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Abstract—This paper presents a coarse-grain approach for segmentation of objects with gray levels appearing in volume data. The

input data is on a 3D structured grid of vertices vði; j; kÞ, each associated with a scalar value. In this paper, we consider a voxel as a

�� �� � cube and each voxel is assigned two values: expectancy and standard deviation (E-SD). We use the Weibull noise index to

estimate the noise in a voxel and to obtain more precise E-SD values for each voxel. We plot the frequency of voxels which have the

same E-SD, then 3D segmentation based on the Weibull E-SD field is presented. Our test bed includes synthetic data as well as real

volume data from a confocal laser scanning microscope (CLSM). Analysis of these data all show distinct and defining regions in their

E-SD fields. Under the guide of the E-SD field, we can efficiently segment the objects embedded in real and simulated 3D data.

Index Terms—3D segmentation, Weibull E-SD field, noise index, confocal laser scanning microscope, CLSM.
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1 INTRODUCTION

MANY tasks in volume visualization involve exploring
the inner structures of volume data. For example, a

cell biologist may be interested in the structure of the
microtubule spindle apparatus in an egg [1], [6]. The rapid
increase in data set sizes required in order to collect images
around the spindle apparatus, as well as the poor signal to
noise ratio in the data set, make it difficult to extract
geometric features efficiently. The work presented in this
paper explores a coarse-grain approach to segmentation of
volume data. Segmentation is a process of voxel classifica-
tion that extracts regions by assigning the individual voxels
to classes in such a way that these segmented regions
posses the following properties: 1) voxels within the same
region are homogeneous with respect to some characteristic
(e.g., gray value or texture) and 2) voxels of neighboring
regions are significantly different with respect to the same
characteristic.

In this paper, the input data is on a 3D structured grid of

vertices vði; j; kÞ, each associated with a scalar value, and we

consider a voxel as a cube including �� �� � 3D structured

points, called a �-voxel. Each �-voxel is assigned two

values: expectancy and standard deviation (E-SD). The

expectancy in a voxel relates to its mean and the standard

deviation indicates the variability of the data within it. We

assume that the E-SD values of voxels in a region are

relatively homogeneous and different from that in other

regions. Many voxels have the same E-SD value. If we plot

the frequency of voxels which have the same E-SD, then

some areas in the E-SD domain will be dense and some

sparse. We call this plot the E-SD field of the volume data.

Obviously, for a given volume data, the E-SD field depends

on the size of �-voxels selected, i.e., the value of �.
A simple and efficient way to calculate the E-SD is to

compute its average and the sample standard deviation.

However, noise makes it difficult to calculate the E-SD

values accurately. Under this situation, the result of the

E-SD plot is not stable and is dependent on a statistical

model of the data [5]. A number of statistical frameworks

have been proposed to model image and volumetric data. In

[2], the observed image pixels were modeled as Rayleigh

distribution random variables with means depending on

their position. A Gaussian-function was used for pixel

relaxation labeling in [3], [4], [11], [12], and [19]. Chesnaud

et al. [5] instead proposed an exponential family of

functions including Gaussian, Gamma, Rayleigh, and

Possion to perform segmentation on 2D.
In this paper, a Weibull probabilistic framework for

segmentation of Confocal Laser Scanning Microscope

(CLSM) volume data is investigated. This distribution, first

introduced in 1939 by W. Weibull, builds on empirical

grounds in statistical theory of the strength of materials [15].

The Weibull distribution (WD) includes three parameters

(see Section 2). An advantage of WD is that the WD kernel

shape can be controlled by selecting different parameters

for the gray levels of the input volume data.
In Section 2, we define spatially distributed objects, the

Weibull distribution, the Weibull noise index, as well as

discussing how to use it along with our algorithms. Section 3

shows 3D results from control data and two real CLSM

volume data sets. Section 4 offers some concluding remarks.
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2 MODELS AND METHODS

2.1 Spatially Distributed Objects

Consider volumetric data V, where the intensity of each
image point p ¼ ði; j; kÞ 2 V is given by vði; j; kÞ or vðpÞ,
whose size is N ¼ Nx �Ny �Nz. In this paper, distribution
means the probability of v over a certain interval ½a; b�
ðb > a � 0Þ. The random variable X�ðvÞ is the number of
points in a region � � V which have the value v, written as
X�. The density or frequency f�ðvÞ of a random variableX�

is defined as follows:

f�ðv0Þ ¼
j�v0 j
j�j ; ð1Þ

where �v0 ¼ fði; j; kÞ 2 �jvði; j; kÞ ¼ v0g, and j�j denotes the
number of elements in �.

We assume that a homogeneous segment can be

mathematically specified using two criteria: 1) the relative

constant of regional expectancy and 2) the relative constant

of regional variance of the intensity. These criteria are

expressed as follows:

Definition 1. A region � is called as a spatially distributed

object (SDO), if the expectancy and standard deviation for

each �-voxel � in � are relatively constant, i.e.,

E½X�� 2 ðe1; e2Þ and SD½X�� 2 ðd1; d2Þ; ð2Þ

where e1, e2, d1, and d2 denote predefined constants with

e1 � e2; d1 � d2, the random variable X� is defined as X�

above.
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Fig. 1. Illustration of a distribution experiment using CLSM volume data. (a) A real CLSM volume data. (b) The distribution of the data in (a).



In general, the expressions of expectancy and standard
deviation in a �-voxel are given as follows [3], [13], [18]:

E½X�� ¼
1

j�j
X

ðx;y;zÞ2�
vðx; y; zÞ ¼

X
v2½a;b�

f�ðvÞv; ð3Þ

and

SD½X�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

j�j
X

ðx;y;zÞ2�
v2ðx; y; zÞ �E2½X��

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v2½a;b�

f�ðvÞv2 �E2½X��
s

;

ð4Þ

where f� is defined by (1) in a �-voxel and j�j denotes the
number of elements in�. The SDOs are also called “agents”
in [13] and called regions of interest (ROIs) in [12]. The goal
of segmentation is to locate SDOs. The choice of e1, e2, d1,
and d2 depends on the E-SD field.

However, if noise is present, then (3) and (4) will not give
accurate E-SD values. We digress to describe the CLSM data
which inherently includes noise and has a poor signal to
noise ratio resulting in these inaccurate the E-SD values.

2.2 Confocal Laser Scanning Microscope Data
Distribution

Confocal Laser Scanning Microscopy (CLSM) is a technique
for obtaining high resolution scans of optical slices through
a thick specimen without having to cut the specimen
mechanically. Due to the precise lenses, the high coherency

of the illuminating laser beam, and the confocal way of
gathering backscattered light, accurate focusing at specific
planar locations can be achieved. A typical optical section is
between 0:1 � 100�m. Scanning through the whole speci-
men thereby gives a full 3D projection view of the
specimen. This technique is very useful not only because
it allows the volumetric analysis of biological data, but also
because the techniques used in “staining” these specimens
(i.e., laser excited dyes) increase the accuracy of these

images as compared to images obtained from ordinary
optical microscopes. Nevertheless, images are still noisy
and blurred. Several sources of noise can be identified [1],
[7], [6]. These include:

1. thermal noise induced by the photomultiplier,
2. photon-shot-noise,
3. biological background (autofluorescence), and
4. unspecific staining.

The quality of the image can be affected by a possible

mismatch of refractive indices, tissue scattering, dye

concentration inside the cell, and the histological methods

used for staining. These factors contribute to a position-

dependent noise and blurring, which makes the analysis of

these images rather difficult.
Statistical theory has been used for segmenting medical

and biological data [2], [3], [19], [21], [22]. This assumes that

the data follows a distribution. Hansen and Higgins

assumed that intensity values in a region follow a Gaussian

distribution in [4]. The Gaussian, Rayleigh, and Poisson

distributions have been discussed separately in [5]. In our

paper, before attempting to segment volume data using

statistical theory, we first analyze the distribution. Fig. 1b

shows the distribution of a CLSM data (see Fig. 1a). The plot

marked with 4 shows the distribution of the complete

volume data (see Fig. 1a), which looks like the Poisson

distribution. The plot marked with � shows the distribution

at the brightest region in Fig. 1a. This looks like a Gaussian

distribution. The plot with 	 illustrates the distribution in a

4-voxel. Based on the experiment, we will use Weibull

distribution to model CLSM data because the Weibull

model not only can approximate all distributions presented

in CLSM data shown above by choosing its suitable

parameter a, but also is a suitable model to remove noise

in CLSM volume data.

2.3 Weibull Distribution

Weibull distribution is defined as follows [15]:

pðvÞ ¼ a

b

v� v0
b

� �a�1
exp � v� v0

b

� �ah i
; ð5Þ

where v � v0, a > 0 is the shape parameter, b > 0 is the scale

parameter, and v0 is the shift parameter (the minimum

possible value of the random variable). In the CLSM data,

the minimum possible density value is zero, i.e., v0 ¼ 0.

Therefore, we assume that the shift parameter of the

Weibull distribution is 0 in the rest of this paper. Fig. 2

gives the Weibull distribution (5) with different shape

parameters a and scale parameter b ¼ 1:2 and v0 ¼ 0. The

expectancy and the deviation of the random variable X

obeying the Weilbull distribution are given by:

E½X� ¼ b� 1þ 1

a

� �
; ð6Þ

and

SD2½X� ¼ b2 � 1þ 2

a

� �
� �2 1þ 1

a

� �� �
; ð7Þ
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Fig. 2. Weibull distribution (5) with different shape parameters a and

scale parameter b ¼ 1:2 and v0 ¼ 0:

Fig. 3. The plot of function tBðt; tÞ=2. It reaches maximum 0.72 at

t ¼ 0:42.



where the gamma function is �ðxÞ ¼
R1
0 tx�1e�tdt. It can be

shown that, when a ¼ 1:0, it is the Possion pdf and, when

a ¼ 2:0, one has the Rayleigh pdf and, when a ¼ 3:0, it turns

into the Gaussian pdf. When a 
 1, the distribution tends to

be a uniform pdf. Therefore, the Weibull model is a suitable

model to fit the histogram distribution of these volume data

and the regions within them whose statistical properties are

unknown since the kernel shape can be controlled by

selecting a different a value.
From (6) and (7), it is clear that the parameters a and b of

the WD depend on the expectancy and the standard

deviation. We denote the ratio r ¼ SD=E in (6) and (7)

with v0 ¼ 0 and the relationship between r and the shape

parameter a of its Weibull distribution is as follows:

r2 ¼ SD2½X�
E2½X� ¼ �ð1þ 2=aÞ

�2ð1þ 1=aÞ � 1; ð8Þ

or

1

r2 þ 1
¼ �2ð1=aÞ

2a�ð2=aÞ ¼
1

2a
Bð1=a; 1=aÞ¼: 1

2
tBðt; tÞ; ð9Þ

where the Beta function is Bðx; yÞ ¼
R 1
0 tx�1ð1� tÞy�1dt, a is

the shape parameter of the WD, and t ¼ 1=a . From (9), we

can see that the shape parameter of the Weibull distribution

is only dependent on ratio r in the E-SD field. When

t � 0:42, the RHS of (9) reaches its maximum, which is near

the value 0.72. Unfortunately, the RHS of (9) is not a

monotonic function of t (see Fig. 3). In order to overcome

this difficulty, we first give some properties of the Weibull

distribution [15].

Property 1. For every s > 0, the s-moment of Weibull

distribution is

E½Xs� ¼ bs�ð1þ s=aÞ: ð10Þ

Property 2. If X1; X2; � � � ; Xn are independent distribution

random variables and follow the Weibull law, then

1

n

Xn
i¼n

Xs
i ! E½Xs�; for 1 � s < 1; as n ! 1: ð11Þ

2.4 Weibull Noise Index

Removing noise or improving the signal-to-noise ratio
(SNR) of a given image is an essential step in segmentation,
especially in high noise situations that can disrupt the shape

and lose the edge information. The traditional algorithms of
denoising, such as Gaussian filter [8], [20], reduce the noise,

but they do not maintain the edge information. When noise
is removed, it is required to not only smooth all of the
homogenous regions that contain noise, but also to keep the

position of boundaries, i.e., not to lose the edge information
that defines the structure of objects.

Let v1; v2; � � � ; v�3 represent �3 image points in a given

�-voxel. It is assumed that the value of a voxel is characterized
by the Weibull distribution. If we use (3) and (4) to calculate

the E-SD value, the results are not reliable due to noise,
especially for a standard deviation [18], [20]. Therefore, we
must find a way to distinguish whether or not the data

distribution in a �-voxel is uniform. If it is not uniform, then
what kind of noise is present? If few of the elements in a voxel

are significantly larger and/or smaller than others, then these
are called upper/lower noise. For example, in a 2-voxel, in
which the set of the intensity at eight image points is

f234; 52; 64; 46; 50; 54; 62; 3g, element 234 is much larger
than others, and is called an upper noise. Element 3 is

significantly less than others and is called a lower noise. In
order to classify the noise in a �-voxel, an auxiliary function
gðsÞ is introduced:

gðsÞ ¼
Pn

i¼1 v
s
i

� 	2
n
Pn

i¼1 v
2s
i

; ð12Þ
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Fig. 4. Illustration of the classification of noise in a 2-voxel by using two parameters: s1 and s2 are defined by Definition 2. (a) Normal sample case:
f64; 52; 64; 46; 50; 54; 62; 43g, where s1 ¼ 4:475 and s2 ¼ 4:9. (b) Upper noise case f240; 52; 64; 46; 50; 54; 62; 43g, resulted from case (a) when one
upper noise term was added, where s1 ¼ 0:825 and s2 ¼ 3:6. (c) Lower noise case f6; 52; 64; 46; 50; 54; 62; 234g, resulted from case (a) when one
lower noise term was added, where s1 ¼ 3:45 and s2 ¼ 0:575. (d) Lower noise case f6; 52; 64; 46; 50; 54; 62; 234g, resulted from case (a) when one low
noise term and one upper noise term were added, where s1 ¼ 0:725 and s2 ¼ 0:525.



where s 2 ð�1;1Þ, vi > 0 ð1 � i � nÞ, and n ¼ �3. By

calculating (12) directly, we have the derivative of the

function gðsÞ that satisfies: g0ðsÞ � 0 for s > 0, g0ðsÞ � 0 for

s < 0, and g0ðsÞ � 0 if and only if v1 ¼ V2 ¼ � � � ¼ vn. Also:

gð0Þ ¼ 1, gð1Þ ¼ k1
n , and gð�1Þ ¼ k2

n , where k1 is the

number of the elements which are equal to the maximum

and k2 is the number of the elements which are equal to the

minimum. It is obvious that 1 � k1; k2 � n and k1 þ k2 � n.
Using Properties 1 and 2, we know that

gðsÞ � ðE½Xs�Þ2

E½X2s� ¼ 1

2
tsBðts; tsÞ;

where ts ¼ s=a and a is the WD shape parameter in the

�-voxel. From the analysis above, the function tsBðts; tsÞ=2
reaches its unique positive maximum near 0:72 at ts ¼ 0:42.

If k1 and k2 are small enough (k1; k2 � b0:14nc 1) and there is

an s0 such that gðs0Þ ¼ 0:72, then we have that the WD

shape parameter in a �-voxell satisfies

a � s0=0:42: ð13Þ

Definition 2. If s1 > 0 such that gðs1Þ ¼ 0:72 (if k1 > 0:72n, set

s1 ¼ 1), then s1 is called the Weibull upper noise index. If

s2 > 0 such that gð�s2Þ ¼ 0:72 (if k2 > 0:72n, set s2 ¼ 1),

then s2 is called the Weibull lower noise index. In short, they

are called the Weibull noise indices.

We will use these two parameters to determine the

“goodness” of voxel distribution as follows (see Fig. 4):

. For a �-voxel, if the Weibull upper noise index s1 <
1:26 and the lower noise index s2 > 1:26, then there
is upper noise in it.

. For a �-voxel, if the Weibull upper noise index s1 >
1:26 and the lower noise index s2 < 1:26, then there
is lower noise in it.

. For a �-voxel, if the Weibull upper noise index s1 <
1:26 and the lower noise index s2 < 1:26, then there
is upper and lower noise in it.

2.5 Segmentation Algorithm

Based on the theoretical analysis above, the algorithm for

volume data segmentation is as follows:

Step 1: Given a � to determine the size of �-voxel; initialize

the SDO’s predefined constant in (2): e2 > e1 > 0,

d2 > d1 � 0, and the threshold of expectancy Te > 0.

Step 2: Consider the jth �-voxel. Use bisection to compute

its Weibull noise index s1 and s2, which are the roots of

the equation gðsÞ ¼ 0:72, where gðsÞ is defined by (12). If

there is upper noise or lower noise or both, then remove

the noise directly (i.e., delete the minimum or the

maximum or both). Repeat at most bC�3c times to

execute Step 2.

Step 3: Calculate E-SD values using (3) and (4). If the

expectancy is larger than the threshold Te, add the

�-voxel to list A. If there are �-voxelswhich have not been

dealt with, then go to Step 2.

Step 4: Compute the frequency of the voxel in the list A
and create the E-SD field. By choosing the suit E-SD

values e2 > e1 > 0, d2 > d1 � 0, select the voxel in

which the expectancy E and standard deviation SD

satisfy: e2 � E � e1, d2 � SD � d1.

In this algorithm, the threshold Te is used for controlling

the size of list A above and will cause the image to be

rendered faster. The constant C in Step 2 is equal to 0.14.

E-SD values ðe2; e1; d2; d1Þ define a movable rectangle, called

awindow in the E-SD field. The suit E-SDs (e2 > e1, d2 > d1)

are determined through user interaction by moving its left-

top and/or right-bottom vertices (see Fig. 6i).
The algorithm described above is simple and efficient. Its

average complexity is OðL logLÞ for each selection by

moving window, where L is the number of �-voxels,

defined by L ¼ N=�3, where N is the number of points in

the volume data. Obviously, if the grains (or �-voxels) are

coarser (i.e., � is larger), then the selection is more efficient;

however, the results of the segmentation will also be

coarser. With different � (� ¼ �min; � � � ; �max, �min and �max

are prespecified), the selected � best fits the given volume

data. By this fitting approach, the number of SDOs in
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Fig. 5. Volume error comparison between Gaussian filter and Weibull noise indices in segmenting the synthetic volume data.

1. bxc is the maximum integer which is less than x.



volume data is determined. The minimum �, which shows

the number of SDOs in E-SD field, will be chosen.

3 EXAMPLES

In this section, we will look at two examples illustrating the

proposed method for segmentation. The first example

examines artificial volume data generated using a Weibull

distributed random number with different parameters. The

second example uses real CLSMdata from two different data

sets anddemonstrates how thismodel canbeused to segment

such data. The hardware we used is a Dell Precision

workstation 330, with P4 1.4GHz CPU and 1-GB RAM.

3.1 Controlled Experiment

In order to make the experiment comparable, a controlled

experiment is done in the following way: We first segment a

noise-free volume data (see Fig. 6a) and treat that

segmentation as our reference, which includes a torus, an

ellipsoid, and two deformed cubes of different sizes, but

with the same shape parameter a, in a 100� 100� 100 cube

(see Fig. 6b). Every instance of a volume data with added

noise is then denoised using a Gaussian filter with � ¼ 1:3

and a Weibull noise index with 2-voxels or 3-voxels. The

targets are then segmented from these images and

compared to the reference objects. The comparison, based

on the segmented volume, is done by identifying the

support function of the reference object and of the object

segmented from a volume data with added noise, denoted

by Sr and Sn, respectively. That is, S� ¼ 1 or 0 if x is in the

segmented objects or not, where � ¼ fr; ng . Then, the

volume deviation (error) of Sn from Sr in the volume dataV

is defined as follows:

�ðSn; SrÞ ¼
P

x2V jSrðxÞ � SnðxÞjP
x2V SrðxÞ

: ð14Þ

These deviations are calculated to produce numbers that

are comparable across different noise levels. Several levels

of noise have been added to the test volume data to show

the robustness of the filter. The noise that is added to every

image point is a Weibull distributed random number:

Y ¼ minf255; C½�b lnð1�XÞ1=a�g, with different scale para-

meters b, where random variable X is the uniform

distribution in ½0; 1�, a is the Weibull shape parameter,

and C is a constant for each object. Finally, the volume error

from the simulated volume data is plotted in Fig. 5. As

depicted in Fig. 5, the volume error corresponding to the

Weibull noise index is significantly lower compared to

those that result from applying a Gaussian filter and the

Weibull noise index is robust to noise. Segmentation results

are shown in Fig. 6.
Fig. 6i shows the Weibull E-SD field of the noise-added

volume data with the scale parameter b ¼ 10:0. The colors in

the E-SD field correspond to frequency. We denote by

Nðe; dÞ the number of the �-voxels whose expectancy is e

and standard deviation is d. The color at point ðe; dÞ in the

E-SD field is determined by logðNðe; dÞÞ. We set the color at

point ðe; dÞ as follows:
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Fig. 6. Segmentation results for different noise-added control volume

data. (a) A slice of noise-free data as a reference. (b) The segmentation

of reference data. (c) A slice of noise-added data with b ¼ 5:0.

(d) Segmentation using our method. (e) Segmentation using Gaussian

filter � ¼ 1:3. (f) A slice of noise-added data with b ¼ 10:0.

(g) Segmentation using our method. (h) Segmentation using Gaussian

filter � ¼ 1:3. (i) Weibull E-SD field of the noise-added volume data with

Weibull scale parameter b ¼ 10:0.



c ¼

RGBð255; 255; 255Þ; if 0:0 � logðNðe; dÞÞ < 0:5
RGBð255; 0; 0Þ; if 0:5 � logðNðe; dÞÞ < 1:0
RGBð0; 255; 0Þ; if 1:0 � logðNðe; dÞÞ < 1:5
RGBð0; 0; 255Þ; if 1:5 � logðNðe; dÞÞ < 2:0
RGBð255; 0; 255Þ; if 2:0 � logðNðe; dÞÞ < 2:5
RGBð0; 255; 255Þ; if 2:5 � logðNðe; dÞÞ < 3:0
RGBð255; 255; 0Þ; if 3:0 � logðNðe; dÞÞ:

8>>>>>>>><
>>>>>>>>:

ð15Þ

The colors in the E-SD field of real CLSM data below have

the same meanings. Next, the left-top and right-bottom

vertices of window in the E-SD field, which give the values

ðe2; e1; d2; d1Þ, define the range of expectancy and standard
deviation of a SDO (see Fig. 6i).

Fig. 6c shows a slice of the noise volume data with the
Weibull scale parameter b ¼ 5:0. The segmentation results,
using our method and threshold method with Gaussian
filter, are given in Fig. 6d and Fig. 6e. Although it has lost
some detail information, such as the deformation in the two
cubes compared with the reference Fig. 6b, the segmenta-
tion using our method keeps the number2 and shape of
objects. In contrast, segmentation performed by using
threshold methods with Gaussian filter lost the number
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Fig. 7. Test bed for our Weibull E-SD modeling scheme. The images come from two different data sets. In both images, there is only one cell and its

spindle is at the up part of the cell (labeled by a biologist). The size of image (a) is 512� 512� 124; its gray-level is from 0 to 255. The size of image

(b) is 512� 512� 146; it has the same gray-level as (a).

Fig. 8. The Weibull E-SD fields from the data shown in Fig. 7. The colors have the same mean as in Fig. 6i. In(a), the size of the window is
ð178; 237; 4; 27Þ, corresponding to the segmentation shown in Fig. 9a. The threshold Te is 34, which creates a blank on the left side. There are two
clear regions. In (b), the size of the window is ð167; 255; 2; 30Þ, corresponding to the segmentation shown in Fig. 9b. The threshold Te is 34, which
creates a blank on the left side. There are two clear regions, too. (a) The Weibull E-SD field of the image in Fig. 7a. (b) The Weibull E-SD field of
image in Fig. 7b.

Fig. 9. The spindle segmentation corresponding to Fig. 7. The segmentation in (a) includes 3,902 boxes and 11,308 boxes in (b).

2. Different components are colored using different colors.



and shape of the objects. Fig. 6f shows a slice of the noise
volume data with the Weibull scale parameter b ¼ 10:0 and
the segmentation results from this noise data using our
method and the threshold method with a Gaussian filter are
given in Fig. 6g and Fig. 6h. Fig. 6i shows the Weibull E-SD
field of this noise volume data, and illustrates that the three
different components present. Using our segmentation
method maintains the number and shape of the objects,
but using threshold techniques with Gaussian filter fails in
segmenting the objects.

3.2 CLSM Data

In this example, we use data from two different CLSM data
sets designed for investigating the meiotic spindle within a
mouse egg. The eggs were viewed on the Leica TCS NT
confocal microscope. Multiple lasers allow for simultaneous
imaging of the DAPI (Argon UV [363 nm]) and ALEXA 568
Krypton[568 nm]) fluorophore-labeled samples. Using a 63x
water objective, images were scanned between 0:2 � 0:4�m
intervals along the z-axis, 0.154 �m along the xy-axis and
collected through the volume of the entire egg.

Fig. 7 shows a CLSM test bed for our Weibull E-SD
modeling scheme from different experiments. The data in
Fig. 7a is collected using a Krypton laser and highlights
regions targeted with an antibody to anti-a-tubulin at the
upper left and brighter regions through the egg. The image
in Fig. 7a shows a meiotic metaphase II arrested egg and is
composed of 124 slices within a 512� 512 matrix, contains a
gray-level from 0 to 255. The size of the data shown in
Fig. 7b is 512� 512� 146 and has the same gray-level range
as in Fig. 7a. In Fig. 7b, the egg has a meiotic spindle at the
upper left and the remains of the primary polar body at the
bottom right. Fig. 8 shows the E-SD plots of Fig. 9. The
colors have the same meanings as in Fig. 6i. In Fig. 8a, the
size of the window is ð170; 237; 4; 27Þ, corresponding to the
segmentation of the data shown in Fig. 9a. In Fig. 8b, the
size of the window is ð183; 255; 2; 30Þ corresponding to the
segmentation of the data shown in Fig. 9b. We set the
threshold at Te ¼ 34, and � ¼ 2. The segmentation in Fig. 9a
includes 3,902 voxels, and 11,308 voxels in Fig. 9b.

What gives rise to such clear regions in the Weibull E-SD
field shown in Fig. 8 is unknown. A plausible explanation is
that each region corresponds to a SDO. When we move the
window on Fig. 8a to the small region, an area of cell
perimeter in Fig. 7a is segmented (see Fig. 10).

4 CONCLUSIONS

We have proposed a coarse-grain approach for the

segmentation of an object from volume data based on the

Weibull E-SD field. We have shown that one can decide the

noise index in a �-voxel by using the Weibull law and use

the E-SD field as a guide to segment an object. We have

consistently demonstrated this approach on controlled as

well as on real volume data.
One of the remaining limitations of the present approach

is that it is still semi-automatic and consequently requires

the intervention and expertise of a user. It would be

desirable to move in the direction of a more fully automatic

segmentation procedure.
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