Dimensional Alpha
Shape,” Proc. Workshop Volume Visualization, pp. 75-105, Oct. 1992.
G. Farin, “Shape,” Math. Unlimited-2001 and Beyond, E. Engquist
and W. Schmid, eds., pp. 463-466, Springer-Verlag, 2001.

AF. Frangi, W.]J. Niessen, K.L. Vincken, and M.A. Viergever,
“Multiscale Vessel Enhancement Filtering,” Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI '98), pp. 130-137,
1998.

L. Gang, O. Chutatape, and S.M. Krishnan, “Detection and
Measurement of Retinal Vessels in Fundus Images Using
Amplitude Modified Second-Order Gaussian Filter,” IEEE Trans.
Biomedical Eng., vol. 49, no. 2, pp. 168-172, Feb. 2002.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface Reconstruction from Unorganized Points,” Proc. SIG-
GRAPH '92, pp. 71-78, July 1992.

J. Hu, A. Razdan, G. Nielson, G. Farin, D. Baluch, and D. Capco,
“Volumetric Segmentation Using Weibull E-SD Fields,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 3, pp. 320-
328, July-Sept. 2003.

A. Huang, “Three-Dimensional Biomedical Image Segmentation
and Visulaization: A Shape-Based Approach,” PhD Dissertation,
Arizona State Univ., 2003.

A. Huang and G.M. Nielson, “Surface Approximation to Point
Cloud Data Using Volume Modeling,” Data Visualization, F. Post,
G. Nielson, and G.P. Bonneau, eds., pp. 333-343, Elsevier, 2002.
A. Huang, G. Nielson, A. Razdan, G. Farin, D. Capco, and P.
Baluch, “Line and Net Pattern Segmentation Using Shape
Modeling,” Proc. SPIE Electronic Imaging Symp. Visualization and
Data Analysis, 2003.

A. Huang, RM. Summers, and A.K. Hara, “Surface Curvature
Estimation for Automatic Colonic Polyp Detection,” Medical
Imaging 2005, pp. 393-402, 2005.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour
Models,” Int’l |. Computer Vision, pp. 321-331, 1988.

E. Kepple, “Approximating Complex Surfaces by Triangulation of
Contour Lines,” IBM |. Research and Development, vol. 19, pp. 2-11,
1975.

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Modller,
“Curvature-Based Transfer Functions for Direct Volume Render-
ing: Methods and Applications,” Proc. IEEE Visualization Conf.
2003, pp. 513-520, 2003.

M. Levoy, “Volume Rendering: Display of Surfaces from Volume
Data,” IEEE Computer Graphics and Applications, pp. 29-36, 1988.
W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer Gra-
phics, vol. 21, no. 4, pp. 163-169, July 1987.

L.M. Lorigo, O. Faugeras, W.E.L. Grimson, R. Keriven, R. Kikinis,
and C.-F. Westin, “Co-Dimension 2 Geodesic Active Contours for
MRA Segmentation,” Proc. Int’'l Conf. Information Processing in
Medical Imaging (IPMI '99), pp. 126-133, 1999.

R. Malladi, J.A. Sethian, and B.C. Vemuri, “Shape Modeling with
Front Propagation: A Level Set Approach,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-175, Feb.
1995.

G.M. Nielson, A. Huang, and S. Sylvester, “Approximation
Normals for Marching Cubes Applied to Locally Supported
Isosurfaces,” Proc. IEEE Visualization Conf. 2002, pp. 459-466, Oct.
2002.

A. Razdan, K. Patel, G. Farin, and D.G. Capco, “Visualization of
Multicolor LCM Data Set,” Computers and Graphics, vol. 25, no. 3,
pp. 371-382, 2001.

Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller,
G. Gerig, and R. Kikinis, “Three-Dimensional Multiscale Line
Filter for Segmentation and Visualization of Curvilinear Struc-
tures in Medical Images,” Medical Image Analysis, vol. 2, no. 2,
pp- 143-168, 1998.

Y. Sato, C.F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S.
Tamura, and R. Kikinis, “Tissue Classification Based on 3D Local
Intensity Structures for Volume Rendering,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 6, no. 2, pp. 160-180, Apr.-June 2000.



102 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1,

[28] A.W. Simon, D. Van Alfen, A. Razdan, G. Farin, M. Bae, and J.
Rowe, “3D Modeling for Analysis and Archiving of Ceramic
Vessel Morphology: A Case Study from the American Southwest,”
Proc. 33rd Int’l Symp. Archaeometry, pp. 257-263, 2002.

G. Stylianou and G. Farin, “Crest Lines for Segmentation and
Flattening,” IEEE Trans. Visualization and Computer Graphics,
vol. 10, pp. 536-544, 2004.

RM. Summers, C.F. Beaulieu, L.M. Pusanik, ].D. Malley, R.B.
Jeffrey Jr., D.I. Glazer, and S. Napel, “An Automated Polyp
Detector for CT Colonography-Feasibility Study,” Radiology,
vol. 216, pp. 284-290, 2000.

H.J. Tiziani and H.M. Uhde, “Three Dimensional Image Sensing
with Chromatic Confocal Microscopy,” Applied Optics, vol. 33,
pp- 1838-1843, 1994.

H. Yoshida, Y. Masutani, P. MacEneaney, D.T. Rubin, and A.H.
Dachman, “Computerized Detection of Colonic Polyps at CT
Colonography on the Basis of Volumetric Features: Pilot Study,”
Radiology, vol. 222, pp. 327-336, 2002.

L. Zhukov and A.H. Barr, “Heart-Muscle Fiber Reconstruction
from Diffusion Tensor MRI,” Proc. IEEE Visualization Conf., 2003.
L. Zhukov and A.H. Barr, “Oriented Tensor Reconstruction:
Tracing Neural Pathways from Diffusion Tensor MRI,” Proc. IEEE
Visualization Conf., pp. 387-394, 2002.

[29]

(30]

(31]

(32]

(33]

(34]

Adam Huang received the BS and MS degrees
in electrical engineering from National Tsing Hua
University, Hsinchu, Taiwan, in 1991, and
Polytechnic University, Brooklyn, New York, in
1996, respectively. He also received the MS and
PhD degrees in computer science from Arizona
State University in 1999 and 2003. He is
currently a visiting postdoctoral fellow in the
Diagnostic Radiology Department of Warren
Grant Magnuson Clinical Center at the National
Institutes of Health, where he conducts research in computer-aided
diagnostic CT colonography at the Virtual Endoscopy and Computer-
Aided Diagnosis Lab of Dr. Ron Summers. His research interests
include biomedical image processing, computer-aided geometric de-
sign, computer graphics, and scientific visualization.

Gregory M. Nielson received the PhD degree
from the University of Utah. He is a professor of
computer science and affiliate professor of
mathematics at Arizona State University where
he teaches and does research in the areas of
computer graphics, computer-aided geometric
design, and scientific visualization. He has
lectured and published widely on the topics of
curve and surface representation and design,
interactive computer graphics, scattered data
modeling, and the analysis and visualization of multivariate data. He has
edited several books and authored more than 100 scientific articles. He
has collaborated with several institutions including NASA, Xerox,
General Motors, and Lawrence Livermore National Laboratory. He has
been on the editorial boards of the ACM Transactions on Graphics, The
Rocky Mountain Journal of Mathematics, IEEE Computer Graphics and
Applications, Visualization, and the Computer Animation Journal. He is
currently on the editorial board of Computer Aided Geometric Design
and the editorial advisory board of the IEEE Transactions on
Visualization and Computer Graphics. He is one of the founders and
members of the steering committee of the IEEE sponsored conference,
Visualization. He has previously chaired and is currently a director of the
IEEE Computer Society Technical Committee on Computer Graphics.
He is the recipient of an IEEE Meritorious Service Award, an |IEEE
Outstanding Contribution Award, and the John Gregory Memorial Award
in Geometric Modeling. He is a senior member of the |IEEE.

JANUARY/FEBRUARY 2006

Anshuman Razdan received the BS and MS
degrees in mechanical engineering and the
PhD degree in computer science. He is the
director of PRISM: Partnership for Research In
Stereo Modeling at Arizona State University.
His research interests include computer-aided
geometric design (CAGD) and computer gra-
phics, NURB curves and surfaces approxima-
tion, feature segmentation for surface and
volume data, and use of high bandwidth
networking for scientific visualization. He is a Pl on several US
National Science Foundation grants, including a recent 2.1 M KDI grant
on 3D Knowledge: Acquisition, Representation, and Analysis (3DK). He
is @ member of the IEEE.

Gerald E. Farin received the PhD degree in
mathematics from the University of Braunsch-
weig, Germany, in 1979. He is the author of the
texts Curves and Surfaces for CAGD (fifth
edition), NURBS (second edition), The Geome-
try Toolbox, and The Essentials of CAGD. He is
editor-in-chief of Computer Aided Geometric
Design. His industrial experience consists of
' “ four years of CAD/CAM development at Mer-
cedes-Benz, Stuttgart, Germany. He subse-
quently worked at the University of Utah (mathematics) and Arizona
State University (computer science). He has taught CAGD tutorials
worldwide and is the author of more than 100 research publications.

D. Page Baluch received the BA degree in
biology from the University of Colorado at
Colorado Springs in 1999. She is currently
pursuing the PhD degree in biology at Arizona
State University. She works as a research
assistant in the Partnership for Research in
Stereo Modeling (PRISM) lab and conducts her
graduate studies in the Molecular and Cellular
Biology lab of Dr. David Capco in the Biology
Department. Her current interests are studying
the cytoskeletal elements involved in the signal transduction pathways
of mouse eggs before and after fertilization.

David G. Capco received the PhD degree from
the University of Texas at Austin in cell and
developmental biology in 1980 and underwent
further training during his postdoctoral work at
MIT before becoming a member of the faculty at
Arizona State University in 1984. He is a
professor of biology at Arizona State University.
His research interests focus on the signal
transduction machinery that regulate cell func-
tion with an emphasis on signaling agents which
regulate the cell cycle, specifically in mammalian eggs. His research
examines mechanisms to increase the efficiency of cloning of
agricultural animals.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



