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ABSTRACT
An elegant and efficient mesh clustering algorithm is pre-
sented. The faces of a polygonal mesh are divided into dif-
ferent clusters for mesh coarsening purpose by approximat-
ing the Centroidal Voronoi Tessellation of the mesh. The
mesh coarsening process after clustering can be done in an
isotropic or anisotropic fashion. The presented algorithm
improves previous techniques in local geometric operations
and parallel updates. The new algorithm is very simple but
is guaranteed to converge, and generates better approximat-
ing meshes with the same computation cost. Moreover, the
new algorithm is suitable for the variational shape approx-
imation problem with L2,1 distortion error metric and the
convergence is guaranteed. Examples demonstrating effi-
ciency of the new algorithm are also included in the paper.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling —Physically based modeling

Keywords
Mesh Clustering, Centroidal Voronoi Tessellation, Shape Ap-
proximation

1. INTRODUCTION
3D mesh models are used in many important areas such as
geometric modeling, computer animation, and CAD. With
the availability of powerful laser scanners, large and dense
meshes are easily acquired from physical world. However,
since full complexity of such models is not always required,
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coarsening a dense mesh, i.e., replacing the original mesh
with a simpler but close enough mesh, is a necessary pre-
processing step in many applications. Many mesh coars-
ening techniques have been presented, including the global
optimization approach [6] and remeshing for mesh coarsen-
ing [9, 5].

A third mesh coarsening approach is based on mesh clus-
tering, i.e., partitioning the faces or vertices of the mesh
into flat regions (called clusters) which are non-overlapping
and connected, and then building an approximating mesh
based on the clusters. The clustering process can be done
implicitly or explicitly [1]. There are quite a few papers dis-
cussing mesh approximation based on explicitly construct-
ing clusters. Clustering by approximating the Centroidal
Voronoi Tessellation (CVT) [2] on triangular meshes is first
discussed in [15]. After constructing the clusters, the mesh is
uniformly coarsened based on the clusters. Adaptive coars-
ening of a mesh based on clustering from Centroidal Voronoi
Tessellation is presented in [17]. An extension from uni-
form mesh coarsening [15] to anisotropic mesh coarsening
is discussed in [16]. A theoretical framework of variational
shape approximation based on optimal mesh clustering with
respect to some distortion error metric is presented in [1].
Especially, optimal clustering using L2,1 metric faithfully
captures the anisotropic nature of the mesh. A hierarchical
face clustering technique is developed in [12]. Many applica-
tions such as collision detection, surface simplification and
multiresolution radiosity benefit from this hierarchical clus-
tering technique. Clustering faces in a set of characteristic
regions to build a higher-level description of mesh geome-
try is explored in [8, 14, 11]. Accelerating general iterative
clustering algorithms for meshes on GPU is discussed in [7].

This paper is inspired by the work presented in [15, 16, 1].
The goal here is to do clustering by approximating Con-
strained Centroidal Voronoi Tessellation [3] or Centroidal
Voronoi Tessellation [2] on a polygonal mesh. Starting with
an initial partitioning of the mesh, the new algorithm iter-
atively tests the boundary edges between different clusters
to update the cluster configuration until the boundary edges
do not change any more. This boundary testing algorithm is
also discussed in [15, 16]. But we derive a simpler algorithm



Figure 1: Clustering and approximation results on a hand model: the left-most figure shows the 500 clusters

generated by approximating CVT on the mesh; the second from left figure is the uniformly coarsened mesh;

the third from left figure has 98 clusters in different colors while using L2,1 metric for clustering; the right-most

figure is the approximating polygonal mesh.

by presenting a more rigorous mathematical analysis. The
new algorithm is intuitive in that it only needs to compare
the distances from one face centroid to centroids of adjacent
clusters. The new algorithm is also extended for optimal ge-
ometric partitioning with respect to L2,1 in [1]. The exciting
result is that the new algorithm is guaranteed to converge
while the algorithm based on Lloyd method in [1] is not.

The remaining part of the paper is organized as follows: Sec-
tion 2 gives some basics on Centroidal Voronoi Tessellation
and its extension; Section 3 presents an analysis and the new
clustering algorithms; Section 4 proposes some strategies to
make implementation more efficient; test results are shown
in Section 5; the conclusion is given in Section 6.

2. CENTROIDAL VORONOI TESSELLATION
Voronoi diagrams or Voronoi tessellation are essential struc-
tures in computational geometry and have been used in
many important applications [13]. Given a domain Ω in
ℜn and a set of points {zi}

k
i=1, the corresponding Voronoi

diagram {Vi}
k
i=1 is a partition of Ω such that:

(1) Vi ∩ Vj = ∅ and ∪k
i=1V i = Ω , and

(2) Vi = {x ∈ Ω | |x − zi| < |x − zj | for j = 1, 2, .., k, j 6= i}

{zi}
k
i=1 are called the generators and {Vi}

k
i=1 the Voronoi

regions.

Centroidal Voronoi Tessellation (CVT) is an extension of
Voronoi Tessellation by requiring that the generators are
also the mass centroids of the Voronoi regions. Given a
density function ρ(x) on V , the mass centroid z∗ of V is
defined as

z
∗ =

R

V
xρ(x)dx

R

V
ρ(x)dx

Specifically, CVT of Ω is a minimizer of the energy functional
[2] :

F (z) =

n
X

i=1

Z

Vi

ρ(x)|x− zi|
2
dx (1)

where zi ∈ Ω.

Constrained Centroidal Voronoi Tessellation [3] is the re-
striction of CVT to a surface. If a density function ρ(x) is
defined on a surface S, we can define the constrained mass
centroid zc of a region V ⊆ S as the solution to the following
minimization problem:

min
z∈S

Z

V

ρ(x)|x− z|2dx (2)

A Voronoi Tessellation on a surface S is a Constrained Cen-
troidal Voronoi Tessellation (CCVT) if and only if the gen-
erators zi associated with each Voronoi region Vi are also
the constrained mass centroid of Vi. Several applications of
CCVT can be found in [3]. Furthermore, CCVT of surface
S is also the minimizer of an energy functional similar to the
one defined in eq. (1) except now zi ∈ S [3]. Note that al-
though x and zi are points of the surface S, CCVT uses the
Euclidean distance instead of the geodesic distance. Several
algorithms for constructing CVT and CCVT, such as the
Lloyd method and k-means method, are presented in [2, 3].

In this paper, we will give a rigorous analysis of constructing
CCVT on a polygonal mesh. We choose analyzing discrete
CCVT because discrete CVT can be viewed as a special case
of discrete CCVT. Our derivations are presented below.

3. DISCRETE CONSTRAINED CENTROIDAL
VORONOI TESSELLATION ON A POLYG-
ONAL MESH

Given a polygonal mesh M and a cluster number n, we
will try to divide the faces of M into n connected sets of
faces Vi (i = 1, 2, . . . , n) by constructing a CCVT on M .
These clusters {Vi} form a discrete CCVT on the mesh M .
Although discrete CCVT can be defined for any polygonal
mesh, we will concentrate on triangular meshes in this pa-
per.

In the continuous setting, CCVT is the minimizer of an en-
ergy functional similar to the one defined in eq. (1). For the
discrete version of CCVT on a triangular mesh M , the re-
gion Vi is a connected collection of triangles. We can rewrite



the energy functional as

F (z) =

n
X

i=1

„

X

Tk∈Vi

Z

Tk

ρ(x)|x − zi|
2
dx

«

where Tk’s are triangles in Vi. In this paper, we only consider
the uniform case, i.e., ρ(x) = 1. Then the energy functional
is

F (z) =
n

X

i=1

„

X

Tk∈Vi

Z

Tk

|x − zi|
2
dx

«

(3)

In fact, the following equation holds

Z

Tk

|x − zi|
2
dx = |xk − zi|

2|Tk| +
|Tk|

12

3
X

j=1

|xj

k − xk|
2 (4)

where |Tk| is the area of triangle Tk with vertices x
j

k(j =
1, 2, 3) and xk is the centroid of Tk. This equality is a spe-
cial case of [10]. In the following, σk is used to denote the
constant term for triangle Tk. Substituting the integral in
eq. (3) with eq. (4), we have

F (z) =
n

X

i=1

„

X

Tk∈Vi

|xk − zi|
2|Tk|

«

+
X

Tk∈M

σk (5)

The last constant item is not essential in subsequent work,
hence, will be omitted for F (z). The constrained mass cen-
troid zi of Vi on a continuous surface S is defined as a so-
lution to the minimization problem defined in eq. (2) with
V replaced with Vi. For discrete CCVT on M , we can use
the same argument as in reformulating F (z) to rewrite the
minimization problem as:

min
z∈M

„

X

Tk∈Vi

|xk − z|2|Tk| +
X

Tk∈Vi

σk

«

The last constant item is not essential in the minimization
process and, hence, will be omitted too. Furthermore, the
above equation without the constant can be simplified as

min
z∈M

„

X

Tk∈Vi

|xk − z̄i|
2|Tk| +

X

Tk∈Vi

|z̄i − z|2|Tk|

«

(6)

where z̄i =
P

Tk∈Vi
|Tk|xk

P

Tk∈Vi
|Tk|

is the mass centroid of Vi.

Eq. (6) can be derived by the fact that
P

Tk∈Vi
|Tk|(xk −

z̄i) = 0. Thus the constrained mass centroid of Vi is the
point on M that is closest to its mass centroid z̄i. Eqs. (5)
and (6) are the counterparts of eqs. (1) and (2) in the dis-
crete case. Before we describe the algorithm, two important
properties have to be highlighted first.

Property 3.1. Let {(Vi, zi)} be the current cluster con-
figuration where zi is the constrained mass centroid of Vi,
and for each triangle Tr ∈ Vi’s, let xr be its centroid. If
|xk − zq |

2 < |xk − zp|
2 for some triangle Tk ∈ Vp and Vq

adjacent to Vp, then

F
′(z) < F (z)

where

F
′(z) =

n
X

i=1

„

X

Tk∈V ′

i

|xk − z
′
i|

2|Tk|

«

, (7)

z′
i is the constrained mass center of V ′

i and

V
′

i =

8

<

:

Vi i 6= p, q

Vp − {Tk} i = p

Vq ∪ {Tk} i = q .

Note that since |xk − zq |
2 < |xk − zp|

2, it is clear that

X

Tj∈Vp−{Tk}

|xj − zp|
2|Tj | +

X

Tj∈Vq∪{Tk}

|xj − zq |
2|Tj |

<
X

Tj∈Vp

|xj − zp|
2|Tj | +

X

Tj∈Vq

|xj − zq|
2|Tj |.

From the minimization property of the constrained mass
centroid z′

i, the following inequality holds:

X

Tj∈V ′
t

|xj − z
′
t|

2|Tj | ≤
X

Tj∈V ′
t

|xj − zt|
2|Tj | , t = p, q

Combining these two steps, F ′(z) < F (z) follows readily.

Property 3.2. Let {(Vi, zi)} be the current cluster con-
figuration, and triangles Tk ∈ Vp and Ts ∈ Vq with cen-
troids xk and xs, respectively, share a common edge. If
|xk − zp|

2 > |xk − zq |
2, |xs − zq |

2 > |xs − zp|
2 and |xk −

zp|
2|Tk|+ |xs −zp|

2|Ts| < |xk −zq|
2|Tk|+ |xs −zq |

2|Ts| then

F
′(z) < F (z)

where F ′(z) is defined in eq. (7).

This property can easily be proved following an argument
similar to that of property 3.1. In fact, reassigning either Tk

or Ts will lower the value of the energy functional F (z). In
a greedy spirit, we simply choose the smaller one, which is
reflected by the third given inequality. One can not simply
assign Tk to Vq and Ts to Vp because the result could violate
the connectivity requirement for clusters.

3.1 Energy minimization
Recall that a discrete CCVT of a triangular mesh M is a
minimizer of the discrete energy functional (5). In the fol-
lowing we propose an algorithm to iteratively reduce the
value of F (z) until a limit point is reached. The main idea
of the algorithm is to update the clusters by comparing dis-
tances from triangle centroids of a cluster to mass centroids
of adjacent clusters. The triangles that have to be considered
are just boundary triangles, i.e., triangles sharing a cluster
edge. A mesh edge is called a cluster edge if it is shared by
two triangle faces of different clusters. The distance com-
paring procedure is stated below.

Let edge elr be a cluster edge in the current cluster configu-
ration {(Vi, zi)}. elr is shared by triangles Tl and Tr, where
Tl ∈ Vp and Tr ∈ Vq are in different clusters. Let xl and xr

be the centroids of Tl and Tr, respectively. Denote |xl−zp|
2,

|xl−zq|
2, |xr −zp|

2 and |xr −zq|
2 with dlp, dlq, drp and drq,

respectively. We need to compare dlp with dlq, and drp with
drq, totally four cases. Figure 2 illustrates these 4 cases.



Figure 2: Illustration of 4 cases in distance comparison. The presence of an arrow indicates direction of the

movement after the comparison. These are cases 1, 2, 3 and 4 from left to right in that order.

1. dlp ≤ dlq and drp ≥ drq.
Do nothing. This is exactly what the convergent state
should be.

2. dlp ≤ dlq and drp < drq .
Move Tr to Vp. According to property 3.1, this move-
ment lowers the value of the energy functional F (z).

3. dlp > dlq and drp ≥ drq .
Move Tl to Vq. The new value of the energy functional
F (z) will be lower, according to property 3.1.

4. dlp > dlq and drp < drq .
One more test is needed to decide which triangle should
be moved.

- If dlp|Tl|+drp|Tr| < dlq|Tl|+drq|Tr|, move Tr to
Vp.

- Otherwise, move Tl to Vq.

The value of the energy functional F (z) will be lower
after the movement, according to property 3.2.

Instead of updating the mass centroid of each cluster imme-
diately after distance comparison for each cluster edge, it is
better to do updating after the distance comparison for all
the cluster edges. We call such a scheme configuration-wise
updating. Its correctness follows from the optimality of the
constrained mass centroid and properties 3.1 and 3.2.

With a valid initial cluster configuration, we perform dis-
tance comparison for each cluster edge. After completing
the distance comparison process for all cluster edges, we up-
date the mass centroids of clusters and update the cluster
edge set. This process is iterated until the cluster edge set
no longer changes.

It is obvious that the energy functional F (z) has a global
minimum on the triangular mesh M . As F (z) decreases
strictly after each configuration-wise updating, it is guaran-
teed to converge to a limit point. The ”minimum”it achieves
might not be the global minimum of F (z). For our clustering
goal, this doesn’t matter much. The limit cluster configura-
tion always gives a very good clustering of M .

Remark: Although our results are for discrete CCVT on
M , there are parallel results for discrete CVD on M ⊂ ℜ3.

Because the mass centroid z̄i =
P

Tk∈Vi
|Tk|xk

P

Tk∈Vi
|Tk|

of a cluster Vi

on a triangular mesh M can also be viewed as a solution to
the minimization problem

min
z∈ℜ3

X

Tk∈Vi

|xk − z|2|Tk|

This is true because we have
X

Tk∈Vi

|xk − z|2|Tk| =
X

Tk∈Vi

|xk − z̄i|
2|Tk|+

X

Tk∈Vi

|z̄i − z|2|Tk|

Thus it is obvious that z̄i is the solution to this minimization
problem. We present the approximated results by CVT on
the bunny model in Figure 3. The discrete CVT method
runs much faster than the discrete CCVT method because
the CCVT method needs to find the closest points in each
iteration. Our examples in this paper are mainly the results
from the discrete CVT method.

3.2 Boundary testing algorithm for clustering
with L2,1 metric

A novel metric L2,1 for geometric partitioning of a trian-
gular mesh M is well studied in [1]. The optimal geometric
partition of M for a given partition number n can be defined
as the minimizer of the distortion error:

E(M, P ) =
n

X

i=1

X

Tk∈Ri

|nk − Ni|
2|Tk|

where Ri’s are connected collections of triangles, nk is the
unit normal of triangle Tk and Ni is the normalized vector
of

P

Tk∈Ri
nk|Tk|.

This functional is very similar to the cost functional for
CCVT. In fact, there are parallel results for this distortion
error due to the optimality of Ni . Precisely, Ni is the so-
lution to the minimization problem:

min
|N|=1

X

Tk∈Ri

|nk − N|2|Tk|

Note that, similar to eq. (6), we have
X

Tk∈Ri

|nk−N|2|Tk| =
X

Tk∈Ri

|nk−Ni|
2|Tk|+

X

Tk∈Ri

|Ni−N|2|Tk|

where Ni =
P

Tk∈Ri
nk|Tk|

P

Tk∈Ri
|Tk|

. And it is obvious that

|Ni −Ni|
2 = min

|N|=1
|N − Ni|

2

Thus the minimization property of Ni follows. With the
same arguments as above, one can design a similar configuration-
wise updating algorithm for L2,1 metric which is guaranteed
to converge.

4. IMPLEMENTATION
Several strategies can be used to accelerate the clustering
process. Our iterative algorithm always begins with a valid
initial cluster configuration, i.e., the clusters are connected



Models #F (org) #V (org) #V (approx) time(s) min∠ Ave. min ∠ ∠ < 30◦ Qmin Qave

hand 72.9k 36.6k 1000 0.102 31.177 49.5895 0 0.580444 0.868164
bunny 69.4k 34.8k 500 0.095 31.3123 50.321 0 0.581436 0.879907
statue 272k 136k 800 1.457 32.0611 51.9163 0 0.541623 0.900297

Table 1: Results for uniform mesh coarsening

and non-overlapping. We apply the hierarchical face cluster-
ing idea in [12] to design our cluster initialization. Hierar-
chical face clustering respects the connected requirement of
clusters strictly and builds such a hierarchical structure on
the dual graph of the mesh. It then applies edge contraction
on the dual graph iteratively. The edge chosen for contrac-
tion is based on a cost function. In [12], the cost function
is the planarity criterion. For our algorithm, we define the
cost function for an edge eij that connects (Vi, zi, |Vi|) and
(Vj , zj , |Vj |) as:

F (eij) =
|zij − zi|

2|Vi| + |zij − zj |
2|Vj |

|Vi| + |Vj |

where |Vp| =
P

Tk∈Vp
|Tk| (p = i, j), zi and zj are the ”mass

centroids” of Vi and Vj , respectively, and zij =
zi|Vi|+zj|Vj |

|Vi|+|Vj |
.

zi depends on our distortion error metric. It is the mass cen-
troid for the CVT constructing case and is the unit normal
of the proxy plane for the optimal geometric partitioning
case. The edge cost function F (eij) is just the energy func-
tional F (z) when there are only two faces Vi and Vj . Our
hierarchical initialization can generates exactly n connected
clusters and accelerates the clustering convergence.

Another accelerating strategy is to keep tracking whether a
cluster is about to settle down. This is useful because only
a few cluster edges need to be updated as the algorithm
proceeds to convergence. One more issue is the validity of
clusters. As stated before, a valid cluster must be connected,
but our algorithm does not guarantee that the resulting clus-
ters are connected. When such case happens, reassignment
of clusters are performed .

Depending on the clustering criteria, a mesh M can either
be uniformly coarsened after the construction of a discrete
CVT or CCVT, or be approximated in an anisotropic fashion
following the construction of an optimal geometric partition
with respect to an L2,1 metric. Uniform mesh coarsening
and anisotropic approximation for L2,1 metric are discussed
in details in [15, 16] and [1], respectively.

5. RESULTS
The algorithms presented in this paper are implemented on
a laptop computer with 1G memory and Intel Core 2 CPU
T7200 under Windows. Performance data for uniform mesh
coarsening applications are collected in Table 1. Experi-
ments for anisotropic shape approximation are also carried
out. Notice that the new algorithms run very fast. It takes
only a few seconds to get the job done for a mesh with more
than 200k faces.

For the uniform mesh coarsening application, the quality of
the output mesh M is measured in several aspects, as listed
in Table 1. ’min ∠’ stands for the minimum angle degree of
the triangle faces in M . Similarly, ’Ave. min ∠’ computes

the average minimum angle degree. ’∠ < 30◦’ counts the
number of angles smaller than 30 degrees. ’Qmin’ (minimal
quality) and ’Qave’ (average quality) measure the triangle
shapes. Both terms are defined in [4]. The examples have
also been tested using the program provided by the authors
of [15, 16]. The execution times for models bunny and hand
are 0.328s and 0.266s, respectively, which are slower than the
new algorithm. However, the execution times on the statue
modelis 0.954s, which is better than the new algorithm. But
the output meshes of the new algorithms always have better
mesh quality.

The new algorithm for anisotropic approximation with L2,1

metric runs very fast and gives good approximation results.
It takes 1.542s to generate 98 clusters on the hand model,
0.032s for 32 clusters on the fandisk model and 1.8327s for
120 clusters on the monster model. This shows that the
new algorithm is practical. The new algorithm contracts
one face for each cluster. The anisotropic nature of the L2,1

error metric is demonstrated in these examples.

6. CONCLUSIONS
In this paper we propose a novel clustering algorithm for
a polygonal mesh M by approximating CVT or CCVT on
M . The new clustering algorithm is also suitable for clus-
tering construction with respect to the L2,1 error metric.
We present a rigorous mathematical analysis for the new
algorithm. Our algorithm possesses the intrinsic distance
comparison as the local geometric operation, which is sim-
pler and more intuitive than those used in [15, 16]. More-
over, our algorithm updates the cluster configuration only
after comparing all cluster edges. The proposed algorithm
based on Lloyd method for constructing the optimal geo-
metric partition in [1] is not guaranteed to converge. But
the new algorithm is proved to converge for constructing dis-
crete CCVT and CVT on M or clustering with L2,1 metric.
Although the new algorithm runs more or less as those in
[16], the coarse mesh produced by the new algorithm has a
better mesh quality. Depending on the clustering criteria,
we show examples for both isotropic and anisotropic mesh
approximations. The anisotropic mesh approximation by
using CVT is also investigated in [16]. It seems to be an
interesting problem to generalize the new algorithm for the
anisotropic case. This will be investigated in the future.
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