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Abstract

Highlight line model is a powerful tool in assessing the
quality of a surface. Its presence increases the flexibilityof
an interactive design environment. In this paper, a method
to generate a highlight line model on an arbitrary triangu-
lar mesh is presented. Based on the highlight line model, a
fairing technique to remove local irregularities of a trian-
gular mesh is then presented. The fairing is done by solving
a minimization problem and performing an iterative proce-
dure. The new technique improves not only the shape qual-
ity of the mesh surface, but the highlight line model as well.
It provides an intuitive and yet suitable method for locally
repairing a triangular mesh.

1 Introduction

The highlight line model [3] is a powerful tool in assess-
ing the quality of non-uniform rational B-spline (NURBS)
surfaces, and has become increasingly popular in engineer-
ing design, especially in the design of automotive-body sur-
faces. Actually it has already been included as a design tool
in several commercial geometric modeling systems, such as
EDS’ Unigraphics and Tsinghua University’s TiGems. Re-
cently there is a strong demand for efficient, dynamic high-
light lines generation from the graphics side and video en-
tertainment industry as well [28], because highlight lines
can aid depth perception and, consequently, realism of a
scene. Hence, we have a design tool that can walk hand
in hand to add unprecedented realism to free-form surfaces
for artistic rendering and 3D modeling.

While NURBS surfaces continue to be a major repre-
sentation scheme in 3D modeling, triangular meshes have
gained much popularity in graphics and geometric model-
ing recently [5]. Triangular meshes have advantages over
traditional parametric surfaces in several aspects. Unlike
traditional parametric surfaces, the definition of a triangu-
lar mesh does not require a rectangular parametric domain.

There is no restriction on the shape and topology of a tri-
angular mesh. A triangular mesh is all that is needed to
represent any solid object or surface. On the other hand, to
represent a complicated solid object or surface using tradi-
tional parametric schemes, one usually needs several para-
metric surfaces and this causes problems such as continuity
and smoothness between different surfaces. Besides, mod-
ern graphics hardware is optimized to render triangles, mak-
ing triangular meshes even more important in the graphics
processing pipeline.

Triangular meshes have already been used as a primary
surface/solid representation scheme in many areas, such as
reverse engineering, rapid prototyping, conceptual design,
and simulation, with three-dimensional scanners being a
standard source for acquiring geometric data. There are
other ways to produce a triangular mesh as well. Triangu-
lation of free form surfaces is usually necessary for render-
ing or manufacturing purpose. Subdivision schemes, which
provide a new way to generate surfaces, may lead to trian-
gular meshes as well, and have been used in some games
and three-dimensional cartoons.

Our goal here is to make the highlight line model avail-
able for triangular meshes so that it is possible to visually
assess the quality of a triangular mesh, and to develop tech-
niques to optimize the mesh faces where quality of the mesh
is not satisfactory. With the comprehensive applications of
triangular meshes, this research certainly will bring greater
flexibility to both the manufacturing and entertainment in-
dustries.1.1 Previous works

During the past decade, various techniques have been
developed to improve mesh surface quality. These tech-
niques, referred to asmesh smoothing, perform their tasks
by changing the positions of mesh vertices without affecting
their connectivity. Among them,filtering techniquesitera-
tively apply local filters to mesh vertices to obtain their new
positions, and evolve the mesh into desired shape. Taubin



[21] defined the Laplacian operator on mesh vertices which
can be utilized in smoothing. To attenuate the shrinkage
of the mesh induced by such Laplacian filter, Taubin[21]
proposed to alternately apply Laplacian filters with two
different scale factors. Variants of Laplacian smoothing
(e.g., [22][14]) have been proposed for improved perfor-
mance such as automatic anti-shrinking effects. Other filter-
ing techniques such asWiener filters([17][1]) andbilateral
filters([11][9]) have also been adapted from image smooth-
ing techniques to perform mesh smoothing.

Another class of mesh smoothing techniques, thegeo-
metric flow methods, models the movement of mesh ver-
tices with equation�tV = F(V; t), where�tV represents
the velocity of vertexV at time t, andF(V; t) is a func-
tion of the geometric information of the mesh at that time.
The equation is solved iteratively to obtain the desired mesh
shape. Desbrun et al. [8] proposed thediffusion flow, withF(V; t) being the discrete Laplacian ofV, and solved the
equation with an implicit integration approach for improved
stability and efficiency. Also proposed in [8] is themean
curvature flow, whereF(V; t) is the mean curvature normal
atV. Other geometric flow methods (e.g., [15][29][4])with
different choices ofF(V; t) have been developed.

To preserve the geometric features such as edges and cor-
ners while smoothing the mesh,anisotropic diffusion meth-
odsare developed. The basic idea is to smooth the mesh sur-
face in a certain direction and retain or enhance sharp fea-
tures in another direction. Clarenz et al.[7] proposed a diffu-
sion tensor defined from the principal directions and princi-
pal curvatures of the surface to perform feature-preserving
mesh smoothing. Bajaj and Xu[2] developed an anisotropic
scheme to smooth the mesh surface as well as higher or-
der functions on the surface. Hildebrandt and Polthier[10]
presented an anisotropic diffusion smoothing method that
preserves non-linear geometric features.

The above techniques modify vertex positions directly.
Instead,normal filtering techniquesfirst smooth the mesh
normals, and evolve the mesh to fit the modified nor-
mals. Yagou et al. [26] applied mean and median filter-
ing schemes to face normals of meshes to obtain a smooth
normal field. Ohtake et al. [16] developed an adaptive and
anisotropic Gaussian filter acting on the mesh face normals
for normal smoothing. In the work of Tasdizen et al.[20],
normal smoothing and subsequent surface reconstruction is
performed in a level-set setting.

Besides,energy minimizationis also used to perform
mesh smoothing. The idea is to minimize an energy func-
tional that penalizes unaesthetic behavior of the mesh shape.
Welch and Witkin [23] constructed a fair triangular mesh by
minimizing the squared principal curvature energy. Kobbelt
[12] proposed the technique ofdiscrete fairing, which uses
energy minimization in constructing a fair, refined mesh that
interpolates the vertices of a given original mesh. This work

was extended by Kobbelt et al. [13] to meshes of arbitrary
connectivity for mesh smoothing in a multi-resolution mod-
eling environment.

Last but not least, some other techniques smooth meshes
by solving high order partial differential equations (PDE),
which characterize the properties of the meshes with high
quality shape. Schneider and Kobbelt[18] presented an al-
gorithm to create fair mesh surfaces with subdivision con-
nectivity satisfying G1 boundary conditions, by solving a
fourth-order non-linear PDE. Later they extended the work
onto irregular meshes with the same PDE [19]. Xu et al.
[25] used various non-linear PDE to perform surface mod-
eling tasks such as free-form mesh surface fitting with given
boundary conditions.

Depending on their goals, mesh smoothing techniques
can be classified into two categories. The first one,mesh
denoising, tries to smooth out the noises at vertex positions
acquired during the generation of meshes (e.g., noises in
measured data produced by a range scanner). The other one
aims to produce a mesh surface that satisfies certain aes-
thetic requirements (i.e., a fair mesh), and is usually called
mesh fairing. In this paper, we improve the mesh surface
quality and construct fair meshes with the help of highlight
line models. Our method falls into the category of mesh
fairing.1.2 Contributions

In this paper, we generalize the highlight line model de-
fined for NURBS surfaces to highlight line model on ar-
bitrary triangular meshes, and propose an efficient method
for the construction of the model. With the highlight line
model, it is easier to identify shape irregularities of a trian-
gular mesh. Furthermore, we propose a method to remove
local irregularities identified with the highlight lines, and
produce a new mesh with better surface quality and high-
light line model. Our method iteratively moves the mesh
vertices by minimizing a target function which measures the
shape quality of the mesh surface as well as the highlight
line model. Note that for triangular meshes, irregularity can
also refer to irregular distributions of vertices over the mesh
surface. In this paper we do not consider such irregularities,
and we only remove irregularities of mesh surface shape.

The rest of this paper is organized as follows. Section
2 introduces the highlight line model for NURBS surfaces
and its generalization to triangular meshes, and proposes a
method to compute it. A method for improving the qual-
ity of a triangular mesh using highlight lines is presented
in Section 3. Implementation details and examples are pro-
vided in Section 4. Concluding remarks and possible future
research directions are discussed in Section 5.
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2 Highlight line model on triangular meshes2.1 Highlight line model on NURBS sur-fa
es and triangular meshes
Given a NURBS surfaceP(u; v), a highlight line is the

imprint of a linear light source positioned above the surface.
Let L(t) be the parametric representation of a linear light
source L(t) = A+ tH; t 2 R;
whereA is a point onL(t), andH is a vector defining the
direction ofL(t). The imprint ofL(t) on surfaceP(u; v)
is a set of points onP(u; v), for which the perpendicular
distance between the surface normal andL(t) is zero. More
precisely, for any pointB on P(u; v), denote byNB the
surface normal atB. Then the line throughB along direc-
tionNB is given byE(s) = B+ sNB; s 2 R:B is in the imprint ofL(t) if E(s) intersectsL(t). This
imprint is called ahighlight linecorresponding toL(t) (see
Figure 1(a)). If a set of coplanar parallel linear light sources
is used, the family of highlight lines corresponding to these
light sources is called ahighlight line model(see Figure
1(b)). A highlight line model is sensitive to the changes
of surface normal directions, and thus can be used to detect
surface normal/curvature irregularities [3].

We define highlight line model for triangular meshes in a
similar way. Given a linear light sourceL(t), thehighlight
line corresponding toL(t) is the set of points on the mesh
surface where the perpendicular distance between the sur-
face normal andL(t) is zero. Ahighlight line modelon the
mesh is a family of highlight lines corresponding to a set
of coplanar parallel linear light sources, where the distance
between adjacent light sources is constant. We compute a
highlight line model for a triangular mesh with the follow-
ing steps. First for each mesh vertex, the intersection point
between its normal direction and the light source plane is
located. Then on each mesh edge, we use linear interpola-
tion to find the points whose normal direction intersects the
light sources. We call such pointshighlight nodes. They
are the intersection points of the highlight lines with the
mesh edges. Finally, on each triangle, highlight nodes cor-
responding to the same light source are connected with line
segments. Details of these steps are presented below.2.2 Interse
tion point 
al
ulation

LetS be the light source plane,Z the unit normal vector
of S, andH the unit direction vector of the light sources.
For a pointP on the mesh surface with unit normal vectorNP, the line throughP along directionNP is EP(s) =

E(s) = B+ sNBA H L(t) = A+ tHNB B
(a)

(b)

Figure 1. Illustration of a highlight line (a) and
a highlight line model (b) on a NURBS surface
((b) is reproduced from [6] ).P+ sNP; s 2 R. Our task here is to locate the point whereEP(s) intersectsS. Denote this point byXP. Instead of

calculating the exact position ofXP, we only need to cal-
culate itssigned distance valuedefined as follows. LetL0
be one of the light sources inS, andA0 a point onL0. We
callL0 the base light source. For a pointY on planeS, the
signed distance valueof Y to the base light sourceL0 is
defined as DY = (Y �A0) � (Z�H) :
For two pointsY1 andY2 on different sides ofL0, DY1
andDY2 are of different signs. To indicate the dependence
of DXP on pointP, we denoteDXP by dP, and calldP
thehighlight distance valueof pointP to L0. As shown in
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[28], dP can be computed asdP = [(P�A0)�H℄ �NPZ �NP : (1)

The highlight distance value has the following property. Lets be the distance between adjacent light sources inS. IfdP = s�m (2)

wherem is an integer, then intersection pointXP is on themth light source counting fromL0 in the direction ofZ�H.2.3 Highlight node 
al
ulation
We next compute all the highlight nodes on each mesh

edge. From the definition of highlight lines on a triangular
mesh, and the above property of highlight distance values,
we know that highlight nodes are the points on mesh edges
with their highlight distance values satisfying Equation (2).
According to Equation (1), the determination of highlight
distance value of a point requires the unit normal vector at
that point. However, for a triangular mesh, we only know
the normal vectors at mesh vertices. Therefore, we first cal-
culate the highlight distance value for each mesh vertex, and
then use linear interpolation to obtain the highlight distance
values for interior points of a mesh edge. For a mesh ver-
texVi, we calculate its unit normal vectorNVi as the nor-
malized sum of the unit normal vector of all the adjacent
trianglesTj ofVi, weighted by their areas, i.e.,NVi = Pj2t(i) ATjNTjkPj2t(i) ATjNTjk ; (3)

wheret(i) is the index set of the adjacent triangles ofVi,NTj is the unit normal vector of triangleTj , andATj is the
area ofTj . For an interior point̂P of a mesh edgeEi, withVi1,Vi2 being the two vertices ofEi, the highlight distance
value ofP̂ is obtained by performing linear interpolation ondVi1 anddVi2 , i.e.,dP̂ = kP̂�Vi2kdVi1 + kVi1 � P̂kdVi2kVi1 �Vi2k :
Now we have highlight distance values for all points on
mesh edges, we can choose the points satisfying Equation
(2) to be the highlight nodes. LetQ be a highlight node
wheredQ = s � mQ for some integermQ. We callmQ
the index of Q. The index of a highlight node indicates
the light source it corresponds to. For a mesh edgeEi, if
its two verticesVi1 andVi2 are highlight nodes with the
same indexm , then Equation (2) indicates that all points
onEi are highlight nodes with indexm. We call such edge
a highlight edge. Otherwise, there are a limited number of
highlight nodes onEi. More precisely, there are highlight

(a) (b) (c)

Figure 2. Possible cases of highlight node
connection

nodes onEi only if bdVi1=s
 andbdVi2=s
 are different,
wherebt
 is the largest integer smaller than or equal tot.
In this case, the index of any highlight node onEi is be-
tweenbdVi1=s
 andbdVi2=s
. According to Equation (2),
for each integerm betweenbdVi1=s
 andbdVi2=s
, the po-
sition of the highlight nodeQ onEi with indexm can be
located asQ = (m� dVi2 )Vi1 + (dVi1 �m)Vi2dVi1 � dVi2 : (4)2.4 Highlight node 
onne
tion

After locating all the highlight nodes on the mesh, we
connect them to form segments of the highlight lines. For
each triangle, if there is no highlight edge, we connect high-
light nodes on different edges with the same index (see Fig-
ure 2(a)). If at least one of the edges is a highlight edge, we
connect the vertices of each highlight edge so that the high-
light edge itself becomes a segment (see Figures 2(b) and
2(c)) of a highlight line. With such highlight node connec-
tion scheme, the highlight segments do not intersect inside
a triangle.

The steps to compute a highlight line model for a trian-
gular mesh is given in Algorithm 1. Figure 3 illustrates a
highlight line and a highlight line model generated with this
algorithm.

3 Mesh fairing using highlight lines

With the highlight line model introduced in the previ-
ous section, we can identify regions of a triangular mesh
with irregular normal/curvature by assessing the quality of
the highlight lines. This is done by translating and rotating
the mesh or the array of linear light sources, in an interac-
tive environment, to sweep the highlight line model over the
given mesh. We propose in this section a method to remove
shape irregularities from a triangular mesh. The first step is
to identify anirregular region. The second step is to move
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Algorithm 1: Calculate the highlight line model of a
triangular mesh

Input: A triangular meshM, and an array of coplanar
parallel linear light source

Output: The highlight line model ofM
corresponding to the light sources

Assign the setSN of highlight nodes an empty set;1

for each vertexVi ofM do2

Calculate the normal vector with Equation (3);3

Calculate the highlight distance value with4

Equation (1);
end5

for each edgeEi ofM do6

if the two vertices ofEi are highlight nodes with7

the same indexthen
Add both vertices ofEi to SN ;8

else9

Calculate the highlight nodes onEi with10

Equation (4);
Add each highlight node onEi to SN ;11

end12

end13

for each triangleTi ofM do14

Connect any nodes inSN that lie on the edges of15 Ti and have the same index;
end16

vertices in this region so that desired shape of the highlight
lines can be constructed. The displacements of the mesh
vertices are calculated by minimizing a target function that
measures the fairness of the new mesh surface as well as
the shape quality of the new highlight lines. Moving the
vertices according to the computed displacements, we ob-
tain a new mesh with improved surface shape and highlight
line model. The above steps are iteratively repeated until
the displacements converge to zero. If there are several ir-
regular regions, we perform the above procedure to remove
them, one at a time. The details of this method are presented
below.3.1 Irregular region identi�
ation

We identify an irregular region by assessing the quality
of the highlight line model and interactively specifying the
region that requires modification. See Figure 4 for an ex-
ample. With this region we can determine the mesh vertices
to be moved. Denote the irregular region byR. Our goal is
to improve the surface quality insideR, without affecting
the surface or highlight line model outsideR. Denote bySvertexandSnodethe sets of mesh vertices and highlight
nodes outsideR, respectively. To keep the geometric prop-
erties and highlight lines outsideR unchanged, the move-

(a)

(b)

Figure 3. Illustration of a highlight line (a)
and a highlight line model (b) on triangular
meshes.

ment of the vertices should not change any of the following
properties:� normal vectors and positions of vertices inSvertex;� positions of highlight nodes inSnode.

Here we introduce the concept ofsupport vertices. Given
a mesh vertex or highlight nodeX, thesupport verticesofX are the mesh vertices that would affect the above prop-
erties ofX when any of these mesh vertices is moved. IfX is a mesh vertex, the support vertices include itself and
the vertices adjacent to it, according to Equation (3). IfX
is a highlight node on an edgeEi, its support vertices in-
clude the verticesVi1 andVi2 of Ei, and the support ver-
tices ofVi1 andVi2, according to Equation (4). For us to
improve the surface quality ofR without affecting the sur-
face or highlight line model outsideR, we can only move
vertices ofR that do not belong to the support vertices of
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Figure 4. An irregular region of a mesh spec-
ified by the user.SvertexandSnode. Those vertices will be calledmovable

verticesofR.3.2 Desired highlight lines
In this section we show how to construct highlight lines

with desired shape for the specified regionR. The idea
is to replace the undesired portion of a highlight line with
an interpolating curve with desired shape. We assume the
mesh surface outsideR is of good quality, and we will take
interpolation conditions from this part of the surface.

For each highlight line crossing the specified regionR,
find the highlight nodes on the highlight line that are outside
but closest toR. There are two of them, one on each side.
These highlight nodes are calledQ0 andQ1 (see Figure
5). They will be used as the end points of an interpolating
curve. The tangent vectors of the highlight line atQ0 andQ1 will be calledT0 andT1, respectively. The interpolat-
ing curve to be constructed should connectQ0 andQ1, and
haveT0 andT1 as tangent vectors at these points. The tra-
ditional Hermite interpolation method is able to constructa
Hermite curve satisfying these requirements. However, as
pointed out in [27], a Hermite curve could have undesired
loop, cusp, or fold. We will use anoptimized geometric
Hermite (OGH) curve[27] instead to design the interpo-
lating curve segment. In contrast to a traditional Hermite
curve, an OGH curve is not only mathematically smooth,
i.e., with minimum strain energy, but also geometrically
smooth, i.e., loop-, cusp- and fold-free [27]. The OGH
curve segment satisfying the above interpolation conditions
is of the following formH(t) = (2t+ 1)(t� 1)2Q0 + (�2t+ 3)t2Q1+(1� t)2ta0T0 + (t� 1)t2a1T1; t 2 [0; 1℄;

(5)

where8>><>>: a0 = 6[(Q1�Q0)�T0℄�(T21)�3[(Q1�Q0)�T1℄�(T0�T1)[4T20(T21)�(T0�T1)2℄ ;a1 = 3[(Q1�Q0)�T0℄�(T0�T1)�6[(Q1�Q0)�T1℄�(T20)[(T0�T1)2�4T20(T21)℄ :
This curve segment will be used to replace the segment of
the highlight line betweenQ0 andQ1. Figure 5 shows an
example of an OGH curve segment constructed in this way.

Figure 5. An OGH curve constructed for the
specified region.3.3 Vertex displa
ement 
al
ulation
With the desired highlight lines constructed, we are now

ready to improve the shape ofR. This is done by adjust-
ing some of the vertices ofR so that, afterward, highlight
line pattern of the region would be close to that of the con-
structed highlight lines and, consequently, new shape of the
region would have a better quality. LetfViji 2 IMg be the
set of movable vertices ofR. A vertexVi will be adjusted
along the direction of its unit normal vectorNi, computed
with Equation (3) during calculation of the highlight line
model. For eachi 2 IM , letVi be the new position ofVi
after the adjustment. We haveVi = Vi + xiNi, wherexi
is the displacement ofVi. LetX be a displacement vec-
tor whose components are valuesfxiji 2 IMg. The basic
idea of our method is to consider the new surface quality,
after the adjustment of the vertices, as a function of the dis-
placement vectorX, and obtainX by optimization of the
function value. We design the function asF (X) = !1ffair(X) + !2fdiff (X);
whereffair is a function that measures the fairness of the
new mesh surface insideR, andfdiff is a function that mea-
sures the difference between the highlight lines of the new
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mesh and the constructed desired highlight lines, with!1
and!2 being the weights. The details of construction and
optimization of this target function are presented below.3.4 Fairness fun
tion

We choose the fairness function to be the Willmore en-
ergy [24] of the new mesh surface. For a parametric sur-
face with fixed boundary and fixed surface normals along
the boundary, the Willmore energy isE = Z H2dA;
whereH denotes the mean curvature, anddA is the sur-
face area element. For a connected regionR on a triangular
mesh, letfViji 2 IRg be the set of vertices insideR. Then
the Willmore energy for the mesh surface insideR can be
discretized as E = Xi2IRH2i Ai; (6)

whereHi is the mean curvature at vertexVi, andAi is the
mesh surface area associated withVi. Here the areaAi is
computed as Ai = 13 Xj2t(i)ATj ; (7)

wheret(i) andATj are the same as in Equation (3), i.e.,Ai
equals13 of the total areas of the triangles adjacent toVi.H2i can be obtained with the discrete mean curvature nor-
mal operatorK(Vi) = HiNi whereNi is the unit normal
vector atVi [?]. ThenH2i = kHiNik2 = K(Vi) �K(Vi):
HereK(Vi) is calculated using the positions ofVi and its
adjacent vertices [?]:K(Vi) = 1Ai Xj2u(i) (
ot�j + 
ot�j)(Vi �Vj) ; (8)

whereAi is the same as in Equation (6),u(i) denotes the
index set of the vertices adjacent toVi, and�j and�j are
the two angles opposite to the edgeViVj , as illustrated in
Figure (6). To derive the Willmore energy for mesh surface
in regionR after adjustment of the vertices, we need the
new positions of the verticesfVj jj 2 IRg, which areVj = � Vj + xjNj ; if j 2 IM ,Vj ; otherwise.

(9)

Substituting these new positions into Equations (6), (7) and
(8), we have the expression offfair as a function of dis-
placementfxiji 2 IMg.

Vi
Vj

�j �j
Figure 6. The angles �j and �j .3.5 Di�eren
e fun
tion

As described in Section 3.2, each highlight line cross-
ing the irregular region is delimited by two highlight nodes,
such asQ0 andQ1 in Figure 5. These two highlight nodes
are the end points of its corresponding OGH interpolation
curve. They are outside the irregular region. Their positions
do not change after the adjustment of the movable vertices,
but a new highlight line should be generated between them.
Let L(s); s 2 [0; 1℄ andL(s); s 2 [0; 1℄ be the normal-
ized chord-length parameterization forms of the highlight
line between these two delimiting nodes before and after
the vertex adjustment, respectively. LeteH(s); s 2 [0; 1℄ be
the normalized arc-length parameterization form of the cor-
responding OGH curve. We define the difference function
between the new highlight lineL(s) and its target shapeeH(s) as fL = Z 10 kL(s)� eH(s)k2 ds ;
and the difference functionfdiff for the entire irregular re-
gion is the sum of the above function for all highlight lines
crossing the region fdiff =XL fL : (10)

FunctionfL can be discretized in the following way. First
each highlight nodeQi on the original highlight lineL(s)
is mapped to a pointeQi on eH(s). We call eQi the target
position ofQi. After adjustment of the vertices, the cor-
responding new positionQi of Qi is computed, andfL is
given by fL =Xi kQi � eQik2li ; (11)

whereli is the length of the highlight line segment associ-
ated withQi. The following will provide the details on how
to obtaineQi,Qi andli.

To determine the target position of a highlight nodeQi,
we need the normalized chord-length parameter ofQi on
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L(s). Denote the two delimiting nodes ofL(s) byQ0 andQn+1, and then highlight nodes between them byQi (i =1; 2; : : : ; n), withQ0;Q1; : : : ;Qn;Qn+1 being in the same
order as they appear on the highlight line. For each nodeQi(i = 1; 2; : : : ; n), its normalized chord-length parameter
(Qi) is given by
(Qi) = Pij=1 kQj �Qj�1kPn+1j=1 kQj �Qj�1k :
Now the target positioneQi is determined as the point oneH(s) with parameters = 
(Qi), i.e.,eQi = eH(
(Qi)) : (12)

The new positionQi of highlight nodeQi is calculated
as follows. LetEj be an edge thatQi lies on, withVi1,Vi2 being the vertices ofEj . SinceQi andQi correspond
to the same light source, they should have the same index.
According to Equation (4), the new positionQi of Qi can
be obtained with the new positions and new highlight dis-
tance values ofVi1 andVi2, as well as the indexm ofQi,Qi = (m � s� dVi2)Vi1 + (dVi1 �m � s)Vi2dVi1 � dVi2 : (13)

HereVi1 andVi2 are the new vertex positions obtained
with Equation (9).dVi1 anddVi2 are the new distance val-
ues calculated from Equation (1).dVi1 anddVi2 are both

determined by the new vertex positions, andQi is a func-
tion of the displacementX. Note that ifQi is a vertex of
the mesh, thenEj can be any edge adjacent to the vertex. In
this case, Equation (13) still holds, and we obtain thatQi is
at the new position of the vertex obtained by Equation (9).

For a highlight nodeQi, its associated highlight segment
lengthli is calculated as half of the total length of the high-
light line segments that it lies on. Note thatQi should have
exactly two neighboring highlight nodes onL(s). Denote
these two neighboring nodes byQi� andQi+, thenli = 12 (kQi �Qi�k+ kQi �Qi+k) : (14)

Substituting Equations (12), (13) and (14) into Equations
(10) and (11), we getfdiff as a function of the displacementX.3.6 Target fun
tion minimizationffair andfdiff defined in the previous sections are both
highly non-linear infxig, which makes minimization of the
target function a very expensive numerical process. We will
use functions of a simpler form to approximate them. Forffair, if we assume thatAi, �j and�j in Equation (8) are

constants during adjustment of the vertices, then Equation
(6) becomes a quadratic functionqfair of fxig. For fdiff ,
we perform Taylor series expansion of order2 about pointX = 0 to obtain an approximation functionqdiff , which is
also quadratic infxig. Now the target function becomesF = !1qfair + !2qdiff : (15)

In addition, we put the following constraint on the compo-
nents of the displacementjxij <= 12 minj2s(i) ej ; for all i 2 IM ;
wheres(i) is the set of indices of edges adjacent to vertexVi, andej is the length of the edge with indexj. This con-
straint ensures that there will be no topological change on
the mesh such as triangle flip-overs after vertex adjustment.
The minimization problem now can be formulated as�

minimize F;
subject to jxij <= 12 minj2s(i) ej ; i 2 IM ; (16)

which is a bound constrained quadratic programming prob-
lem and can be solved using the active set method.3.7 Iteration

We use an iterative procedure to gradually improve the
quality of the irregular region. In each iteration step, a
quadratic programming problem is formed using current ge-
ometric information of the mesh. Then we solve the mini-
mization problem, and adjust the vertices according to the
solution to obtain a new mesh. The process is terminated
when the number of iterations exceeds a given bound, or
the maximum absolute values of the displacement vectors
converge to zero, i.e.,maxi2IM jxije < " ; (17)

wheree is the average edge length inside the irregular re-
gionR, and" is a positive threshold value specified by the
user. The iterative procedure is summarized in Algorithm 2.

4 Implementation and examples

Here we show implementation results of the presented
method on some mesh models. In these examples, we set!1 = !2 = 1 for the target function in Equation (15),
and set" = 0:001 for the termination condition specified
in Formula (17). Figure 7 shows the fairing of the mesh
model of a Volkswagen Beetle (see Figure 3(b) as well). In
Figure 7(a), an irregularity of the front right fender is illus-
trated by the highlight line model. Figure 7(b) shows the
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(a)

(b)
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Figure 7. Example 1: (a) a mesh with irregu-
lar highlight line model; (b) the selected mod-
ification region with the constructed desired
highlight lines (in blue); (c) the resulting mod-
ification region after fairing, with its high-
light model and flat shade. (d) the result with
smooth shade.

Algorithm 2: Remove local irregularities of a mesh
using highlight lines

Input: A triangular meshM, a highlight line model ofM, an irregular regionR, a maximum number
of iterationsNmax, and a threshold value"

Output: A new mesh with irregularities inR
Identify the set of movable verticesfViji 2 IMg of1 R;
Set the number of iterationsn = 0;2

repeat3

Construct the target functionF of displacements4 fxiji 2 IMg;
Solve the minimization problem (16) to obtain the5

values offxiji 2 IMg;
for eachi 2 IM do6

Adjust vertexVi according toxi;7

end8

Update the highlight line model of the mesh using9

Algorithm 1;
Setn = n+ 1 ;10

until n > NmaxORmaxi2IM jxij=e < " ;11

region specified for faring, as well as the desired highlight
lines. Figures 7(c) and (d) provide a closer view of the re-
sulting modification region after fairing in flat and smooth
shade, repectively. The new mesh surface in the faired re-
gion is of high quality; shapes of the new highlight lines
are close to the desired ones. The smooth highlight lines
indicate G1 continuity of the resulting surface at boundaries
of the modification region[6]. In Figure 8, we fair another
irregular region on the roof of the Beetle model. To com-
pare our method with existing mesh fairing techniques, we
also implemented the surface diffusion flow technique pro-
posed by Xu et al.[25] which is able to satisfy G1 boundary
conditions. Their method moves each vertexVi inside the
region to be faired along their normal direction, using equa-
tion �tVi = Ni�BHi, where�B is the Laplace-Beltrami
operator, andNi andHi are the surface normal and mean
curvature atVi, respectively. The resulting mesh of this
method satisfies equation�BHi = 0 for each vertex in-
side the fairing region. This fourth-order PDE is also used
by Schneider and Kobbelt [18][19] in G1 mesh fairing. For
comparison, we first identify the region that requires adjust-
ment, and perform fairing in that region with our method
and Xu et al.’s method, respectively. Figures 8(a) and 8(b)
show the irregular region and the selected region, respec-
tively. Figures 8(c) and 8(d) are the resulting modification
region from Xu et al.’s method and our method, respec-
tively. On the mesh produced by Xu et al.’s method, the new
highlight lines are curved toward the middle of the selected
region, causing abrupt changes of highlight line shapes on

9



the left and right boundary of the region. One the other
hand, our method produces a mesh surface with new high-
light lines close to the desired ones, making the new high-
light lines naturally blend the shapes of the two highlight
lines outside the selected region. This example shows that
although existing mesh fairing techniques can generate high
quality mesh surfaces, they do not guarantee the generation
of high quality highlight line models. In our method, the
fairness function helps to generate a fair surface, and the
difference function makes the new highlight lines converge
to the desired shapes. Therefore, our method can improve
the shape quality of both the mesh surface and the highlight
line model.

5 Conclusions and future work

A method of generating highlight line model for a given
triangular mesh is provided in this paper. With a highlight
line model, the job of identifying irregular regions of a mesh
is reduced to that of identifying irregular portions of high-
light lines. Subsequently, a method for removing local ir-
regularities of a given triangular mesh is presented. The
modification process is intuitive. A user only needs to iden-
tify the irregular regions, the modification is carried out au-
tomatically. Test cases show that the new method is capable
of making the highlight line models converge to the desired
shapes. The new method provides a whole set of tools from
mesh surface quality assessment to mesh fairing, making it-
self a useful complement to geometric modeling techniques
based on triangular meshes. As far as limitations are con-
cerned, the new method does not guarantee the new high-
light lines would coincide with the desired ones, and it may
fail when the irregular region is relatively large. How to
eliminate these limitations will be a subject of future re-
search.
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Figure 8. Example 2: (a) a mesh with irregular
highlight line model; (b) the selected modifi-
cation region with the desired highlight lines
(in blue); (c) the resulting modification re-
gion from Xu et al.’s method, with its highlight
line model; (d) the resulting modification re-
gion from our method, with its highlight line
model.11


