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Mesh Simplification by Volume Variation with Feature Preserving 
 

Abstract A new algorithm for mesh simplification with triangle constriction is presented in this paper. Constricting error 
defined by a combination of square volume error variation with constraint (SVEC), shape factor and normal constraint 
factor of triangle. Gauss curvature factor of each constricted triangle is used to distinguish strong feature triangle or non-
strong feature triangle. The triangle which has minimum constricting error is constricted firstly. For non-strong feature 
triangle, new vertex position is determined by minimizing the constriction error of mesh model. For strong feature triangle, 
the vertex with maximal absolute Gauss curvature of the three triangle vertices is used as the new vertex. Experiments 
show the efficiency of the new algorithm. 
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1 Introduction 

Polygonal meshes are widely used in computer graphics, visualization and CAD/CAM systems. Triangular mesh and 
quadrangular mesh are two common mesh presentation forms, and triangular mesh is used more widely for its simple 
expression and steady topology. At present, by using precise laser range scanners, it is possible to obtain models more 
complex. However, for the complex models, the current graphics system is hard to handle them. As models get larger, they 
are more difficult to store, transfer, render and modify. One of the best solutions is to represent the complex model in 
multiple levels: multi-resolution models via mesh simplification. 

Mesh simplification is to use less mesh to express the original models, and to keep a less distortion. There are many 
methods for mesh simplification [1-8], in which, the geometric elements deletion method is more intuitionistic and 
effective. The geometric elements deletion method includes vertex deletion, edge constriction and triangle constriction. In 
1992, Schroedor presented a method for mesh simplification based on vertex decimation [1]. Hoppe presented an edge 
constriction method [2] based on energy optimization, but this method is too complicated to simplify model in an 
appropriate time. Garland [3] presented a new method for mesh simplification based on quadratic error metric. This 
method has a fast computing speed and can achieve ideal simplification result. QEM method is now a widely accepted 
method for mesh simplification. However, QEM method only defined the constriction error as the distance from vertex to 
plane, the mesh geometric properties such as triangle shape and volume variation of the model are not considered at all. 
Some later researches use amended QEM methods for mesh simplification [8-11]. 

In this paper, we present a new method for mesh simplification based on triangle constriction. The square volume error 
variation with constraint (SVEC) is used as an objective function for triangle constriction. SVEC combine with triangle 
shape factor and normal constraint factor to define the constriction error of a triangle. In simplifying process, Gauss 
curvature filter factor is used to judge the strong feature triangles so that the strong feature triangles are preserved after 
mesh being simplified. The simplified mesh by the new method has the properties that 1) the shapes of the triangles are 
related uniform; 2) with the constraint, when a triangle is deleted, the variation of volumes of the tetrahedrons is also 
related uniform.  

The remainder of this paper is organized as follows: Section 2 reviews related work and presents the three basic 
geometric simplification processes adopted by most simplification algorithms. In Section 3, we introduce some notation to 
formally describe the basic simplification process we employ and present our simplification scheme. Section 4 shows 
some experimental results of the new algorithm, and contrasting them with results of other algorithms. In Section 5, we 
give the conclusion and future work. 

2 Related work 

The existing mesh simplification algorithms can be broadly classified into geometric-based and appearance-based. Most of 
the appearance-based methods can in fact be extended from the geometric-based methods by incorporating visual or 
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appearance criteria. So we only focus on geometric-based simplification algorithms. The geometric-based simplification 
algorithms can generally classified into three different basic simplification processes: 

§ Vertex Decimation: A vertex and its surrounding region are deleted, and the resulting hole is filled with re-triangulation 
(see as Fig. 1(a)). Most early simplification methods are based on this process. Schroedor [1] used the distance from a 
vertex to the average plane of its surrounding vertices to order the vertex decimation. 

§ Edge Constriction: An edge is constricted into a new vertex. One constriction step can delete two adjacent triangles (see 
Fig. 1(b)). Edge constriction is the most common method and has been extensively researched. Garland presents a 
simplification scheme based on GEM (Quadric Error Metric), and achieves mesh simplification with edge constriction. 
Optimal new vertex placement is achievable under this metrics. 

§ Triangle Constriction: A triangle is constricted to a new vertex and the adjacent triangles of this triangle are immerged 
(see Fig. 1(c)). This process is a little more complex than the previous two, and there are some researches on it. Hamann 
presents a method for estimate triangle curvature. Curvature and angles of triangle are used to compute constriction cost. 
Gieng defines the constriction cost as the product of triangle area and curvature. But both of these two methods have high 
computation cost. Zhou presents a triangle constriction method based on QEM [8], and a constriction cost transmit method 
is used for revising the related triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Quadric Error Metric 

QEM is first used for edge constriction mesh simplification in [3]. In order to achieve mesh simplification sequence, each 
vertex T]1,,,[ iiii zyxv = of original mesh is distributed a symmetric error matrix iQ . The error matrix Q  of each edge is 
the sum of error matrix of two vertices ji QQQ += . Suppose the new vertex after constricting an edge e  be 

]1,,,[ zyxv = , then, the constriction error can be defined as follows: 
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  The position of new vertex can be determined by minimizing (1), namely, 
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Fig. 1 (a) Mesh simplification based on vertex
decimation; (b) Mesh simplification based on edge 
constriction; (c) Mesh simplification based on 
triangle decimation 
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We can reset the above equations system as: 
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  In QEM method, the unknowns in (1) can be obtained with the sum of the distances from vertex to its adjacent triangles. 
In Fig. 1 (b), we define the adjacent triangle plane of vertices ,i jv v  is 0=+++ dczbyax , where 1222 =++ cba . Let 

),,,( dcba=p , then the distance of  new vertex v  to the triangle plane is Tvp , (1) can be re-written as: 
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  In section 3, we present a new method for mesh simplification based on triangle constriction. 

3 Mesh Simplification Based on Square Volume Error 

3.1 Square Volume Error with Constraint (SVEC) 

Definitions and notations: We first introduce some definitions and notations. Given a triangular mesh M(v,e,f). 

Definition 1: The surrounding triangles which sharing v as the vertex are defined as the adjacent triangles of v. 

Definition 2: The aggregate of adjacent triangles of the three vertices of one triangle t is defined as the adjacent triangles 
of t. 

Definition 3: The vertices which related with v are defined as the adjacent vertices of v. 

Definition 4: If the number of adjacent triangles of v is equal to the number of adjacent vertices, v is an inner vertex; 
otherwise v is a boundary vertex and its adjacent triangles are boundary triangles. 

  The two keys of triangle constriction of mesh simplification are: determine which 
triangle should be constricted and determine the position of new vertex. How to 
construct an appropriate and steady error function is an important for the two keys. 
When mesh simplification, new mesh after triangle constriction will produce 
volume variation comparing with original mesh. Mesh volume preserving can 
make the simplification model approximate original model better [12, 14]. The 
volume variation is defined as the sum of volume of the tetrahedrons whose bottom 
faces is constricted triangle and its adjacent triangles (see Fig. 2). In Fig. 2, the 
deletion triangle is 210 vvvΔ , and its adjacent triangles are 

430 vvvΔ , 540 vvvΔ , 150 vvvΔ , 651 vvvΔ , 761 vvvΔ , 

271 vvvΔ , 872 vvvΔ , 082 vvvΔ , 380 vvvΔ . The new vertex is v .  So after deleting 210 vvvΔ , the volume variation of model is 
the tetrahedrons whose one of vertices is v  and bottom faces are the above ten triangles. Let area of triangle Δ  be SΔ , 

volume of tetrahedrons whose one of face is Δ be ΔV , volume variation of one triangle constriction step be ∑V . In Fig. 

3, Let coordinates of v  be )1,,,( zyx , plane function of 210 vvvΔ  be 0=+++ dczbyax , and ),,,( dcba=p , then, 
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vvvvvv SvV ΔΔ ⋅⋅= p . This is a signed volume. If after triangle constriction steps, volume variation of part of model 

is positive and part of model is negative, the sum of volume variation is zero, so we can’t measure the volume variation of 
model. In the previous methods, [12, 14] used the absolute value of signed volume as the error metric, but this can make 
additional computation. In this paper, we use square volume accumulation as error metric, denote as square volume error 
(SVE) which defined as follows: 

210210210
2TT22T2 )(

9
1)(

9
1

vvvvvvvvv SvvSvV ΔΔΔ ⋅⋅⋅=⋅⋅= ppp  

Fig. 2 Volume variation by 
triangle constriction 
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The sum square volume error by deleting a triangle can be denoted as: 

2 T T 2 2 T T1 1
( ) ( )

9 9
V v v S v S v= ⋅ ⋅ ⋅ ⋅=∑ ∑ ∑p p p p                                                (2) 

  The new vertex v  after one triangle constriction can be determined by minimizing (2). A temporary matrix iQ  is 
defined for each triangle: 
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  Square volume error is defined as (2) and (3), constriction error matrix is defined as the sum of the temporary matrixes of 

constricted triangle and its adjacent triangles: ∑
=

=
m

i
i

1

QQ . (1) is used to compute constriction error. For decreasing the 

maximum error of the square volume variation, we revise the constriction error with a constraint. In this paper, we define 
the original square volume variation as weighted factors, and all of local square volume variation is weighted as new 
triangle constriction error: 

2 T T 2 2 T T1 1
( ) ( )

9 9i i iV v v S v S vφ= ⋅ ⋅ ⋅ ⋅=∑ ∑ ∑p p p p  

where iφ  is the square volume of the tetrahedrons which the vertex is v  and bottom faces are the triangles on the adjacent 
region. 

 3.2 Shape factor and normal constraint factor 

When mesh simplification, the bad shaped triangles should be constriction first. For triangular mesh, equilateral triangle is 
denoted as the best shaped triangle. If one of an internal angle of triangle is near zero degree, the triangle is the worst. 
Besides, from mesh simplification, triangle with larger area should be better than that with less area. So we can define 
triangle shape factor as follows: 

2 (1 cos(min( )))shape- factor SαW Δ⋅ −= ⋅  

where min( )α  is the least internal angle of one triangle. For 3/min0 πα ≤< , we can get: 10 2 (1 cos(min( )))α ≤< ⋅ − . 

  For a given mesh model, the local mesh will be dense at high curvature variation region. 
So the local square volume error is also small. For avoid constricting triangles which on 
uneven region, we introduce normal constraint factor. In existing researches, a general 
method for computing normal is weighted the normal of adjacent triangles of a vertex or a 
triangle [5]. But this method can produce error sometimes. Such as in Fig. 5, using a 2D 
example, f0, f1, f2 represent triangles. 1n  and 2n are normal of f1 and f2, and the clamp 

angle of 1n  and 2n are near to 180 degree, the weighted of these two normal is near to 
zero, so the acute region can be estimated as flat region. So we present a new normal 
constraint factor.  

  Normal of a triangle can be computed from its three vertices, let adjacent triangles of 0f  are 1 mf fK , and their normal 

are 0 mn nK , the normal constraint factor of 0f  can be defined as: 
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From the definition of normal constraint factor we can see 00 1N≤ ≤ . When a triangle and its triangles are on the same 

plane, 0 0N = . We add the shape factor and normal constraint factor into constriction error, then (4) can be re-defined as 
follows: 
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Constriction error of each triangle is: 

T T( )error i
i

v v v v⋅Δ = = ⋅∑Q Q                                                           (5) 

  From (5) we can see constriction error not only consider the shape and normal of constricted triangle but also all of the 
triangles on constriction region, so the constriction error is more reasonable. In this paper, we insert all of triangles into a 
heap list by the constriction cost from small to big. In each constriction step, the triangle with the least cost is constricted 
first. 

3.3 Gauss curvature filter 

In mesh simplification, for preserving the detail features of model, the sum of the absolute 
values of two principle curvature of vertex is defined as feature factor. However, this factor 
needs to compute the mean curvature and Gauss curvature of vertex, which will improve the 
complication of mesh simplification. Gauss curvature is an important embedded geometric 
property, which can be used to describe a vertex’s geometric feature. Let 1 2,k k  are the two 
principle curvatures of one vertex v, 1 2k k k= ⋅  is the Gauss curvature of v. Gauss curvature 
can reflect the bend degree of surface. In this paper, we use the Gauss curvature estimating 
method in [15] defined as: 
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where nα is the adjacent angle of v  shown as in Fig. 4, ( )VA v  is the area summation of the adjacent triangles of v . In this 
paper, we use the absolute value of Gauss curvature of vertex to define the Gauss curvature of a triangle: 
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where
jvω are weights defined as follows: 
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Resetting (7) we have the Gauss curvature of each triangle is: 
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  In mesh simplification, if Gauss curvature of one triangle is more than a given threshold is deemed as strong feature 
triangle, and the vertex with maximal absolute Gauss curvature is the strong feature vertex, so while mesh simplification, 
the strong feature vertex should keep from deletion first. 

3.4 New vertex determination 
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Fig. 4 Mesh vertex and 
its adjacent angles 
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The existing condition of new vertex is constriction error matrix Q  is reversible. Expanding Q  we have: 

13 12 23 22 13 23 11 23 12 13 33 11 22 12 12( ) ( ) ( )q q q q q q q q q q q q q q q− − − + −  

This formula can be treated as the condition that if the constricted triangle and its adjacent triangles are on the same plane 
or not. If the constricted triangle and its adjacent triangles are coplanar then: 

13 12 23 22 13 23 11 23 12 13 33 11 22 12 12( ) ( ) ( ) 0q q q q q q q q q q q q q q q− − − + − ≠  

If not then: 

13 12 23 22 13 23 11 23 12 13 33 11 22 12 12( ) ( ) ( ) 0q q q q q q q q q q q q q q q− − − + − =  

In the latter case, minimizing (1) we can’t determine the position of new vertex v . So we can use a weighted method for 
determining v : v  is substituted with the weighted of the three vertices of triangle: 

i i j j k kv L v L v L v= + +  

where iL , jL and kL  are the adjacent area weights of vertices and 1i j kL L L+ + = .  
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Then the new vertex is nearer to the barycenter of the adjacent region of constricted triangle, the new triangles can have 
better shape. From Fig. 5 we can see the details of model can be preserving better with the new method. (a) is the original 
model, (b) is the simplification result with [8] method, (c) is our method. 

 

 

 

 

 

 

 

3.5 Boundary triangles processing and error modification 

For non-closed model, Boundary triangles can be classified as vertex boundary triangle and edge boundary triangle, if only 
one vertex is boundary vertex, triangle is denoted as vertex boundary triangle (see as triangle A in Fig. 6). If two vertices 
are boundary vertices, triangle is denoted as edge boundary triangle (see as triangle B in Fig. 6). For vertex boundary 
triangle, new vertex is the boundary vertex of constricted triangle; for edge boundary triangle, new vertex is the weighted 
of the two boundary vertices: 

(1 )i jv v vω ω= + −       (0 )1ω≤ ≤  

Substitute above v  into (1), and let ( ) / 0v ω∂Δ ∂ = , we can determine ω , so v  can be determined. 

 

 

 

 

 

  When a triangle is constricted, the adjacent triangles are also deleted. The new generate triangles should be re-computed 
the constriction error. When the most triangles are locate on a same plane, the constricting error of each triangle which is 
coplanar with its adjacent triangles is always zero. So the constricting list can’t be determined. In this paper, if the 
constricting error of new triangles is zero, then we insert the triangles behind of triangles whose constriction error are also 
zero. Fig. 7 shows an example for a non-closed model which most of triangles are coplanar. (a) is the original model; (b) is 
the simplification result without re-queuing; (c) is the simplification result with re-queuing. We can see the re-queuing 
method can achieve better triangles. 

A
B

Fig. 6 Boundary triangles

(a) (b) (c)

Fig. 5 Simplification of cow model by 80%



7 Yuanfeng Zhou · Caiming Zhang 

 

 

 

 

 

 

 

 

  After each triangle constriction, we test the new triangles with conditions. Such as in Fig. 8, the shadow region contain a 
hidden cycle; performing such a triangle constriction would introduce a new cycle, which is undesirable. If the adjacent 
triangles of local region have a cycle, we combine the three triangles into one triangle. 

 

 

 

 

 

 

 

 

3.6 Algorithm description 

Heap sort method is used for sorting the triangles sequence by the constricting cost, and the triangles are saved from high 
cost to low cost. In each simplification step, the triangle with the least constricting cost will be constricted firstly. A 
triangle constricting sequence is built in memory which can record the constricted triangles. Then a progressive model can 
be set up and a simplified model can return to the original model with inverse operation. 

Algorithm Description: 

Step 1: For each triangle of original mesh, a temporary matrix iQ  can be computed by Eq.(5); 

Step 2: Computing constricting error matrix Q  for each triangle; 

Step 3: If a triangle is an inner triangle: 

            If 0
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, then the new point’s position is computed with Q ; 

            If 0
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, then the new point’s position is computed with Eq.(8); 

            If a triangle is a boundary triangle, the new point can be generated by the boundary points of this triangle; 

Step 4: Using Eq.(6) to compute the constricting error for each triangle, and insert each triangle into the triangle 
constriction heap queue; 

Step 5: ① Extract the top triangle in the heap queue and compute its Gauss curvature factor. Using a given threshold to 
estimate the triangle is a strong feature triangle or not. If it is, then the strong feature point can be denoted as the 
new point within constriction process. If it is not, then the new point can be obtained from constriction process. 

(a) (b) (c)

Fig. 7 Non-closed mesh simplification 
when triangles are coplanar

Fig. 8 (a) Adjacent triangles have a cycle; (b) 
Adjacent triangles have a hidden cycle 

(a) (b)
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              ② Update the temporary matrixes iQ  of the new triangles, and re-compute the constriction error of the new 
triangles and the adjacent triangles of them. Insert these triangles into the constriction queue. If the constriction 
error of one triangle is zero, then insert this triangle into the end of the triangles whose constriction errors are all 
zero; 

Step 6: If arrive the needed simplification ratio, the iteration will be stopped. Otherwise go to Step 5. 

  Fig. 9 gives an example for constructing a progressive model by the new method. The simplification ratio of (a), (b), (c) 
and (d) are 30%, 50%, 70% and 90%, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 

4 Experiments 

In this section, experiments are all implemented on PC with 2.8GHz Pentium(R) 4 CPU, 1GB memory. Fig. 10 shows an 
example for mesh simplification. New simplification method, QEM based on edge collapse [3] and QEM based on triangle 
constriction [8] are used to simplify the mesh model to 70% (the number of triangles after simplifying is 6792) and 95% 
(the number of triangles after simplifying is 1132). In Fig. 10, (a) is the original model; (b) and (c) are the results using 
method [3]; (d) and (e) are the results using method [8]; (f) and (g) are the results using new method. From Fig. 11 we can 
see, the simplification meshes by new method are more uniform. Fig. 12 shows the leg details in Fig. 11 with 70% 
simplification. (a) is method [3]; (b) is method [8]; (c) is the new method. Table 1 gives the square volume error, 
Hausdorff distance and simplification speed comparison of three methods. The square volume error is defined as: 

TT ( )iV v v v vΔ = ⋅ ⋅ = ∑QQ  

Hausdorff distance error is defined as: 

( , ) max{min{ ( , )}}
BA

Hausdorff A Bp Bp A
Dis A B d p p

∈∈
=  

  From Table. 1 we can see, simplification mesh based on new method has less square volume error than other two 
methods. In low simplification ratio, the Hausdorff distance error of new method is less than other two methods. Triangle 
constriction method can delete four triangles in one constriction step. For estimating Gauss curvature, New method is 
slower than method [8], however, is much faster than method [3]. 

5 Conclusion and Future Work 

This paper presents a new mesh simplification method based on triangle constriction. New method combines the square 
volume error with constraint (SVEC) and two feature factors: geometric shape factor and normal constraint factor to define 
triangle constricting error which substitute distance error of QEM. The triangle which located adjacent region is flatter, 
and the constricted triangle with bad shape and the error of square volume is less will be constricted first. Strong feature 
triangle is judged with Gauss curvature factor, for non-strong feature triangle, new vertex position is determined by 
minimizing the collapse error of mesh model. For strong feature triangle, new vertex is the strong feature vertex of the 
three triangle vertices. New method is simple, steady and can preserve mesh feature well. Comparing with existing 
methods, the simplification mesh based on new method has less visual difference with original model. The further work is 
using global mesh optimization for mesh simplification. 
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Fig. 10 Mesh simplification Triceratops model (11322 vertices, 22640 triangles) 
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 SVE (70％) SVE (95％) 70％ time spending (ms) 
Method [3] 1.157243e-5 5.668615e-5 547 
Method [8] 9.226872e-6 2.452733e-5 359 

New Method 6.127509e-6 1.825221e-5 375 
 Hausdorff distance (70％) Hausdorff distance (95％) 95％  time spending (ms)

Method [3] 1.012878e-3 5.823386e-2 750 
Method [8] 3.229115e-3 6.236649e-2 453 

New Method 2.556391e-3 8.732161e-2 469 

(a) (b) (c) 

Fig. 11 Model details of Triceratops with three simplification methods 

Table. 1 Simplification error and speed comparison of Triceratops model 


