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Figure 1: Full evaluation (depth 5) of a toy model (66 patches) at 56fps on NVIDIA GeForce 8800 GT

Abstract

A novel patch-based tessellation method for a dual subdivision
scheme, the Doo-Sabin subdivision, is presented. Patch-based re-
finement for face-split subdivision schemes such as Catmull-Clark
subdivision or Loop subdivision has been widely studied. But
there is no patch-based tessellation algorithm for dual subdivision
scheme [Shiue et al. 2005] yet. The method presented in this paper
is the first attempt to fill up that gap. The new method uses an 1D
array to hold vertices; it creates a patch corresponding to a vertex
in the original mesh and does not have any numerical roundoff gaps
on patch boundaries. These characteristics are different from those
of patch-based refinements for face-split subdivision schemes. Ex-
perimental results show that our algorithm achieves real time tes-
sellation performance for moderate meshes.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Curve, Surface, Solid, and Object Representations; I.3.8
[Computing Methodologies]: Computer Graphics—Graphics Data
Structures and Data Type

Keywords: subdivision surfaces, programmable graphics hard-
ware, patch-based refinement

1 Introduction

Subdivision surfaces are gaining popularity in several areas, such
as geometric modeling and computer animation. One of the rea-
sons is its capability in representing objects of arbitrary topology
with only one surface. A subdivision surface is generated by re-
cursively refining a given mesh (called control mesh) until a limit
surface is reached. Hence a subdivision surface is determined by the
control mesh and the refining rule (or, subdivision scheme). Most
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of the better known stationary subdivision schemes can be classi-
fied into two categories [Zorin and Schröder 2000]: face-split and
vertex-split. The first category contains Loop [Loop 1987], modi-
fied butterfly [Zorin et al. 1996] for triangular meshes, and Catmull-
Clark [Catmull and Clark 1978] and Kobbelt [Kobbelt 1996] for
quadrilateral meshes. Doo-Sabin [Doo and Sabin 1978], midedge
and biquartic subdivision schemes are in the vertex-split category.
There are several other subdivision schemes not in these two cate-
gories such as the

√
3 subdivision [Kobbelt 2000]. Implementation

of this subdivision is very simple due to its repetitive structure.

With the recent dramatic advancement of their computation power,
Graphics Processing Units (GPUs) are no longer limited to ren-
dering purpose only, they have been used for other purposes as
well. Actually there is an effort to develop GPUs into General Pur-
pose GPUs (GPGPU) [Luebke et al. 2004]. CUDA (Compute Uni-
fied Device Architecture) developed by NVIDIA is a very typical
platform for general purpose computation of GPUs. To utilize the
computation power of GPUs, several algorithms have been imple-
mented on GPU to achieve higher performance, such as marching
cubes, particle systems [Kipfer et al. 2004; Kolb et al. 2004] and
collision detection [Govindaraju et al. 2003]. More examples can
be found in the CUDA Zone of NVIDIA’s website or in [Nguyen
2007]. In particular, there is a big collection of literature about effi-
cient tessellation of subdivision surfaces on GPU. A fast rendering
of Loop subdivision surface by dividing the control mesh into dif-
ferent patches with triangle pairs and their intermediate neighbor-
ing vertices is proposed in [Pulli and Segal 1996]. Employing the
forward differencing technique for hardware supported implemen-
tation of Loop subdivision surface is explored in [Bischoff et al.
2000]. A general meshing scheme method for adaptive subdivision
surface rendering which sends groups of vertices to the graphics
pipeline is presented in [Bóo et al. 2001]. A parallel evaluation of
subdivision surfaces on graphics hardware is presented in [Padrón
et al. 2002]. Patch-based adaptive tessellation for Catmull-Clark
surfaces with displacement mapping is shown in [Bunnell 2005].
[Shiue et al. 2003] proposes a generic framework for tessellating
subdivision surfaces on GPU. All these algorithms fall into the cat-
egory of patch-based method. Patch-based refinement has the ad-
vantages of locality, efficiency for recursive refinement, and adap-
tivity et al. Another type of tessellation and rendering of subdi-
vision surfaces is to use lookup tables for pre-computed data, like
the table driven tessellation algorithm in [Bolz and Schröder ] and
a general subdivision kernel based on spiral-enumerated fragment
meshes in [Shiue et al. 2005]. There are other applications dealing



with subdivision surface on GPU, e.g. deformation of subdivision
surfaces on GPU [Zhou et al. 2007].

Most of existing tessellation methods for subdivision surfaces can
not be directly applied to dual subdivision schemes, such as Doo-
Sabin subdivision or mid-edge subdivision except the general ker-
nel [Shiue et al. 2005]. Especially, to the best of our knowledge,
there is no patch-based tessellation algorithm for vertex-split sub-
division surfaces [Shiue and Peters 2005] [Shiue et al. 2005] al-
though patch-based tessellation techniques for face-split subdivi-
sion surfaces have been widely studied. In this paper, We try to
fill up this gap by introducing a patch-based tessellation algorithm
for Doo-Sabin subdivision surface. Our patch-based tessellation for
Doo-Sabin subdivision surface differs from those for face-split sub-
division surfaces in several aspects. First, a patch in our algorithm
corresponds to a vertex of the initial control mesh. In general, the
number of vertices of a mesh is smaller than the number of faces.
Hence, there are less patches in our method. Second, our method
uses an 1D array to store patch vertices while those for face-split
subdivision employ a 2D array. Third, there is no numerical round-
off gaps between patch boundaries in our method, while such gaps
exist in those patch-based methods for face-split method and need
to be taken care of. two adjacent patches share a strip of faces.
The new vertices generation of Doo-Sabin subdivision surfaces are
computed for each face locally, then these vertices on one shared
face are computed from two two copies of the vertices of its pre-
vious face. There is nothing about the computation order because
the computation is limited in each face. Thus there is no numeri-
cal roundoff gaps. The general subdivision kernel in [Shiue et al.
2005] is also suitable for Doo-Sabin subdivision surfaces. But this
approach needs to subdivide the initial mesh twice on CPU while
ours needs only one subdivision as pre-processing. Several experi-
mental results show that our patch-based tessellation for Doo-Sabin
subdivision is almost realtime for moderate meshes, like 35fps for
fully re-evaluation of a toy model to depth 5 in Fig.1.

The remaining part of the paper is arranged as follows. Details of
the new method are presented in Section 2. Performance of the new
method and test results are shown in Section 3. Concluding remarks
and future work are given in Section 4.

2 Patch-based tessellation and implementa-
tion

Figure 2: Upper left: stencil for Doo-Sabin subdivision, α0 = (n +
5)/4n and αi = (3 + 2 cos((2iπ)/n))/4n (0 < i < n); Upper right:
f-face for a face; Lower left: v-face for a vertex; Lower right: e-face
for an edge.

A dual subdivision scheme refines the current mesh by (concep-
tually) splitting its vertices according to their valences to generate

new vertices, and then connecting the new vertices to form new
edges and new faces. The refined mesh contains three types of
faces: v-faces,e-faces and f-faces, as they correspond to vertices,
edges, and faces in the current mesh, respectively. By repeatedly
performing this refinement process on a given control mesh, one
gets a limit surface in the end. Such a limit surface is called a
subdivision surface of the dual subdivision scheme. Doo-Sabin
subdivision scheme is a typical dual scheme. The refinement sten-
cil for Doo-Sabin subdivision and the corresponding v-face,e-face
and f-face are shown in Figure2. Note that if one can generate each
patch of the limit surface independently by refining an appropriate
subset of the control mesh (called patch-based tessellation),
then one can parallelize the limit surface generation process by
generating all the patches of the limit surface simultaneously on a
GPU or some special hardware. Our intention here is to develop
patch-based tessellation techniques for Doo-Sabin subdivision
surfaces.

Developing patch-based tessellation) techniques for face-split sub-
division schemes is relatively easy. This is because for each face-
split subdivision scheme, such as Catmull-Clark or Loop, each
patch of the limit surface corresponds to a face in the control mesh.
Therefore, it is straightforward to identify the subset of the con-
trol mesh that has to be tessellated to generate a specific patch of
the limit surface. This is not true for a dual subdivision scheme.
Patches of the limit surface of a dual subdivision scheme do not
correspond to faces of the initial control mesh. Instead, they corre-
spond to vertices of the initial control mesh (see Figure 3). We call
such a patch vertex patch.

Given an input mesh M with Nv vertices, we first subdivide it
once to generate a v-face for each vertex. The refined mesh is
then broken into Nv submeshes. Each submesh, consisting of
a v-face and its adjacent faces, corresponds to a vertex patch.
With the establishment of an initial submesh for each vertex
patch, Doo-Sabin subdivision is then applied to each submesh
independently. The final refined mesh of M is the union of the
final refined meshes of all these submeshes. Note that two adjacent
vertex patches share a strip of quadrilateral faces in the refined
mesh of every level. In the initial submesh of a vertex patch, the
v-face and adjacent f-faces (generated for faces of M adjacent to
this vertex) could be arbitrary polygons; but the adjacent e-faces
are all quadrilateral faces. If the input mesh is a quadrilateral mesh,
all faces adjacent to a v-face are quadrilaterals (see the Upper left
case of Figure 3). A submesh of this type is called a semi-quad
submesh. In the following, we first show how to subdivide these
semi-quad submeshes using Doo-Sabin subdivision scheme.
We then extend our patch-based tessellation algorithm to arbi-
trary meshes by introducing a special operation for arbitrary f-faces.
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Figure 4: (a) face layouts and vertex layouts; (b) indices of a corner quad and its subdivided new corner quad; (c) indices of a regular quad
and its subdivided new regular quad.

Figure 3: Upper left: an initial submesh of a vertex patch in a cube
mesh. Upper right: the refined submesh of this patch after 3 levels of
subdivision; blue quadrilaterals are shared with other patches; Lower
left: strips of blue quadrilaterals are shared between patches; Lower
right: a none semi-quad vertex patch at subdivision depth 3 whose
generator vertex has a valence of 3; note that the layout is similar to
that of the patch in upper right.

2.1 Subdivision of Semi-quad Vertex Patches

The layout of a semi-quad vertex patch is completely determined
by the valence n of the corresponding vertex in the original mesh,
called a generator vertex. A valence of n indicates that the v-face in
the initial submesh has n vertices. In this subsection, the generator
vertex of a semi-quad vertex patch is assumed to has a valence of
n.

At each refinement level of the semi-quad vertex patch, all faces
can be assigned into different face layers naturally by their posi-
tions. The inner most v-face is considered in the 0-th layer. In
general, quadrilaterals adjacent to i-th layer faces are assigned to
the (i + 1)-st layer. Similarly, we can classify vertices into dif-
ferent vertex layers. Vertices of the inner most v-face are in the
0-th vertex layer. Vertices shared by quadrilaterals in the i-th and
(i + 1)-st layers are assigned into the i-th vertex layer, as in Figure
4(a). In each face layer except the 0-th layer, there are n quadrilat-
erals corresponding to the f-faces of the initial semi-quad submesh,
called corner quads. Other quadrilaterals are considered as regular
quads. We also divide the vertices in each vertex layer into two cat-
egories: corner vertex and regular vertex. Vertices of the single face

in the 0-th face layer are all corner vertices. The two vertices on
the diagonal of a corner quad, which are from two consecutive face
layers, are two corner vertices on their own layers, respectively. An
illustration is given in Figure 4(a). Thus there are exactly n corner
vertices in each vertex layer. It is natural to divide the vertices in
each layer into n sides. The i-th side contains the vertices from the
i-th corner vertex to the (i+1)-st corner vertex (excluding (i+1)-st
corner vertex itself).

There are several useful observations on the number of vertices in
the layout of a vertex patch. At subdivision level d ≥ 1,

1. there are 2d−1 +1 vertex layers. The layer index l is assumed
to be 0 ≤ l ≤ 2d−1.

2. In vertex layer l, there are 2l + 1 vertices on each side, thus
(2l + 1)n vertices in all.

3. The total vertices in the refined submesh of a vertex patch at
level d is (2d−1 + 1)2n.

We simply assign all vertices of a vertex patch into an array in se-
quential order by assigning the inner layers first as shown in Figure
6. The vertex indices for the l-th vertex layer is from l2n + 1 to
(l + 1)2n. The j-th (0 ≤ j ≤ n− 1) corner vertex in the l-th layer
is in the position of Cl

j = l2n + 1 + j(2l + 1). A vertex on the
j-th side of the l-th vertex layer is connected to a regular vertex on
the same side of the (l +1)-st vertex layer to form a bounding edge
of a regular quad. The index difference between this pair of con-
nected vertices in consecutive layers is Δl

j = (2l + 1)n + 2j + 1.
Then vertex indices of a corner quad are Cl

j , Cl+1
j + 1,Cl+1

j and

Cl+1
j −1 as shown in Figure 4(b). A regular quad contains vertices

with indices idx, idx + 1, idx + 1 + Δl
j and idx + Δl

j as shown
in Figure 4(c), where idx is a vertex on the j-th side of the l-th ver-
tex layer. Therefore, at subdivision level d, we can extract all faces
from the sequence of vertices by constructing quadrilaterals of the
above forms. More precisely,

1. The inner most face is obtained by connecting vertices 1 to n;

2. For a vertex idx between 1 and (2d−1)2n, first determine its
vertex layer l and its side j in this layer. Extract a regular
quad with vertices idx, idx+1, idx+1+Δl

j and idx+Δl
j ;

if vertex idx is a corner vertex, extract a corner quad with
vertices Cl

j , Cl+1
j + 1,Cl+1

j and Cl+1
j − 1.

Here all the additions and subtractions are considered in the modulo
sense, i.e., Cl

0 − 1 = Cl
n−1 + 2l and so on.

For Doo-Sabin subdivision, new vertices are generated for each
face. So far, we can extract all faces from a sequential array for



subdivision. The question then is, how to store the new vertices
back into the sequential array. At subdivision level d + 1, there are
2d +1 face layers. Note that the quadrilaterals in the (i+1)-st face
layer of level d creates the quadrilaterals in the 2(i+1)-st face layer
in the refined submesh. Consequently, vertices on the new quadri-
laterals are in the (2i + 1)-st and (2i + 2)-nd vertex layers of the
refined submesh. Precisely, each corner quad in the (i+1)−st face
layer with vertices Ci

j , Ci+1
j + 1,Ci+1

j and Ci+1
j − 1 is mapped

to the corresponding corner quad in the (2i + 2)-nd layer which
has vertices C2i+1

j , C2i+2
j + 1, C2i+2

j and C2i+2
j − 1, as shown

in Figure 4(b). For each regular quad on the j-th side, we need a
new parameter Eidx to determine the indices of the new vertices.
Let Eidx is just the number of edges between idx + 1 and Ci+1

j .
We have Eidx = idx + 1 − Ci+1

j . Then the new regular quad has
the vertices of idx′ = C2i+1

j + 2Eidx, idx′ + 1, idx′ + Δ2i+1
j

and idx′ + Δ2i+1
j , as in Figure 4(c). The above analysis shows the

process of subdividing a semi-quad vertex patch. We next extend
this tessellation method to arbitrary meshes.

2.2 Generalization

For an arbitrary mesh, f-faces in the initial submesh of a vertex
patch no longer have to be quadrilaterals. If they have more than 4
vertices, they can not fit into the sequential array discussed above
any more. The layout of the refined submesh of a vertex patch de-
pends on the valence n of its generator vertex and how many ver-
tices on each f-face. In this subsection, we use the assumption that,
for the given vertex patch, the valence of the generator vertex is n
and the numbers of vertices of the n f-faces are m1, m2, . . . , mn,
respectively. Note that, although the initial submesh of an arbitrary
vertex patch looks quite different from that of a semi-quad vertex
patch, their refined submeshes after a few times of subdivision look
very much alike. In fact, the only difference between these sub-
meshes are just the n corner quads in the outer most face layer if
the valences of their generator vertices are both n. This observation
leads us to a minor modification of the tessellation algorithm for
semi-quad vertex patch to handle arbitrary vertex patches.

Let Mv be the maximum of vertex valences of the original mesh
and let Mf be the maximum of mesh faces’ vertex numbers of the
original mesh. We append Mv × Mf spaces to the (2d−1 + 1)2n
sequential spaces for a vertex patch at subdivision level d such
that the mj vertices of the j-th f-face are stored in the slots from
j × Mf to (j + 1) × Mf . Note that the corner quads and corner
vertices in the outer most face layer and vertex layer are no longer
valid now. But we still keep the spaces for them. These corner
quads and corner vertices now act as flags. To differentiate them
from others, they are called virtual corner quads and virtual corner
vertices, respectively (see Figure 6).

Figure 6: Left: a semi-quad vertex patch at subdivision depth 1, where
solid black circles represent corner vertices and blue quadrilaterals
are corner quads; Right: black circles represent virtual corner vertices
and slashed quadrilaterals are virtual corner quads.

Now we can extract faces for an arbitrary vertex patch as we did
for a semi-quad vertex patch except for those virtual corner quads.
When the considered face is the j-th virtual corner quad, we
retrieve the mj vertices of the f-face from the appended spaces.
Once new vertices have been generated for a virtual corner quad in
the new subdivision process, new vertices are stored back into the
identical positions in the appended spaces. Note that each virtual
corner quad has three vertices shared with adjacent regular quads.
Using the above approach, these three vertices will be stored twice,
once for the adjacent regular quads and once for the virtual corner
quad. This additional storage is necessary to maintain a retrieving
mechanism that works for both semi-quad vertex patches and
arbitrary vertex patches.

In summary, we have the following algorithm for subdividing a
mesh from depth d to d + 1.

For a vertex with index idx ∈ [1, (2d−1)2n] do

• Identify the layer l and the side j it belongs to;

• If the vertex idx is a corner vertex, extract vertices of the cor-
ner quad Qc: Cl

j , C
l+1
j + 1, Cl+1

j and Cl+1
j − 1.

– If Qc is a virtual corner quad,

◦ Extract vertices of the j-th f-face from the ap-
pended Mv × Mf spaces;

◦ Subdivide this face by Doo-Sabin subdivision
scheme;

◦ Write new vertices to identical positions of a new
array; at the same time, write the three none vir-
tual corner vertices to their corresponding new po-
sitions;

– Otherwise,

◦ Subdivide this corner quad by Doo-Sabin subdivi-
sion scheme;

◦ Write vertices of the new corner quad to a new
array;

• Extract vertices of the regular quad with indices Qr of
idx, idx + 1, idx + 1 + Δl

j and idx + Δl
j ;

◦ Compute the step size for the new indices: Eidx =
idx + 1 − Cl

j ;

◦ Subdivide this regular quad by Doo-Sabin subdivision
scheme;
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Figure 5: (a)-(c):full evaluation of a chessman model (314 patches) to depth 5 at 14fps; (d)-(f):full evaluation of the rocker arm model (354
patches) to depth 5 at 19fps; (a) and (d) are the original subdivision surfaces; (b), (c), (e) and (f) are deformed surfaces.

◦ Write vertices of the new regular quad to a new array;

3 Performance and results

After breaking a given mesh into vertex patches, the patches can
be evaluated independently. This intrinsic parallel characteristic
makes it highly suitable for running on GPU. Our patch-based tes-
sellation algorithm uses a 1D array to represent a vertex patch. The
input mesh is first subdivided once on CPU to initialize the 1D array
representations for the resulting vertex patches. After initialization,
the evaluation is confined to each 1D array itself. At the expected
subdivision depth, the connectivity information needed for render-
ing can easily be retrieved from these sequences of vertices.

Our implementation is performed on a desktop with a 3.0GHz Pen-
tium 4 CPU, 512M RAM and a GeForce 8800 GT GPU (512M).
We use the CUDA platform for GPU programming. To avoid ren-
dering via the CPU, we use vertex buffers for vertices of the input
meshes and their normals. By using the OpenGL Interoperability
of CUDA, we can process these vertex buffers in GPU computa-
tion. After processing, it is directly rendered on GPU. The render-
ing process is highly accelerated by using vertex buffers. In order
to measure the performance of our program, we wobble the ver-
tices of the input mesh along their normals and reevaluate the mesh
to the prescribed depth, i.e. 5 in our examples. Figure 1 shows
reevaluating a toy model with 66 patches to depth 5 at 56fps. The
ant model in Figure 7 with 298 patches is reevaluated to depth 5 at
14fps. More examples are shown in Figure 8 on a helix model with
505 patches, Figure 5(a) - Figure 5(c) on a chessman model with
314 patches and Figure 5(d)-Figure 5(f) on a rocker arm model with
354 patches. All these examples show that our patch-based tessel-
lation algorithm achieves near realtime performance. Compared to
our implementation on CPU, the GPU implementation runs about
20 times faster. For instance, the performance for the rocker arm
model on CPU is less than 1fps.

4 Conclusion and Future Work

In this paper, a patch-based tessellation algorithm for Doo-Sabin
subdivision scheme is developed. Our patch-based tessellation cre-
ates a vertex patch for every vertex in the input mesh. This vertex
patch is represented by a 1D array. All connectivity information
can be easily retrieved from the 1D sequence. All vertex patches are
evaluated independently. There is no numerical roundoff gaps issue
because the shared parts between patches are strips of quadrilater-

als. With the intrinsic parallelism of our patch-based tessellation, it
is easily adapted on GPU. Our GPU implementation achieves near
realtime performance for moderate meshes. In general, patch-based
refinements possess the flexibility of adaptive refinement [Bunnell
2005]. One of our future works is to investigate adaptive tessella-
tion of our patch-based method.
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