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Abstract A sharp estimate is given for the first order absolute moment of Meyer-
Konig and Zeller operators M,,. This estimate is then used to prove convergence
of approximation of a class of absolutely continuous functions by the operators
M,,. The condition considered here is weaker than the condition considered in a
previous paper and the rate of convergence we obtain is asymptotically the best
possible.

1 Introduction

For a function f defined on [0, 1], the Meyer-Konig and Zeller operators M,, [5]
are defined by
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Kn,w(t) = 1, t= 1,
0, t=0.
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Then operators M,, have the following Lebesgue-Stieltjes integral representation

0= [ PO deKa(2). (2)

Estimates of the first order absolute moment of the approximation operators play
a key role in various investigations of convergence of the approximation operators
(for example, cf. [3, 4, 6, 7, 8]). In this paper we give a sharp estimate for the
first order absolute moment of the operators M,,. Furthermore, by means of this
estimate and some analysis techniques we establish a convergence theorem on the
approximation of a class of absolutely continuous functions by the operators M,,.
The rate of convergence we obtain in this theorem is essentially the best possible.

2 Results and Proofs

For the first order absolute moment of Meyer-Konig and Zeller operators M,,, we
have the following result.

Theorem 1. For z € (0,1], we have

Ma(lt — |, 2) = %Jro(n 1%)' (3)

Proof. If z =1, (3) is true. Let 0 < z < 1 and write r =z /(1 — z). By the fact
that M,,(t,z) = x we have
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Next we estimate

9 < ) [nr] +1 )n+1‘

Using Stirling’s formula [9] n! = v27wn(n/e)"e?, 0< 0 < 1/12n, we get

9 ( n + [nr] ) _ 2(n + [nr])! _ \/?(n—i— [nr])"+[m}+1/2691702793’ )

n n! [nr]! m pntl/2 [pp]lnrl+1/2

! 0<by < — ! , 0< s < !
12(n + [nr])’ > 12n 52 12[nr]’

Set ¢(0) = 6; — 05 — 03, simple calculation derives

where 0 < 01 <

1 1
12n  12[nr]

< ¢(h) < 0. (6)

Since r = z/(1 — z), by straightforward calculation we have

[nr]+1/2
rl+1/201 _ pyn — "
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Furthermore we find that

nt1/2 [pp]lnrl+1/2 (1 4 p)ntler]+1/2 - %
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Thus it follows from (5-8) that
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Then

v\ [nrl+1/2 v —(n+[nr]+1/2)
A(n,r) = (1 + —) <1 + > :
[nr] n + [nr]

Thus

log (n,) = (1r] + 1/2)1og (14 2 ) (o forl o+ 1/2)tog (14— )

= ([nr] +1/2) (ﬁ +0 <ﬁ>2> —(n+[nr]+1/2) <n+”[nr] +0 (n +V[nr]>2>
=0 ([nr]fl) ,

which means that

A(n,r) =140 ([ 7). (11)

Hence from (4), (9), (10), (11) and the fact that e“®) = 14+ O(n~! + [nr] 1), we
get

M, (t —z|,z) = 2 < n +n[nr] ) :L'[mHl(l _ m)n+1
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and Theorem 1 is proved.

Next we consider approximation of the operators M,, for a class of absolutely
continuous functions ® pp defined by

dpp = {f‘ ft)—f(0) = /Oth(u)du, t € [0,1],h is bounded on [0, 1],

and h(z+), h(z—) exist at z € (0,1)}.
The following three quantities are needed in this paper. The readers are referred

to Reference [8, p. 244] for their basic properties.

Qm*(ha(sl) = sup |h(t) - h(ib)|, Qm+(h762) = sup |h(t) - h(ib)|,
te[z—d1, ] te[z, z+d2]



Q({L‘, ha )‘) = sup ‘h(t) - h(ﬁL‘)‘,
telz—xz /N, z+(1—xz)/A]

where h is bounded on [0, 1], z € [0,1] is fixed, 0 < §; <z, 0<d <1z, and
A>1.

We now state the approximation theorem as follows.

Theorem 2. Let f € ®pp and write p = h(z+) — h(z—). Then for n suffi-
ciently large we have

1— 4— 925 Y C
Ma(f,2) ~ o) - w2 < nm;n(z,hm,kwn"jx. (12)

where C is a constant independent of n and z, [\/n| is the greatest integer not
exceeding \/n and hy(t) is defined by

h(t) — h(z+), z<t<1
hy(t) = 0, u=z . (13)
h(t) — h(z—), 0<t< =z,
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In view of the fact that Q(z, hy, k) = 0 (n — o0), from Theorem 2 we

Elky
i

get the asymptotic formula

M,(f,2) = 1) + Lk ol 12,

if f satisfies the assumptions of Theorem 2. In particular, (12) is true for f €
DBVI[0,1] ( that is, f is differentiable function whose derivative is of bounded
variation, cf. [3]), since the class of functions DBV[0,1] is a subclass of the class
® . We also point out that Abel [1] presented the complete asymptotic expansion
for the operators M,, under much stronger conditions.

Moreover, it is of interest to consider some further results. Let f satisfy the
assumptions of Theorem 2 and Q(z, hy, A) = O(1/A)® for some a > 0. Then from
Theorem 2 we get

Vz(l — ) O(n~tV/2) if0<a<lorl<a<?2
Mn(f,) = (@) + 5=t g Ollogvajn), oo
2mn O(n’3/2), if a>2



Proof of Theorem 2.

By Bojanic decomposition we have

+0, (u) (h(z) — MERFAELY

where sgn(u) is symbolic function, h, is as defined in (13), and
1, t==x
5x(t)—{ 0 thz
t

t
Note that M, (t,z) = =, / sgn(u — z)du = |t — z|, and / dz(u)du = 0. From
Jxr J

(14) it follows by simple computation that

= /t h(u)du = ha+) — hz—) |t —z| + /t ha(u)du.

2 Jz

Thus

My (f,z) — f(z) = M=F) . ME=) vt — 2l ) + M, (/t h (w)du, m) . (15)

By Lebesgue-Stieltjes integral representation (2) we have

M, </mt hy (u)du, m) = /01 </mt hx(u)du> di Ky (1)

where

L(h,n,x) ) diKn (1),

A
Q(h,n,z) = < )dt a(t)-
K,

Integration by parts and note that 2(0) =0, hz(z) =0 we have

x
L(h,n,m):/ Ko (£)ha(t)dt /Km (hgyx D)t (17)
JO .
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_ / K o(t)Q (hayz — £)dt + / K o(t)Q_(hoye — 8)dt.  (18)
J0 Jr—x/\/n

By Lemma 2.1 of [2] there holds inequality

2z ) z(1 — m)Ql

M,((t—z)%z) < (1

Using this inequality, for 0 < ¢t < z we deduce that

Kol < T mnsle) < ¥ (M) S—

Tz —t1
M, ((u — )% ) 1 < 2z ) z(1—z)?  2z(1-1x)?
< 1+ < .
(z —t)? (z —t)? n—1 n+1 n(z —t)?

Thus by replacement of variable t = z — xz/u we have

z—z/\/n B 9 o)y B
/ Kno(t)Qy (g, z — t)dt < 2z(1 - z)” / Mdt
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= 21 -2) / Qy (hg,z/u)du
2 [vn]
S— 2(1 Z Qy—(ha, z/k). (19)

On the other hand, by inequality K, »(t) <1 and the monotonicity of Q;_(hg, A),
it follows that
9p V7

(20)

From (19) and (20) and using the basic property Q;_(hz, ) < Q(z, hg,z/A) (cf
(8, p. 244]) we get

9 — 27 + 22 |
L(h,n,z) < 222+ 20 ZQ 2, ha, k). (21)
A similar estimate gives
2 — 9 2 [\F
|Q(h,n, )| Z Qz, hy, k). (22)

Theorem 2 now follows from Eq. (15), (3), (16), (21), and (22).



3 Asymptotic Optimality of the Estimate in Theorem 2

In this section we show that the estimate in Theorem 2 is essentially the best
possible.

Take function f(t) = [t—1/2| € ®pp at point z = 1/2 € (0,1). Then f(1/2) =
0,r=x/(1 =) =1, h(u) = sgn(u — 1/2), hyj5(u) =0, h(z+) — h(z—) = 2, and
(12) becomes

1 2120
M,(|t —1/2|,1/2) — . 23
M- 1/2172) - o= < 25 (23)
On the other hand, by Straightforward computation and Stirling’s formula [9]
11— (2 1/2 n 6 < 0 _>
nt=(@2m) /o) 31 << 1)
we get
n+n 1 2n+2 (2’!7,)' 1 2n+1
Mn(t_1/2|51/2)_2< n ) <§> —m<§>
/57 2 2n+1
_ 271'2”(271/6) T; <%> n 6917202 _ 2 1 6017202’ (24)
(\/27‘(”(”/6)") VT
where
<6 < ! ! <b < !
2n+1 ' 240’ 12041 7 120
Simple computation gives
1 2 1 1 1 1
e %y < - < 25
on “12n+1 2an -2 ' Gn 2Un+1 " 6n (25)
Thus, from (24) and (25) we have
1 1 1 et
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w(E=1/201/2) = 5o = o (1= ) = T
1 20,—96 1 1/9 1
2 71 [on _ (26)

> > = .
2/mn €220 T 2,/7n el/2  18\/men3/?
Egs. (23) and (26) mean that for f(¢) = |t — 1/2|, the following inequality holds

2Ry R) < (1) -1 (3) - o

(27)
[y
< 2 Y (L by, k) + 22
k=1



Inequality (27) shows that the estimate (12) in Theorem 2 is asymptotically opti-

mal.
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