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Abstract.  We describe some work in progress on a project focused on the 
mathematical and geometric modeling of scanner data (e.g. LIDAR) which has 
been obtained from urban terrains.  The methods that are being developed are 
based upon the concepts of adaptively refined implicit models.  There are 
special and particular advantages to using implicit models for this type of 
geometry including the ease of performing Boolean operations (union and 
intersection) and creating multiresolution models.  The field functions for the 
implict models are selected on the basis of efficient compact models that can 
replicate complicated geometry and also faithfully reproduce sharp detailed 
features and artifacts. The requestor and funding agency of this research is the 
United States of America Army through the US Army Research Office.   
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1   Introduction, Motivation and Background 

We present new methods of modeling scattered point cloud data obtained from 
scanners applied to urban terrain.  This type of geometry is indicated and depicted in 
the images of Fig. 1.  These scenes consist of combinations of artifacts and natural 
terrain.  There are buildings with connecting walkways, overhangs, underpasses, 
bridges, mountains, rivers, water towers, statues and a myriad of different geometric 
objects.  It is well known (see [10], [25]) that this type of geometry can not be 
represented solely with a digital elevation map (DEM) or with a normal triangulated 
irregular network (TIN) due to the fact that the geometry is not a height field (single 
valued function) relative to a planar domain.  In the approach described here, an 
implicitly defined surface, ( ) ( ){ }0,,:,, == zyxFzyxS  is determined that approximates 
the point cloud (xi, yi, zi), i=1, . . . N, which is produced by the scanners.  The surface 
geometry is defined as a level set of a trivariate function F(x,y,z) called the field 
function.  In contrast to the conventional explicit methods which usually are in the 
form of a list of triangles, we define, manipulate and store the geometry of the scene 
by means of the field function, F .  There are distinct advantages to implicitly defined 
geometry over explicitly defined geometry.  These advantages include i) The ease of 
performing unions and intersection operations with extremely simple operations on 
the field function; ii)  The ability to obtain multi-resolution models with simple 
operations applied to the field function and iii) The ease of incorporating corners and 
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sharp features in the surface model without pre-described discontinuities or other 
properties of the field function.  
 

   
Fig. 1. Examples of scenes involving urban terrain consisting of natural terrain along with 
artifacts. 

1.1   Brief Overview and background on point cloud fitting 
 

For this project, we are interested in the following general problem of point cloud 
fitting.  Given a collection of points in 3D space (xi, yi, zi), i=1, . . . N, taken from a 3D 
surface, the problem is to develop mathematical methods for respresenting and 
approximating the underlying surface.  We should point out that the problem of point 
cloud fitting should be distinguished from that of scattered data modeling [8, 9, 18].  
Even though many of the basic techniques and tools from CAGD (Computer Aided 
Geometric Design) and multivariate approximation theory apply to both problems, 
they are basically different.  The problem of scattered data modeling is concerned 
with methods of producing a bivariate function F(x,y) such that F(xi, yi ) ~ zi. That is, 
for the traditional scattered data modeling there is the assumption that the data 
consists of samples taken from the surface graph of a bivariate function.  One 
fundamental connection between the two problems is through some type of 
parameterization of the point cloud [4,5] whether this be implicit or explicit, but this 
relationship is not well and completely understood today.  The term “scattered data” 
was coined by Schumaker in his 1976 paper [24] and there was a great deal of interest 
and published research on (mainly) bivariate problems in the 70s and 80s.  For 
applications to terrain modeling see [6, 7, 10, 12, 13, 22].  With the advent of 
scientific visualization along with volume visualization in the 90s, there was growing 
interest in trivariate scattered data modeling [18, 20] and interest in this area 
continues to grow.  In many respects, the problem of point cloud fitting is more 
difficult because it is less understood, but the widespread and strong need for practical 
and effective methods make this an important problem.  Today, there is widespread 
interest in the problem and many algorithms, methods and techniques are being 
proposed [11, 17, 26]  
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A number of methods involve the signed distance function, ( )PD , which is a 
trivariate function defined to be zero on the surface S, negative interior to S and 
positive outside of S.  The surface is extracted from D(P) as a triangular mesh surface 
approximation to the zero level isosurface.  Typically, D(P) is sampled on a 3D 
rectilinear grid and a method like the marching cubes algorithm [21] is used.  Once it 
is decided what the metric or the definition of distance from a surface to a point cloud 
is to be, it is usually not too difficult to develop algorithms for the efficient 
computation of the distance function.  The particular difficulty here is getting the sign 
right; that is, to be able to efficiently and effectively determine when a point is inside 
the surface or outside.  Typical of the methods based upon distance functions is that 
of [11], where the sign is based upon local least squares estimates of the normal 
vector of the surface and a consistent orientation (in or out) is sought with the 
Riemannian map estimate.  One of the drawbacks to this method is the heuristics of 
the signed distance function calculation may lead to gaps in the surface and the 
difficulty of choosing the proper resolution for the marching cubes voxel grid can 
have detrimental effects on the success of the method.   
 

Another important concept involved in point cloud fitting problems is the 
Delaunay tetrahedrization [19]  and its dual, the Dirichlet tessellation and Voronoi 
diagram.  Methods that utilize these concepts include [2, 3].  The method based upon 
alpha shapes of [3] is a typical and early example.  Here the first step is the Delaunay 
tetrahedrization.  The second step is to apply the alpha-erasure to remove tetrahedral, 
triangles and edges whose minimum surrounding sphere is not contained in the alpha 
–erasure sphere.  The result is called the alpha-shape.  In the third step, triangles for 
the final surface are selected so that a sphere of radius alpha containing the triangle 
does not contain any other point cloud points.  The main negative aspect of this 
approach is the choice of a suitable value of alpha.  Too big of a choice leads to poor 
approximations not utilizing many of the points of the point cloud and too small a 
choice leads to gaps and fragmented surfaces.  Even though the methods of [2] 
guarantee for sufficiently dense samplings a surface that is homeomorphic and 
geometrically close to the point clouds resulting from sampling, in practice, it can be 
the case that point density varies considerably limiting the success for these methods 
for certain applications.  In [1], a postprocessing, topological clean up phase based 
upon linear programming is suggested “that can (to some extent) reconstruct non-
smooth or undersampled surfaces.” We mention another potential drawback to these 
types of methods for certain applications.  The resulting triangular mesh surface has 
vertices that are points of the original point cloud.  For noisy data or overlapping data 
resulting from imperfect registration of scanned data, this may be undesirable.  Rather 
than interpolated the point cloud (or a subset), it is potentially more desirable to 
approximate it for some applications. In addition it would be desirable to take 
advantage of the fact the many point cloud data sets have varying density.  

The discussion above motivates and leads to the present method which is 
described in the next section. 
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1.2   Adaptive/Progressive/Multiresolution Field Functions 
 

It is clear that a single, globally defined field function can not capture the complex 
geometry of urban/terrain data. Also, it is well known that piecewise defined field 
functions over uniform lattices are not efficient because the complexity of the 
modeling function does not necessarily conform to the regions of complexity of the 
geometric data.  Adaptive models which refine in regions of increased detail and 
complexity are much more efficient for this application.  This leads to the two main 
aspects that must be analyzed: 1) What is the form of the modeling field function and 
2) what is the refinement strategy? 

 
The refinement strategy: 

 
For the methods described here, two separate adaptive refinement strategies: 1) the 
longest edge tetrahedral refinement ( see [15] and [23] and Fig. 4 ) and 2) the 
red/green tetrahedral refinement (see [16] ) are used.  The left portion of Fig. 2 shows 
the red and green type of splits for two dimensional problems.  The response to a need 
for refinement results in a red split followed by green splits of the neighbors.  In order 
to avoid poorly shaped element domains, a green split is never followed by a another 
green split; rather a green split is replaced by a red split and the necessary neighbor 
green splits.  

    
Fig. 2. The red/green refinement scheme for two dimensions. 

Our application requires the 3D version of the red/green strategy.  The situation for 
3D is somewhat more complicated.  Rather than just one “green” split, as is the case 
for 2D, there are several (10) required green splits in 3D.  A sampling of the “green” 
splits is shown in Figure 3.  Also we show an example of a cube that has been 
successively refined using this strategy. 
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Fig. 3. The red/green refinement scheme for three dimensions. There is only one “red” split, but 
several “green” splits.  Only a sampling of the “green” splits are shown.  A typical example of a 
tetrahedral decomposition based upon this strategy is shown on the right. 

            
Fig. 4. Illustrating the “longest edge” adaptive refinement strategy.      

1.3  Form of the piecewise defined trivaritate field function 
 

The field function is defined in a piecewise manner as a trivariate quadratic over each 
tetrahedron in the domain decomposition (achieved through the adaptive refinement 
process).  For a given tetrahedron ijklT  with vertices iV , jV , kV  and lV  the field 
function is defined as 
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The use of the barycentric coordinates lkji bbbb ,,,  is particularly useful for this 

application.   

      
Fig. 5. The notation used for the control points of the basis functions for the piecewise defined 
quadratic, implicit fitting function. 

Normal vector estimates, iF∇ , at each data point iP are taken as the gradient of a 

local, least squares fitting plane.  The closest M  points { } MkQk ,,1, L= to iP  
are determined and the estimate of the normal vector is taken to be the normalized 
eigenvector associated with the smallest eigenvalue of the 3x3 matrix 
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The weights kw~  are chosen on the basis of inverse distance of iP  to kQ .  The 
inside/outside choice is determined by knowing the position and/or the direction of 
the scanner.  The overall error and fitting criterion is the quantity 
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Where the weights iw  and iω  are chosen to reflect the relative importance or 
accuracy of the data points as compared to the normal vector estimates. 
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The task of minimizing { }bca FFE ,  is a linear least squares fitting problem which 
can be solved by conventional iterative techniques.  Computation of the necessary 
quantities is facilitated by the following equations which relate derivatives taken with 
respect to barycentric coordinates to those in terms of conventional Cartesian 
coordinates. 
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Similar formulas hod for yF ∂∂ /  and yF ∂∂ / .  

A piece-wise defined trivariate quadratic will only lead to a 0C  field function, but, 
in addition, we impose “near” 1C  conditions which are included in the linear systems 
used for optimal fitting. 

2   Examples 

2.1   The Ability of the Implicit Model to Capture Features 

The main purpose of this example is to illustrate the ability of implicit quadratic 
models to capture corners implied by the data and the fact that these sharp features do 
not necessarily have to be located on the cell boundaries of the piecewise defined 
modeling function.  This is only a 2D example but it is sufficient to illustrate the 
desired points and yet easier to perceive than a 3D example.  The data points are 
shown in the left image of Fig. 6 and the piecewise quadratic implicit model is shown 
in the right image.  The efficiency of this type of modeling can also be noted by the 
relatively small number of domain cells required to obtain a very accurate fit to the 
corner feature.  This example also points out one potential drawback to the use of 
implicit models and this is the extraneous contour in the front left region of the 
domain.  But this is not a real problem as these extraneous contours can easily be 
removed by context of the data relative to a triangle (tetrahedron) cell and the 
continuity proximity features.  
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Fig. 6.  The data is shown in the left image and the implicit, piecewise quadratic with a level set 
that approximates the data is shown on the right.  For the entire domain the implicit function 
has a total of 51 scalar parameters which define it.  There are 14 iF  control points at the 

vertices of the triangle mesh and 37 jkF  control points associated with edges for a total of 51 

parameters which define the implicit fitting function.  Only 12 and 21 (respectively) have to me 
maintained for the support of the contour.  The important point of this example is to point out 
that the proper implicit model can capture features that do not necessarily lie on domain cell 
boundaries.  

     
Fig. 7. Piecewise linear implicit fit to the same data as in Figure N. We include this example to 
point out that it would be rather difficult to model a corner with a piecewise linear implicit 
modeling function.  In order for a piecewise linear model to fit a corner, the corner would have 
to be on the boundary between domain cells.  This means we would have to know the location 
of the corner in advance.  
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2.2   Artifact Example 

For this example, an artifact consisting of a patio door lock has been scanned.  This 
object has many features of corners and edges.  As we illustrated in the previous 
section, the implicit, piecewise quadratic modeling function has the ability to fit these 
types of features inferred by the point cloud of data. 

 

        

          
Fig. 8. In the upper left is shown the scanning process using the LDI scanner and the resulting  
point cloud.  The upper right image is the level set of the implicit model where it can be noted 
that the sharp features and detail inferred by the point cloud are captured by the implicit 
modeling process.  The lower two images illustrate some of the positive features of an implicit 
model.  In the lower left image a simple Boolean operation of intersection is used to make a 
mold (left portion) of the artifact.   In the lower right image a modified object is made with 
Boolean operatio0ns.  A notch has been cut out and a square top has been put on the latch pin.  
For this model, 1943, iF , control points and 5701, jkF , control points are needed to represent 

the implicit functions whose contour is this object. 

In general, the Boolean operations of union and intersection are useful for scene 
analysis.  They can be used to eliminate objects allowing the consideration of 
hypothetical situations and they can be used to relocate objects in a scene.  Boolean 
operations for explicitly defined geometry such as TMS or TINs require extensive, 
tedious and error prone computations.  Boolean operations for implicitly defined 
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geometry is efficiently realized with simple operations applied to the associated field 
functions.  If an object A  is defined by the field function AF  such that 

( ) ( ){ }0,,:,, ≥= zyxFzyxA A  and if B  is another three dimensional point set with 

the field function BF , then it is easy to see that the union is defined by 
( ) ( ) ( )( ){ }zyxFzyxFMaxzyxBA BA ,,,,,:,,=∪  and the intersection 

( )BABA FFMinF ,=∩ .  Boolean operations are illustrated in the lower two images 
of Fig. 8. 

2.3 Urban Terrain Example 

In Fig. 9, we show results of our methods applied to data which is obtained from an 
urban terrain scene where we have normal geographic terrain along with artifacts 
(buildings) in the same scene.  This example utilizes the “longest edge” refinement 
strategy.  The data set consists of 2.1 million data points.   The implicit fit for the 
support of the contour has 25,123 control points iF  and 101,487 contol points jkF .  
The fit has an RMS error of 0.013%.  The time to compute this model is 43 minutes 
on a 2.1 GHz PC. 

 

    

     



 245

 

    
Fig. 9.  Upper image shows approximately 1% of the point cloud data set of an urban terrain 
data set consisting of artifacts located over topographically terrain.  The middle and bottom 
images are two different views of the contour plot of an implicit model computed by the 
adaptive, piecewise quadratic technique.  This contour plots clearly show the sharp features 
preserved by the modeling process. 
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