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ABSTRACT 

Line and net patterns in a noisy environment exist in many biomedical images.  Examples include: Blood vessels in 
angiography, white matter in brain MRI scans, and cell spindle fibers in confocal microscopic data.  These piecewise 
linear patterns with a Gaussian-like profile can be differentiated from others by their distinctive shape characteristics.  A 
shape-based modeling method is developed to enhance and segment line and net patterns.  The algorithm is implemented 
in an enhancement/thresholding type of edge operators.  Line and net features are enhanced by second partial derivatives 
and segmented by thresholding.  The method is tested on synthetic, angiography, MRI, and confocal microscopic data.  
The results are compared to the implementation of matched filters and crest lines.  It shows that our new method is 
robust and suitable for different types of data in a broad range of noise levels.  

Keywords:  Image processing, image enhancement, image segmentation, feature extraction, matched filter, crest line, 
curvature, derivative 

1. INTRODUCTION 

Line and net patterns in a noisy environment exist in many imaging technologies.  Examples include:  Roads and rivers 
in satellite photos, curves in fingerprints, blood vessels in angiography, white matter in brain MRI scans, and cell spindle 
fibers in confocal microscopic data.  Detection of these line and net patterns is important because these features play an 
essential role in many computerized data analyses.  The structure of retinal vessels has measurable abnormalities in 
diameter, color, and tortuosity which reveal the information on the state of various diseases.  The branches of white 
matter can serve as landmarks for brain registration.  The shape and arrangement of spindle fibers provides geometric 
and topological information for the study and computation of parameters related to cell skeletal mechanisms.  
Recognition of these patterns provides the very first step in automatic image analysis and computer-aided diagnosis.  
However, thin structures in biomedical images are intrinsically difficult to recover automatically because they are more 
vulnerable to noise. 

Much of past work on medical image segmentation and early disease detection relied on human interaction to define 
regions of interests by using methods such as manual editing, regions painting, and interactive thresholding.  The 
drawbacks of such methods are excessive human-interaction time and human-related measurement errors.  Therefore, 
double reading is necessary to reduce the miss rate on radiographic reading.  More current approaches have attempted to 
combine human supervision with automatic analysis.  Whether automatic analysis is employed or not, user interaction is 
well-accepted as being essential in the medical image analysis because the consequences of analysis errors can be 
catastrophic such as missing a blocked artery in an angiogram. 

Computer-aided detection of blood vessels in angiography has been studied for years.  At least three different 
methods have been applied to blood vessel segmentation:  Matched filters1,3, crest lines detection11, and neural 
networks12.  Chaudhuri et al1 constructed 12 different matched filter templates to detect piecewise linear segments of 
blood vessels in all possible directions.  Gang et al3 introduced amplitude modified second-order Gaussian filters to 
improve the detection accuracy of matched filters.  Monga et al11 extracted crest lines by making use of up to the third 
derivatives.  Crest lines are lines where one of the two principal curvatures is locally extremal.  Such lines have been 
used to extract roads in satellite data and blood vessels in medical images.  Recently Zana and Klein20 combined both 
shape matching and curvature evaluation to segment blood vessels.  They highlighted vessels with respect to their 
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morphological properties.  Vessels were differentiated from analogous background patterns with a cross-curvature 
evaluation. 

Besides of blood vessels, white matter in brain MRI scans, and spindle fibers in a mouse egg confocal microscopic 
image more or less also share the similar properties of line and net patterns.  Extending the existing methods to these 
images should be straightforward.  However, cell spindle images from a confocal microscope17 are much noisier and 
remain a challenge to existing methods.  A more robust method is needed to extract line and net patterns for data with a 
broad range of noise levels.  

We propose a shape-based modeling method to enhance line and net patterns in biomedical images.  Shape-based 
models generally are abstracted mathematical descriptions or approximations.  They have been developed to study and 
analyze geometric objects from various measurements.  The Marching Cubes model8,14 for volume data, point cloud 
fitting5,6 for range images, and active deformable surfaces7,9,18 for both surface and volume data are just some examples.  
In addition, shape characteristics have been broadly applied to image and surface analysis.  Curvature is a local 
geometric property for shape description.  It is used as an index to analyze and categorize curves and surfaces of 
archeology artifacts2.  It is also applied to image and surface segmentation4,10,17. 

In this paper we investigate a semi-automatic segmentation method that takes advantage of the targeted features’ 
distinctive shape characteristics.  It is implemented in an enhancement/thresholding type of edge operators.  Line and net 
features are enhanced by partial derivatives based on their abstracted mathematical models.  Segmentation is simply 
implemented by thresholding on the enhanced images.  Although user interaction is needed in our approach, users’ 
responsibilities are simply to select proper derivative estimators based on the resulting enhanced images and adjust 
thresholding value in the thresholding step.  The experimental results show that our new method is robust and suitable 
for different types of data in a broad range of noise levels. 

The organization of this paper is as follows.  In the second section, we first examine three distinctive characteristics 
from a retinal image and confirm the fitness of using Gaussian functions as vessel profile approximations.  Then, we 
briefly review matched filters and crest lines methods.  In the third section, we first introduce a function model for the 
line segments that satisfy the three characteristics.  Next, we derive and explain why line and net features with a 
Gaussian-like profile can be enhanced by differential derivatives.  Then, we develop an enhancement/thresholding 
strategy to extract line and net patterns.  Experimental results and comparisons are given in the fourth section.  Finally, 
conclusions are presented in the fifth section. 

2. BLOOD VESSELS’ SHAPE CHARACTERISTICS AND PREVIOUS WORK 

As observed in Fig. 1.a, the blood vessels in angiography typically appear as a tree-like pattern.  Such a pattern consists 
of piecewise linear segments with a Gaussian-like profile.  By this we mean that the cross section of a blood vessel in a 
grayscale image F (x, y) appears as a Gaussian distribution function (see Fig. 1.b for example). 

 
            (a)              (b) 

Figure 1:  (a) Fluorescein angiogram obtained from a fundus camera. (b) The grayscale profile of a blood vessel sampled along the 
dotted line shown in (a). 



Chaudhuri et al1 illustrates three distinctive shape characteristics of blood vessels in retinal images: 

1) Blood vessels usually have small curvatures and can be approximated by piecewise linear segments. 

2) The grayscale profile along the direction perpendicular to a blood vessel as shown in Fig. 1.b looks like a 
Gaussian function. 

3) The width of a vessel is relatively constant within a range of a few pixels (2 to 10 pixels). 

A precise model for blood vessels in angiography is difficult to develop because it varies with many physical factors 
such as tissue’s characteristics, light source, and imaging system’s optical and electronic components.  However, an 
approximation that conforms to the principal features and maintains calculation simplicity will be sufficient and 
acceptable for practical applications.  The Gaussian vessel profile is a very popular example.  It is generally described by 
a function similar to 

=),( yxf )}2/exp(1{ 22 σdkA −± ,           (1) 

where d is the perpendicular distance between the point (x, y) and the axial of the blood vessel, σ defines the spread of 
the profile, A is the local background intensity, and k is a measure of the relative intensity between the vessel and its 
neighborhood.  In addition to Gaussian vessels, blurred half-elliptical vessels or even simple rectangular vessels have 
been proposed.  It is a valid question to ask how to choose a “good” model. 

Gang et al have provided a statistical evaluation in Ref. 3 to prove the fitness of estimating vessel profiles with 
Gaussian functions.  They studied a group of blood vessels that were taken as the green component of color fundus 
images.  Samples of vessels’ cross sections were taken and fitted by Gaussian curves with least squares errors criteria.  
They reported that the relative error ranged from 2% to 5%, averaging at 3.4% in proportion to the amplitude of 
Gaussian Curves.  They also observed that the residual errors were mainly at the periphery.  These observations suggest 
that modeling vessel profiles with Gaussian curves is an appropriate approach.   

Now let us consider the detection of blood vessels by using matched filters.  The detection of an arbitrary 1D signal 
)(ωf  through a filter with transfer function )(ωh  has upper limited value using Schwartz’s inequality14 
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It can be proved that the upper limited value is reached when )(ωh  is equal to )(ωf  multiplied by a constant, that is, 

)()( ωω fch ⋅= .  This optimal filter is commonly known as matched filter for the signal )(ωf . 

When the concept of 1D matched filter is extended to 2D grayscale images, a kernel 









−= 2

2

2
exp),(

σ
x

yxK        for |y| ≤ L/2         (3) 

is the optimal filter to detect a line segment of Gaussian-like profile located from (0,-L/2) to (0,+L/2) with σ  defining 
the Gaussian profile spread and L the length of the line segment.  Similarly, in order to detect a line segment oriented at 
any angle θ  ( πθ ≤≤0 ), the kernel is consequently needed to be rotated to all possible angles to search the possible 
line segment.  To strike a balance between computation cost and accuracy, Chaudhuri et al1 constructed 12 different 
angled templates to search line segments for all possible directions.  Gang et al3 applied the same method except that 
they used second-order differential Gaussian filters instead.   

While the matched filters approach detecting line segments by the convolution of kernels and grayscale images, the 
crest lines approach treats the grayscale images as terrain surfaces (x, y, F (x, y)).  The images are viewed as 3D surfaces 
and crest lines are the ridges along the “mountain” peaks. 

One definition of crest lines proposed in Ref. 3 is: A crest line is a locus of points whose maximal curvature (i.e. 
maximum absolute value of the two principal curvatures), is a local maximum in the corresponding principal direction.  

A formula called “extremality”, me , is derived from the third derivatives of the image: 
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where 221 yx FFN ++=  and the notation xF  and xyF  represents partial derivatives.  Crest lines are extracted at 

0=me . 

3. SHAPED-BASED MODELING AND ENHANCEMENT 

As the crest lines approach points out, the “shape” of a line segment in a 2D grayscale image can be observed through a 
3D terrain surface (x, y, F (x, y)).  Fig. 2 illustrates the terrain model of blood vessels taken from the central part of Fig. 
1.a.  Observing any vessel segment from the terrain model in Fig. 2, it resembles a speed bump which is straight and has 
a Gaussian-like profile and relatively constant width.  In other words, the “line” patterns in Fig. 2 satisfy the three shape 
characteristics described in Sec. 2. 

 

Figure 2:  The central patch of the image surface (x, y, F (x, y)) taken from Figure 1.a . 

Since Equation (1) has a mixed look of a function of one variable d and two variables x and y, we define a new 
function from the terrain surface’s viewpoint.  A line segment image depicted in Fig. 2 as a terrain surface can be 
modeled by a function in the neighborhood of an axial point P0 as 
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P is any point (x, y), v = )sin,(cos θθ  is a unit vector perpendicular to the line segment, and σ  defines the spread of the 

Gaussian profile.  C is the constant noise term and N (x, y) represents the non-constant noise existing at P.  Assuming the 
line segment passes through the origin, let P0 = (0, 0) so that Equation (6) can be modified to 
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The second derivatives of F(x, y) are 
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To obtain an enhanced image from the second derivatives, we first form a matrix 
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The noise terms C+N (x, y) in Equation (7) will diminish faster than the signal through the differential operator by two 
well-known processes.  The high frequency noise will be minimized by the smoothing process of derivative estimation.  
The differential operator will remove low frequency noise such as the constant and ramp components.  Accordingly, 
noise terms Nxx , Nxy, and Nyy in Equations (8), (9), and (10) will be less significant and can be neglected.  In addition, the 
second terms of these equations can be omitted if θθ cossin yx +  is much smaller than σ .  Therefore, 
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λ  is an eigenvalue of matrix H and v is the corresponding eigenvector.  Since v is perpendicular to the line segment, λ  
must be the maximum absolute eigenvalue.  H is the Hessian Matrix.  The enhanced image is defined as 
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     (a)                                                         (b)      (c) 

Figure 3:  (a) Original blood vessel image.  (b) Enhanced image.  (c) Extracted vessel patterns by thresholding on the enhanced 
image. 



 

             (a)                                                      (b) 

Figure 4:  (a) Original mouse egg spindle image from a confocal microscope.  (b) Enhanced image.  (c) Extracted fiber patterns by 
threshoding on the enhanced image. 

As the spread of line patterns is usually unknown at the processing time or the lines have various spreads, σ  in Equation 
(13) can be either omitted or assigned  a default value. 

So far, we have derived an enhancement process from the function model described in Equation (7) by using second 
derivatives.  Finally, we develop a two-stage algorithm to extract the line and net patterns: 

1) Estimate the second derivatives from the original image and synthesize an enhanced image by Equation (13). 

2) Extract the thin line patterns simply by thresholding on the enhanced image. 

The extracted line and net patterns are collections of pixels at which the enhanced image ),( yxF  is larger than or equal 

to the thresholding value.  Although more sophisticated data structures and representations can be derived from these 
pixel sets, for the explanatory purpose and computational simplicity we will maintain the algorithm as an 
enhancement/thresholding type of operators.  The extraction process is illustrated in Fig. 3 and 4. 

Fig. 3.a, 3.b, and 3.c show the original, enhanced images, and extracted patterns of blood vessels in an angiogram 
respectively.  The original and enhanced data are shown as grayscale images.  Since the extracted patterns are simply 
sets of pixels, they are illustrated as black pixels in Fig. 3.c.  Fig. 4 basically describes the same procedure which is 
applied to a very different data set.  Fig. 4.a is a mouse egg image obtained from a confocal microscope.  The main focus 
in this image is to extract the line structure from the barrel-shaped spindle positioned at the lower membrane.  These 
lines are clear in the central region and seem to fuse into one piece of cloud at either pole.  In spite of the very different 
appearance between angiography and confocal microscopy, our method was able to extract both blood vessels and cell 
spindle fibers successfully.  Furthermore, as observed in Fig. 4.b, our method was able to enhance and reveal detailed 
line features other than the spindle fibers that are barely noticeable in the original image. 

4. EXPERIMENTAL RESULTS AND COMPARISONS 

We have tested our new method on four data sets with line and net patterns from different sources.  The images include: 
a circular line pattern with a Gaussian profile calculated from mathematical formulas, an angiogram obtained from a 
fundus camera, a slice of brain MRI scans, and a mouse egg spindle image from a fluorescence confocal microscope.  
The experimental results are shown in Fig. 5 to 8.  The original data sets are illustrated in grayscale images and the 
extracted line and net patterns is represented by sets of black pixels at which the enhanced image values are larger than 
or equal to the thresholding value.  The results are compared to the implementation of matched filters and crest lines. 

The images produced by the crest lines and matched filters methods may contain extra structures such the center of 
the concentric rings in Fig. 5.c and short branches from blood vessels in Fig. 7.b.  They may miss other parts such the 
intersections of lines in Fig. 5.c and 6.c.  The reason of these differences is because a very simple discriminator, 
thresholding, is applied in deciding whether a pixel belongs to a targeted structure or not.  It is not easy to find an 
appropriate thresholding value to separate line and net patterns from the background noise.  If we threshold the processed 



data with a lower thresholding value, we obtain not only more targeted structures but also false parts as the result of 
noise.  If we raise the thresholding value, we remove more noise with the cost of losing some information.  As we 
mention in the previous section, more sophisticated data structures can be derived from the extracted pixel sets and 
therefore, more information such as diameter and length can be added into the decision criteria.  In spite of the 
simplicity, our algorithm produces consistent and clean results for different types of data regardless of the noise level. 

 

 

                        (a)                                           (b)                                         (c)                                          (d) 

Figure 5:  (a) A synthetic line pattern with a Gaussian-like profile.  (b) Crest lines extraction.  (c) Matched filters enhancement/ 
thresholding.  (d) Shape models enhancement/thresholding. 

 

    (a)      (b) 

 

(c)                                               (d) 

Figure 6:  (a) Fluorescein angiogram.  (b) Crest lines extraction.  (c) Matched filters enhancement/ thresholding.  (d) Shape models 
enhancement/thresholding. 



 

                    (a)                                             (b)                                               (c)                                          (d) 

Figure 7:  (a) Brain MRI image.  (b) Crest lines extraction.  (c) Matched filters enhancement/ thresholding.  (d) Shape models 
enhancement/thresholding. 

 

 

    (a)      (b) 

 

(c)                                               (d) 

Figure 8:  (a) Mouse egg confocal microscopic image.  (b) Crest lines extraction.  (c) Matched filters enhancement/thresholding.  (d) 
Shape models enhancement/thresholding. 

 



5. CONCLUSIONS 

We have introduced a shape-based modeling and enhancement method to extract line and net patterns by take 
advantage of their distinctive shape characteristics.  From the proposed shape model, we provide an explanation of using 
the maximum eigenvalue from Hessian Matrix as an enhanced image.  The proposed extraction scheme retains the 
computational simplicity of an enhancement/threshodling type of edge operators.  Although it is possible to combine 
existing methods to build more sophisticated data structures from the extracted pixel sets to obtain information such as 
diameter, length, and connectivity for accuracy improvement, our algorithm was able to extract line and net patterns 
from various types of imaging technologies by simply thresholding on the enhanced images.  Compared to matched 
filters and crest lines methods, the shaped-based modeling and enhancement method proves to build a robust algorithm 
that is suitable for different types of images in a broad range of noise levels.  From angiography, MRI, to confocal data, 
it performs well in analyzing various line and net patterns emerged in various noise levels.  With some modifications, 
this method could be extended to the extraction of ecological features from satellite images and the enhancement of 
fingerprints rather easily.  Our future work is to extend the Gaussian-profile shape model to 3D data sets with line and 
thin layer patterns. 
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