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Abstract There is no restriction on the shape and topology of a tri-
angular mesh. A triangular mesh is all that is needed to
Highlight line model is a powerful tool in assessing the represent any solid object or surface. On the other hand, to
quality of a surface. Its presence increases the flexibility —represent a complicated solid object or surface using-tradi
an interactive design environment. In this paper, a method tional parametric schemes, one usually needs several para-
to generate a highlight line model on an arbitrary triangu- metric surfaces and this causes problems such as continuity
lar mesh is presented. Based on the highlight line model, aand smoothness between different surfaces. Besides, mod-
fairing technique to remove local irregularities of a trian  ern graphics hardware is optimized to render triangles;mak
gular mesh is then presented. The fairing is done by solvinging triangular meshes even more important in the graphics
a minimization problem and performing an iterative proce- processing pipeline.
dure. The new technique improves not only the shape qual- Triangular meshes have already been used as a primary
ity of the mesh surface, but the highlight line model as well. surface/solid representation scheme in many areas, such as
It provides an intuitive and yet suitable method for locally reverse engineering, rapid prototyping, conceptual aesig
repairing a triangular mesh. and simulation, with three-dimensional scanners being a
standard source for acquiring geometric data. There are
other ways to produce a triangular mesh as well. Triangu-
1 Introduction lation of free form surfaces is usually necessary for render
ing or manufacturing purpose. Subdivision schemes, which

The highlight line model [3] is a powerful tool in assess- provide a new way to generate surfaces, may lead to trian-
ing the quality of non-uniform rational B-spline (NURBS) gular meshes as well, and have been used in some games

surfaces, and has become increasingly popular in engineer2nd three-dimensional cartoons. _
ing design, especially in the design of automotive-body sur ~ Our goal here is to make the highlight line model avail-
faces. Actually it has already been included as a design tool2PI€ for triangular meshes so that it is possible to visually

in several commercial geometric modeling systems, such a2SSess the quality of a triangular mesh, and to develop tech-
EDS’ Unigraphics and Tsinghua University’s TiGems. Re- Nidues to optimize the mesh faces where quality of the mesh

cently there is a strong demand for efficient, dynamic high- is_ not satisfactory. Wi_th the comprehe_nsive _appl_icatidns o]
light lines generation from the graphics side and video en- ffiangular meshes, this research certainly will bring grea
tertainment industry as well [28], because highlight lines erX|b.|I|ty to both the manufacturing and entertainment in-
can aid depth perception and, consequently, realism of adustries.

scene. Hence, we have a design tool that can walk hand

in hand to add unprecedented realism to free-form surfacesl-1 Previous works

for artistic rendering and 3D modeling.

While NURBS surfaces continue to be a major repre-  During the past decade, various techniques have been
sentation scheme in 3D modeling, triangular meshes havedeveloped to improve mesh surface quality. These tech-
gained much popularity in graphics and geometric model- niques, referred to asiesh smoothingerform their tasks
ing recently [5]. Triangular meshes have advantages overby changing the positions of mesh vertices without affertin
traditional parametric surfaces in several aspects. @nlik their connectivity. Among thenfiltering techniquestera-
traditional parametric surfaces, the definition of a triang tively apply local filters to mesh vertices to obtain theinne
lar mesh does not require a rectangular parametric domainpositions, and evolve the mesh into desired shape. Taubin



[21] defined the Laplacian operator on mesh vertices whichwas extended by Kobbelt et al. [13] to meshes of arbitrary
can be utilized in smoothing. To attenuate the shrinkage connectivity for mesh smoothing in a multi-resolution mod-
of the mesh induced by such Laplacian filter, Taubin[21] eling environment.

proposed to alternately apply Laplacian filters with two | 55t hut not least, some other techniques smooth meshes

different scale factors. Variants of Laplacian smoothing py solving high order partial differential equations (PDE)
(e.g., [22][14]) have been proposed for improved perfor- \yhich characterize the properties of the meshes with high

mance such as automatic anti-shrinking effects. Otherilte 4y ality shape. Schneider and Kobbelt[18] presented an al-

ing techniques such afiener filter¢[17][1]) andbilateral gorithm to create fair mesh surfaces with subdivision con-

filters([11][9]) have also been adapted from image smooth- nectivity satisfying G boundary conditions, by solving a

ing techniques to perform mesh smoothing. fourth-order non-linear PDE. Later they extended the work
Another class of mesh smoothing techniques,dee-  onto irregular meshes with the same PDE [19]. Xu et al.

metric flow methodsmodels the movement of mesh ver- [25] used various non-linear PDE to perform surface mod-
tices with equatio®; V = F(V,t), whered,V represents  eling tasks such as free-form mesh surface fitting with given
the velocity of vertexV at timet, andF(V,t) is a func- boundary conditions.

tion of the geometric information of the mesh at that time.
The equation is solved iteratively to obtain the desiredmes
shape. Desbrun et al. [8] proposed thi#usion flow with
F(V,t) being the discrete Laplacian &, and solved the
equation with an implicit integration approach for imprdve
stability and efficiency. Also proposed in [8] is timeean
curvature flowwhereF (V,t) is the mean curvature normal

atV. Other geometric flow methods (e.g., [15][29][4with  \aqh, fairing In this paper, we improve the mesh surface

different choices oF (V) have been developed. quality and construct fair meshes with the help of highlight
To preserve the geometric features such as edges and cofme models. Our method falls into the category of mesh
ners while smoothing the mesimisotropic diffusion meth-  fajring.

odsare developed. The basic idea is to smooth the mesh sur-

face in a certain direction and retain or enhance sharp fea-

tures in another direction. Clarenz et al.[7] proposedfadif 1.2 Contributions

sion tensor defined from the principal directions and princi

pal curvatures of the surface to perform feature-presgrvin

mesh smoothing. Bajaj and Xu[2] developed an anisotropic  In this paper, we generalize the highlight line model de-

scheme to smooth the mesh surface as well as higher orfined for NURBS surfaces to highlight line model on ar-

der functions on the surface. Hildebrandt and Polthier[10] bitrary triangular meshes, and propose an efficient method

presented an anisotropic diffusion smoothing method thatfor the construction of the model. With the highlight line

preserves non-linear geometric features. model, it is easier to identify shape irregularities of arri
The above techniques modify vertex positions directly. gular mesh. Furthermore, we propose a method to remove

Instead,normal filtering techniquefirst smooth the mesh local irregularities identified with the highlight linesne

normals, and evolve the mesh to fit the modified nor- produce a new mesh with better surface quality and high-

mals. Yagou et al. [26] applied mean and median filter- light line model. Our method iteratively moves the mesh

ing schemes to face normals of meshes to obtain a smootlvertices by minimizing a target function which measures the

normal field. Ohtake et al. [16] developed an adaptive and shape quality of the mesh surface as well as the highlight

anisotropic Gaussian filter acting on the mesh face normalsine model. Note that for triangular meshes, irregularéy c

for normal smoothing. In the work of Tasdizen et al.[20], also refer to irregular distributions of vertices over thestm

normal smoothing and subsequent surface reconstruction isurface. In this paper we do not consider such irregularitie

performed in a level-set setting. and we only remove irregularities of mesh surface shape.

Besides,energy minimizatioris also used to perform The rest of this paper is organized as follows. Section
mesh smoothing. The idea is to minimize an energy func- 2 introduces the highlight line model for NURBS surfaces
tional that penalizes unaesthetic behavior of the mesheshap and its generalization to triangular meshes, and proposes a
Welch and Witkin [23] constructed a fair triangular mesh by method to compute it. A method for improving the qual-
minimizing the squared principal curvature energy. Kobbel ity of a triangular mesh using highlight lines is presented
[12] proposed the technique discrete fairing which uses  in Section 3. Implementation details and examples are pro-
energy minimization in constructing a fair, refined mest tha vided in Section 4. Concluding remarks and possible future
interpolates the vertices of a given original mesh. Thisevor research directions are discussed in Section 5.

Depending on their goals, mesh smoothing techniques
can be classified into two categories. The first anesh
denoisingtries to smooth out the noises at vertex positions
acquired during the generation of meshes (e.g., noises in
measured data produced by a range scanner). The other one
aims to produce a mesh surface that satisfies certain aes-
thetic requirements (i.e., a fair mesh), and is usuallyechll



2 Highlight line model on triangular meshes E(s) = B + sNgp

2.1 Highlight line model on NURBS sur- H o |
A L(t) = A +tH

faces and triangular meshes

Given a NURBS surfac®(u, v), a highlight line is the
imprint of a linear light source positioned above the sugfac
Let L(¢) be the parametric representation of a linear light
source B

L(t)=A+tH, tcR,

whereA is a point onL(¢), andH is a vector defining the
direction of L(¢). The imprint ofL(¢) on surfaceP (u, v)
is a set of points o (u,v), for which the perpendicular
distance between the surface normal &) is zero. More (a)
precisely, for any poinB on P(u,v), denote byNg the
surface normal aB. Then the line througlB along direc-
tion Ny is given by

E(s) =B+ sNp, secR.

B is in the imprint of L(¢) if E(s) intersectsL(¢). This
imprint is called highlight linecorresponding td.(¢) (see
Figure 1(a)). If a set of coplanar parallel linear light stes
is used, the family of highlight lines corresponding to #hes
light sources is called aighlight line model(see Figure
1(b)). A highlight line model is sensitive to the changes
of surface normal directions, and thus can be used to detect
surface normal/curvature irregularities [3].

We define highlight line model for triangular meshes in a
similar way. Given a linear light sourde(t), thehighlight
line corresponding td.(¢) is the set of points on the mesh (b)
surface where the perpendicular distance between the sur-
face normal and.(¢) is zero. Ahighlight line modebn the
mesh is a family of highlight lines corresponding to a set  Figure 1. lllustration of a highlightline  (a) and
of coplanar parallel linear light sources, where the distan a highlight line model  (b) on a NURBS surface
between adjacent light sources is constant. We compute a ((b) is reproduced from [6] ).
highlight line model for a triangular mesh with the follow-
ing steps. First for each mesh vertex, the intersectiontpoin
between its normal direction and the light source _pIane isP +sNp, s € R. Ourtask here is to locate the point where
Ipcatec:_. Zhﬁn on eachhmesh edgel, (\j/\_/e use I|_near mterpﬁlaEP(s) intersectsS. Denote this point byXp. Instead of
tion to find the points whose normal direction Intersects the calculating the exact position & p, we only need to cal-
light sources. We call .SUCh pomtsghhght no.des They culate itssigned distance valugefined as follows. LeLg
are the intersection points of the highlight lines with the

. . 5 be one of the light sources By andA, a point onL,. We
mesh edges. Finally, on each triangle, highlight nodes cor- | Lo the base light source. For a polton planes, the

responding to the same light source are connected with line,

) signed distance valuef Y to the base light sourcky is
segments. Details of these steps are presented below. defined as

2.2 Intersection point calculation Dy =(Y-Ag) - (ZxH).

Let S be the light source plan#, the unit normal vector ~ For two pointsY; andY, on different sides oL, Dy,
of S, andH the unit direction vector of the light sources. andDvy, are of different signs. To indicate the dependence
For a pointP on the mesh surface with unit normal vector of Dx, on pointP, we denoteDx, by dp, and calldp
Np, the line throughP along directionNp is Ep(s) = the highlight distance valuef point P to Ly. As shown in



[28], dp can be computed as

(P — Ao) xH]-Np .
dp = . 1 e -~
P 7 - Np 1) "“Q ’/,

The highlight distance value has the following propertyt Le
s be the distance between adjacent light sourc&s i

dp =s8Xm (2

wherem is an integer, then intersection poX is on the

mth light source counting frorh in the direction ofZ x H. Figure 2. Possible cases of highlight node

connection
2.3 Highlight node calculation

We next compute all the highlight nodes on each meshnodes orE; only if |dy,, /s| and|dvy,,/s] are different,
edge. From the definition of highlight lines on a triangular where|z] is the largest integer smaller than or equat.to
mesh, and the above property of highlight distance values,In this case, the index of any highlight node Br is be-
we know that highlight nodes are the points on mesh edgesween|dy,, /s] and|dv,,/s]. According to Equation (2),
with their highlight distance values satisfying Equati@j (  for each integem between dy,, /s] and|dv,, /s], the po-
According to Equation (1), the determination of highlight sition of the highlight nod&) on E; with indexm can be
distance value of a point requires the unit normal vector atlocated as
that point. However, for a triangular mesh, we only know
the normal vectors at mesh vertices. Therefore, we first cal- Q= (m = dv;)Via + (dviy =m)Viz
culate the highlight distance value for each mesh vertex, an dv,, —dv,,
then use linear interpolation to obtain the highlight dista L. .
values for interior points of a mesh edge. For a mesh ver-2-4 Highlight node connection
tex V;, we calculate its unit normal vectdNv,, as the nor-
malized sum of the unit normal vector of all the adjacent  After locating all the highlight nodes on the mesh, we
trianglesT; of V;, weighted by their areas, i.e., connect them to form segments of the highlight lines. For

each triangle, if there is no highlight edge, we connecthigh
_ Zjet(i) Ap; N, light nodes on different edges with the same index (see Fig-
T IS jen) A, N, I

ure 2(a)). If at least one of the edges is a highlight edge, we
connect the vertices of each highlight edge so that the high-

wheret (i) is the index set of the adjacent triangles\of, light edge itself becomes a segment (see Figures 2(b) and

N, is the unit normal vector of triangl€;, andAr, is the 2(c)) of a highlight line. With such highlight node connec-

area ofT;. For an interior poinf’ of a mesh edg&;, with tion scheme, the highlight segments do not intersect inside

V.1, Vo being the two vertices d&;, the highlight distance ~ a triangle.

value ofP is obtained by performing linear interpolation on The steps to compute a highlight line model for a trian-

(4)

Nv Q)

dy,, anddy,, i.e., gular mesh is given in Algorithm 1. Figure 3 illustrates a
) ) highlight line and a highlight line model generated withsthi
g = P = Valldv, +[[Va — Plldv,, algorithm.
F [Vir = Vi

Now we have highlight distance values for all points on 3 Mesh fairing using highlight lines
mesh edges, we can choose the points satisfying Equation
(2) to be the highlight nodes. L&) be a highlight node With the highlight line model introduced in the previ-

wheredq = s x mgq for some integefng. We callmq ous section, we can identify regions of a triangular mesh
the indexof Q. The index of a highlight node indicates with irregular normal/curvature by assessing the quality o
the light source it corresponds to. For a mesh eBgeif the highlight lines. This is done by translating and rofgtin

its two verticesV;; andV;, are highlight nodes with the  the mesh or the array of linear light sources, in an interac-
same indexn , then Equation (2) indicates that all points tive environment, to sweep the highlight line model over the
on E; are highlight nodes with index. We call such edge  given mesh. We propose in this section a method to remove
a highlight edge Otherwise, there are a limited number of shape irregularities from a triangular mesh. The first séep i
highlight nodes orE;. More precisely, there are highlight to identify anirregular region The second step is to move



Algorithm 1: Calculate the highlight line model of a
triangular mesh —_—
Input: A triangular mesiM, and an array of coplanar
parallel linear light source
Output: The highlight line model oM
corresponding to the light sources
1 Assign the sefy of highlight nodes an empty set;
2 for each verteV; of M do
3 Calculate the normal vector with Equation (3);
4 Calculate the highlight distance value with
Equation (1);
5 end
6 for each edgds; of M do
7 if the two vertices oE; are highlight nodes with
the same indethen

8 Add both vertices oE; to Sy;

9 else

10 Calculate the highlight nodes dfy with
Equation (4);

1 Add each highlight node oR; to Sy;;

12 end

13 end

14 for each triangleT; of M do

15 Connect any nodes ifiy that lie on the edges of
T; and have the same index;

16 end

(b)

vertices in this region so that desired shape of the highligh
lines can be constructed. The displacements of the mesh
vertices are calculated by minimizing a target functiort tha
measures the fairness of the new mesh surface as well as
the shape quality of the new highlight lines. Moving the
vertices according to the computed displacements, we ob-
tain a new mesh with improved surface shape and highlight
line model. The above steps are iteratively repeated untilment of the vertices should not change any of the following
the displacements converge to zero. If there are several irproperties:

regular regions, we perform the above procedure to remove
them, one at atime. The details of this method are presented

Figure 3. lllustration of a highlight line (a)
and a highlight line model (b) on triangular
meshes.

e normal vectors and positions of verticesIpertex
below. « positions of highlight nodes if,,oge

3.1 Irregular region identification Here we introduce the concept sfipport vertices Given
a mesh vertex or highlight nod€, the support verticesf

We identify an irregular region by assessing the quality X are the mesh vertices that would affect the above prop-
of the highlight line model and interactively specifyingeth  erties of X when any of these mesh vertices is moved. If
region that requires modification. See Figure 4 for an ex- X is a mesh vertex, the support vertices include itself and
ample. With this region we can determine the mesh verticesthe vertices adjacent to it, according to Equation (3)XIf
to be moved. Denote the irregular regionRy Our goal is is a highlight node on an eddg;, its support vertices in-
to improve the surface quality insid®, without affecting clude the vertice¥ ;; andV;, of E;, and the support ver-
the surface or highlight line model outsid® Denote by  tices of V;; and V5, according to Equation (4). For us to
SvertexandSpqgethe sets of mesh vertices and highlight improve the surface quality d& without affecting the sur-
nodes outsid®, respectively. To keep the geometric prop- face or highlight line model outsidR, we can only move
erties and highlight lines outsid® unchanged, the move- vertices ofR that do not belong to the support vertices of



where

ao 6[(Q1=Qo)-To]-(T7)—3[(Q1=Qo)-T1]:(To-T1)

N [4T2(T2)—(To-T1)?] v
R 1
I | ﬁ a = 3[(Q17Qo).T0].(T0.T1)76[(Q17Q0).T1].(Tg).

[(To-T1)2—4T3(T3)]

\ This curve segment will be used to replace the segment of
———\ the highlight line betwee), andQ;. Figure 5 shows an

example of an OGH curve segment constructed in this way.

Figure 4. An irregular region of a mesh spec-
ified by the user.

Svertexa@ndSpgge Those vertices will be callechovable ] :

verticesof R. //,_\

3.2 Desired highlight lines

In this section we show how to construct highlight lines
with desired shape for the specified regiBn The idea Figure 5. An OGH curve constructed for the
is to replace the undesired portion of a highlight line with  specified region.
an interpolating curve with desired shape. We assume the
mesh surface outsidR is of good quality, and we will take
interpolation conditions from this part of the surface.

For each highlight line crossing the specified regpp 3.3 Vertex displacement calculation
find the highlight nodes on the highlight line that are ousid
but closest tdR. There are two of them, one on each side.  With the desired highlight lines constructed, we are now
These highlight nodes are call€d, and Q; (see Figure  ready to improve the shape &. This is done by adjust-
5). They will be used as the end points of an interpolating ing some of the vertices & so that, afterward, highlight
curve. The tangent vectors of the highlight line and line pattern of the region would be close to that of the con-
Q: will be calledT, andT}, respectively. The interpolat-  structed highlight lines and, consequently, new shapeef th
ing curve to be constructed should conn@gtandQ;, and region would have a better quality. LEV;|i € I/} be the
haveT, andT; as tangent vectors at these points. The tra- set of movable vertices @&.. A vertexV; will be adjusted
ditional Hermite interpolation method is able to constraict  along the direction of its unit normal vectd¥;, computed
Hermite curve satisfying these requirements. However, aswith Equation (3) during calculation of the highlight line
pointed out in [27], a Hermite curve could have undesired model. For each € I, let V; be the new position oV;
loop, cusp, or fold. We will use anptimized geometric  after the adjustment. We ha%g; = V; + z;N;, wherez;
Hermite (OGH) curvd27] instead to design the interpo- is the displacement oV;. Let X be a displacement vec-
lating curve segment. In contrast to a traditional Hermite tor whose components are valugs|i € I)/}. The basic
curve, an OGH curve is not only mathematically smooth, idea of our method is to consider the new surface quality,
i.e., with minimum strain energy, but also geometrically after the adjustment of the vertices, as a function of the dis
smooth, i.e., loop-, cusp- and fold-free [27]. The OGH placement vectoX, and obtainX by optimization of the
curve segment satisfying the above interpolation conustio  function value. We design the function as

is of the following form
F(X) = w1 feajr(X) + w2 fyitf (X)),

_ o 2 o 2
H{) = (t+ 1)(5 1)"Qo + 2t2+ " Qu where fij, is @ function that measures the fairness of the
+(1 —1)*tagTo + (t — 1)t*a1 Ty, € [0, 1], new mesh surface insid®, andfjs is a function that mea-
(5) sures the difference between the highlight lines of the new



mesh and the constructed desired highlight lines, with
andw> being the weights. The details of construction and
optimization of this target function are presented below.

3.4 Fairness function

We choose the fairness function to be the Willmore en-
ergy [24] of the new mesh surface. For a parametric sur-
face with fixed boundary and fixed surface normals along
the boundary, the Willmore energy is

E= /szA,

where H denotes the mean curvature, afd is the sur-
face area element. For a connected redtoon a triangular
mesh, le{'V;|i € Ir} be the set of vertices insid®. Then
the Willmore energy for the mesh surface insilecan be

discretized as
E=Y" H;A,

iclg

(6)

whereH; is the mean curvature at vert®%;, andA4; is the
mesh surface area associated vwth Here the aredl; is

computed as
1

jet(

AT]‘ ) (7)
)

wheret (i) andAr, are the same as in Equation (3), i.4;,
equals% of the total areas of the triangles adjacenMa

H? can be obtained with the discrete mean curvature nor-
mal operatoiK (V,) = H,;IN; whereN; is the unit normal
vector atV; [?]. Then

H? = |HN|® = K(V3) - K (V).

HereK(V,;) is calculated using the positions ¥f; and its
adjacent vertices?:

% Z ((’,Ot (1]' —+ COtﬂj)(Vz' — V]) s (8)

! jEu(i)

K(V;)

where A; is the same as in Equation (6)(i) denotes the
index set of the vertices adjacent¥n, anda; andg; are
the two angles opposite to the edyeV ;, as illustrated in
Figure (6). To derive the Willmore energy for mesh surface
in regionR. after adjustment of the vertices, we need the
new positions of the verticegsV;|j € Ir}, which are

{

Substituting these new positions into Equations (6), () an
(8), we have the expression ¢f;, as a function of dis-
placemenfx;|i € In}.

if ] S IM,
otherwise.

Vj Vj—i-xij,

\'2

(9)

V;

Figure 6. The angles «; and ;.

3.5 Difference function

As described in Section 3.2, each highlight line cross-
ing the irregular region is delimited by two highlight nodes
such a€), andQ; in Figure 5. These two highlight nodes
are the end points of its corresponding OGH interpolation
curve. They are outside the irregular region. Their posgio
do not change after the adjustment of the movable vertices,
but a new highlight line should be generated between them.
Let L(s),s € [0,1] andL(s),s € [0,1] be the normal-
ized chord-length parameterization forms of the highlight
line between these two delimiting nodes before and after
the vertex adjustment, respectively. [Hfs), s € [0, 1] be
the normalized arc-length parameterization form of the cor
responding OGH curve. We define the difference function
between the new highlight lin&(s) and its target shape

H(s) as
ﬁzlnm$7m@Wm,

and the difference functiofy;s for the entire irregular re-
gion is the sum of the above function for all highlight lines
crossing the region

Tdiff = Z Ig- (10)
T

Function f- can be discretized in the following way. First
each highlight nod€); on the original highlight lindL(s)
is mapped to a poinQ; on H(s). We call Q; the target
position of Q;. After adjustment of the vertices, the cor-
responding new positio®, of Q; is computed, and is
given by \
fe=Y 19 - Qill 'l (11)

wherel; is the length of the highlight line segment associ-
ated withQ;. The following will provide the details on how
to obtainQ;, Q; andl;.

To determine the target position of a highlight nd@e
we need the normalized chord-length paramete@ofon



L(s). Denote the two delimiting nodes &f(s) by Q, and constants during adjustment of the vertices, then Equation

Q..+1, and then highlight nodes between them I6Y; (i = (6) becomes a quadratic functiggy;, of {z;}. For fyis.
1,2,...,n),withQq, Q1,...,Q., Q.41 beinginthe same  we perform Taylor series expansion of or@deabout point
order as they appear on the highlight line. For each nodeX = 0 to obtain an approximation functiagy;, which is
Qi(i=1,2,..., n), its normalized chord-length parameter also quadratic i{z;}. Now the target function becomes
¢(Q;) is given by
' F = wiggjr + waqyiff - (15)
Qi) = ZJ+11 19; — Qi ] In addition, we put the following constraint on the compo-

> 11Q5 — Qj-ll nents of the displacement
Now the target positio@i is determined as the point on ;] <= 1 min e;, foralli € Iy,
H(s) with parametes = ¢(Q;), i.e., 2 jes()

~ ~ wheres(i) is the set of indices of edges adjacent to vertex
Qi = H(c(Qi)) - (12) Vi, and(ej is the length of the edge with indgx This con-
straint ensures that there will be no topological change on
the mesh such as triangle flip-overs after vertex adjustment
The minimization problem now can be formulated as

The new positiorQ; of highlight nodeQ; is calculated
as follows. LetE; be an edge tha®; lies on, withV,;,
V2 being the vertices dE;. SinceQ; andQ; correspond
to the same light source, they should have the same index. minimize F,
According to Equation (4), the new positi@, of Q, can { (16)
be obtained with the new positions and new highlight dis-
tance values oV;; andV,,, as well as the indem of Q;, which is a bound constrained quadratic programming prob-

lem and can be solved using the active set method.

subjectto|z;| <= 3 mmjes(i) ej, t € Ing,

_ m-s—dg Vi + (do. —m-s)V;
Q, - ( v,,) Vi + (dv,, Wiz (13) .
dv“ — dvm 3.7 Iteration

Here V;; and V;, are the new vertex positions obtained We use an iterative procedure to gradually improve the
with Equation (9).ds;, andds; , are the new distance val- quality of the irregular region. In each iteration step, a
ues calculated from Equat|on (1dv andds;,, are both guadratic programming problem is formed using current ge-
determined by the new vertex positions, a(gg is a func- ometric information of the mesh. Then we solve the mini-
tion of the displacemerX. Note that ifQ; is a vertex of mization problem, and adjust the vertices according to the
the mesh, thel; can be any edge adjacent to the vertex. In solution to obtain a new mesh. The process is terminated
this case, Equation (13) still holds, and we obtain Qats when the number of iterations exceeds a given bound, or
at the new position of the vertex obtained by Equation (9). the maximum absolute values of the displacement vectors
For a highlight nod&);, its associated highlight segment converge to zero, i.e.,

lengthl; is calculated as half of the total length of the high-
maxier,, |%i

light line segments that it lies on. Note tH@t should have —— <, (17)
exactly two neighboring highlight nodes d(s). Denote €
these two neighboring nodes kY, andQ;, then wheree is the average edge length inside the irregular re-
gionR, ande is a positive threshold value specified by the
1 . . . . . -
= —(|Qi — Qi_ |l + 1Q; — Qis])) (14) user. The iterative procedure is summarized in Algorithm 2.
2 K2 11— 7 K3 .

Substituting Equations (12), (13) and (14) into Equations
(10) and (11), we gefyjs as a function of the displacement 4 | mplementation and examples
X.
Here we show implementation results of the presented
3.6 Target function minimization method on some mesh models. In these examples, we set
w1 = we = 1 for the target function in Equation (15),
ftair @nd fgifr defined in the previous sections are both and set: = 0.001 for the termination condition specified
highly non-linear in{z; }, which makes minimization of the in Formula (17). Figure 7 shows the fairing of the mesh
target function a very expensive numerical process. We will model of a Volkswagen Beetle (see Figure 3(b) as well). In
use functions of a simpler form to approximate them. For Figure 7(a), an irregularity of the front right fender ik
ftair» if we assume thatl;, o; andg; in Equation (8) are  trated by the highlight line model. Figure 7(b) shows the
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Figure 7. Example 1: (a) a mesh with irregu-
lar highlight line model;  (b) the selected mod-
ification region with the constructed desired
highlight lines (in blue);  (c) the resulting mod-
ification region after fairing, with its high-
light model and flat shade. (d) the result with
smooth shade.

Algorithm 2: Remove local irregularities of a mesh
using highlight lines
Input: A triangular meskM, a highlight line model of
M, an irregular regiomR, a maximum number
of iterationsNmax, and a threshold value
Output: A new mesh with irregularities iR
1 Identify the set of movable verticd®/;|i € I),} of

R;
2 Set the number of iterations= 0;
3 repeat
4 Construct the target functiofi of displacements
{z;li € Ing };

5 Solve the minimization problem (16) to obtain the
values of{x;|i € Ip};
for eachi € I, do
Adjust vertexV; according tar;;
end
Update the highlight line model of the mesh using
Algorithm 1;
10 Setn =n+1;
11 until n > NmaxORmax;er,, |z;|/e < €;

© 0 N O

region specified for faring, as well as the desired highlight
lines. Figures 7(c) and (d) provide a closer view of the re-
sulting modification region after fairing in flat and smooth
shade, repectively. The new mesh surface in the faired re-
gion is of high quality; shapes of the new highlight lines
are close to the desired ones. The smooth highlight lines
indicate G continuity of the resulting surface at boundaries
of the modification region[6]. In Figure 8, we fair another
irregular region on the roof of the Beetle model. To com-
pare our method with existing mesh fairing techniques, we
also implemented the surface diffusion flow technique pro-
posed by Xu et al.[25] which is able to satisfy Goundary
conditions. Their method moves each ver¥éxinside the
region to be faired along their normal direction, using equa
tion 9, V, = N;ApH;, whereAgp is the Laplace-Beltrami
operator, andN; and H; are the surface normal and mean
curvature atV;, respectively. The resulting mesh of this
method satisfies equatiohg H; = 0 for each vertex in-
side the fairing region. This fourth-order PDE is also used
by Schneider and Kobbelt [18][19] in'Gnesh fairing. For
comparison, we first identify the region that requires adjus
ment, and perform fairing in that region with our method
and Xu et al.’'s method, respectively. Figures 8(a) and 8(b)
show the irregular region and the selected region, respec-
tively. Figures 8(c) and 8(d) are the resulting modification
region from Xu et al’s method and our method, respec-
tively. On the mesh produced by Xu et al.'s method, the new
highlight lines are curved toward the middle of the selected
region, causing abrupt changes of highlight line shapes on
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Figure 8. Example 2: (a) a mesh with irregular
highlight line model; (b) the selected modifi-
cation region with the desired highlight lines
(in blue); (c) the resulting modification re-
gion from Xu et al's method, with its highlight
line model; (d) the resulting modification re-
gion from our method, with its highlight line
model.



