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t. A new te
hnique for the re
onstru
tion of a smooth surfa
e from a set of 3D data pointsis presented. The re
onstru
ted surfa
e is not represented by a polyhedral approximation, but aneverywhere C1-
ontinuous subdivision surfa
e. The subdivision surfa
e interpolates all the givendata points. Besides, the topologi
al stru
ture of the re
onstru
ted surfa
e is exa
tly the sameas that of the data points. Therefore the re
onstru
ted surfa
e is guaranteed to be pre
ise if thedata points are taken dire
tly from the sampled obje
t and is good for all subsequent appli
ations.The new te
hnique 
onsists of two major steps. First, an eÆ
ient surfa
e re
onstru
tion method isapplied to produ
e a polyhedral approximation to the given data points. A Doo-Sabin subdivisionsurfa
e that smoothly passes through all the data points in the given data set is then 
onstru
ted. Anew te
hnique is presented for the se
ond step in this paper. The new te
hnique iteratively modi�esthe verti
es of the polyhedral approximation M until a new 
ontrol mesh �M , whose Doo-Sabinsubdivision surfa
e interpolates M , is rea
hed. It is proved that, for any mesh M with any sizeand any topology, the iterative pro
ess is always 
onvergent with Doo-Sabin subdivision s
heme.Therefore the surfa
e re
onstru
tion pro
ess is well-de�ned. The new te
hnique has the advantagesof both a lo
al method and a global method, and the surfa
e re
onstru
tion pro
ess 
an reprodu
espe
ial features su
h as edges and 
orners faithfully.Keywords: Surfa
e re
onstru
tion, Loop subdivision surfa
es, interpolation1 Introdu
tionIn many appli
ations, the only available information on a surfa
e is a set of unorganized pointssampled from that surfa
e. Before a 
omputation 
an be perform on that surfa
e, a representationof the surfa
e has to be 
onstru
ted from the sample points �rst. This is the problem of surfa
ere
onstru
tion. Problems of this type o

ur in s
ienti�
 and engineering appli
ations su
h as CAD,medi
al imaging, visualization, 
omputer graphi
s, 
omputer vision, reverse engineering, et
. There
onstru
ted surfa
e should be topologi
ally equivalent to and geometri
ally 
lose to the sampledsurfa
e.Traditional surfa
e re
onstru
tion methods always produ
e a set of triangles to approximate thesurfa
e shape. This usually is not pre
ise enough when small details are needed. One 
an solvethe pre
ision problem by in
reasing the number of points sampled in the sampling pro
ess. This ispossible be
ause re
ent advan
es in laser te
hnology have made it easier to generate a lot of samplepoints from the surfa
e of an obje
t. But there are o

assions where a dis
rete representation isnot good enough no matter how many points are used in the represenation, su
h as 3D medi
alimaging where one needs to s
ale up an organ or a 
ross-se
tion frequently. Constru
tion of smoothrepresentation of a surfa
e from unorganized data has been studied for a while and some te
hniqueshave already been reported [22℄. But the te
hniques do not guarantee interpolation of the sample1



points by the generated representation.In this paper we propose to re
onstru
t a faithful surfa
e from a set of data points, su
h thatthe re
onstru
ted surfa
e is not approximately represented by a polyhedron, but by an everywhereC1 
ontinuous subdivision surfa
e. The subdivision surfa
e interpolates all the given data points.Besides, the topologi
al stru
ture of the re
onstru
ted surfa
e is exa
tly the same as that of the datapoints. Therefore, the representation is guaranteed to be pre
ise if the sampled points are takendire
tly from the sampled obje
t. This is done in two steps:� Use an eÆ
ient surfa
e re
onstru
tion method to produ
e a polyhedral approximation to thegiven sampled points.� Constru
t a C1 
ontinuous subdivision surfa
e to interpolate all the sampled points in thegiven data set.While the �rst step is still a 
hallenging step, it is the se
ond step that is our fo
us here. Constru
tinga subdivision surfa
e to interpolate an arbitrary mesh is not a well-solved problem when the numberof verti
es is large. In this paper we will propose a solution to this poblem.The remaining part of the paper is arranged as follows. In se
tion 2, ba
kground knowledge isreviewed and related work is dis
ussed. The basi
 idea of the method of surfa
e re
onstru
tion usingDoo-Sabin Subdivision Surfa
es is presented in Se
tion 3. The 
orre
tness and 
onvergen
e of ourmethod is proven in se
tion 4. Implementation issues and test results are given in Se
tion 5. Se
tion6 gives some 
on
luding remarks.2 Ba
kground and Related Work2.1 Surfa
e Re
onstru
tion from Unorganized PointsA number of appli
ations ranging from CAD, 
omputer graphi
s and mathemati
al modeling requirethe re
onstru
tion of a smooth surfa
e from a set of data points. The data points 
ould be denselysampled or sparsely taken from the surfa
e su
h that they are the representative points of the surfa
e.Many te
hniques have been proposed to re
onstru
t an approximated surfa
e from a set of 3D datapoints. Among them are greedy methods [23℄, impli
it surfa
es [21℄ and Delaunay triangulation,et
. However all of them only lead to a non-smooth polyhedral approximation to the given datapoints, or to a smooth surfa
e that does not interpolate the input data point set [22℄. Thereforewithout dense sampling of an obje
t surfa
e, none of the methods mentioned above 
an re
onstru
tthe original surfa
e pre
isely.2.2 Subdivision Surfa
esSubdivision surfa
es are popular now in Computer Animation, CAD and Geometri
 Modeling, et
.The ability to model arbitrary topology surfa
es makes them more suitable than 
lassi
al splinesurfa
es in some appli
ations. The Catmull-Clark subdivision s
heme [2℄ was proposed in 1978,whi
h is the generalization of bi
ubi
 spline surfa
e, while the Doo-Sabin subdivision method [1℄ is thegeneralization of quadrati
 spline surfa
e. Later, the Loop subdivision s
heme [8℄ was developed fortriangular meshes whi
h generalizes the Box splines. All these three popular subdivision methods areapproximating s
hemes. There are interpolating subdivision s
hemes that interpolate the given mesh.One of the most famous interpolating subdivision methods is the butter
y subdivision method [6℄whi
h was modi�ed subsequently to generate smoother interpolation surfa
es in [9℄. An interpolatings
heme for quadrilateral meshes was proposed in [18℄.2.3 Surfa
e Interpolation of Irregular MeshesInterpolation is a popular te
hnique used in surfa
e design and shape modeling. There are plenty ofpubli
ations dealing with the interpolation problem using various surfa
e representations. Interpo-lation methods based on subdivision surfa
es have also been developed. One group of them requires2



solving a global system of linear equations, like [3, 4℄. To avoid the 
omputational 
ost of solvinga large system of linear equations, other methods have been developed. In [5℄, an always-workingmethod solved the problem using a two-phase subdivision method. The method proposed in [15℄avoids exa
tly solving a system of linear equations by using the 
on
ept of similarity. The approa
hpresented in [7℄ avoids solving a system of linear equations by using quasi-interpolation.In this paper, based on the results obtained from traditional surfa
e re
onstru
tion methodswhi
h produ
e a polyhedral approximation to the given sample points, we present a new iterativeinterpolation method using Doo-Sabin subdivision surfa
e. Our iterative method is an extension ofthe progressive iterative interpolation method for B-splines [13, 10, 12℄. The idea of our iterativeinterpolation method is to use the di�eren
es between the (original) mesh to be interpolated and theDoo-Sabin surfa
e of 
urrent mesh to get a new mesh. This iterative pro
ess will 
onverge to a Doo-Sabin surfa
e interpolating the original mesh. The updating operation at ea
h level of the iterationis done by a lo
al operation for ea
h vertex in 
urrent mesh. Therefore our method possesses theproperty of a lo
al method. On the other hand, our method has the form of a global method dueto its a
tual global linear e�e
t. Therefore, our method has the advantages of both a lo
al methodand a global method. Experimental results demonstrate the eÆ
ien
y and ability of our method inhandling large meshes.3 Surfa
e Re
onstru
tion using Doo-Sabin Subdivision Sur-fa
esAs mentioned above, there are two major steps in the new surfa
e re
onstru
tion pro
ess. First weapply an eÆ
ient surfa
e re
onstru
tion method to produ
e a polyhedral approximation to the givendata points, then we �nd an interpolatory surfa
e for the obtained polyhedral approximation in the�rst step. There are many eÆ
ient approa
hes that we 
an use for the �rst step [21, 22, 23℄. In thispaper we regard the polyhedral approximation obtained from the �rst step as the 
ontrol mesh of aDoo-Sabin subdivision surfa
e and fo
us on how to 
onstru
t an interpolating surfa
e for the 
ontrolmesh.3.1 Doo-Sabin subdivision surfa
esIn Doo-Sabin subdivision s
heme, new polygons are built from the old mesh in the following way.An edge point is formed from the midpoint of ea
h edge. A fa
e point is formed as the 
entroid ofea
h polygon of the mesh. Finally, ea
h vertex in the new mesh is formed as the average of a vertexin the old mesh, a fa
e point for a polygon that is in
ident to that old vertex, and the edge pointsfor the two edges that belong to that polygon and are adja
ent to that old vertex.The new verti
es then are 
onne
ted. There will be two verti
es along ea
h side of ea
h edge in theold mesh, by 
onstru
tion. These pairs are 
onne
ted, forming quadrilaterals a
ross the old edges.Within ea
h old polygon, there will be as many new verti
es as there were verti
es in the polygon.These are 
onne
ted to form a new, smaller, inset polygon. And �nally, around ea
h old vertex thereis a new vertex in the adjoining 
orner of ea
h old polygon. These are 
onne
ted to form a newpolygon with as many edges as there were polygons around the old vertex. The new mesh, therefore,will 
reate quadrilaterals for ea
h edge in the old mesh, will 
reate a smaller m-sided polygon forea
h m-sided polygon in the old mesh, and will 
reate an n-sided polygon for ea
h n-valen
e vertex.After one appli
ation of the s
heme all verti
es have a valen
e of four. So subsequent appli
ationswill 
reate quadrilaterals for the verti
es only. All n-sided polygons are retained in the subdivisionpro
ess, and shrink to extraordinary points as the subdivision s
heme is repeatedly applied.For a vertex V of valan
e n (See Fig. 1), if its adja
ent edge points are Ei, 1 � i � n and itsadja
ent fa
e points are F ij , 1 � i � n, 1 � j � mi � 3, where mi is the number of edges in the ith
3



Figure 1: A vertex V of valen
e n and the new, adja
ent vertex points generated after one Doo-Sabinsubdivision.adja
ent fa
e, then after one subdivision we haveV 0i = (12 + 14mi )V + (18 + 14mi )Ei + (18 + 14mi )Ei+1 + 14mi mi�3Xj=1 F ij ;where V 0i ; 1 � i � n is one of the newly generated vertex points around vertex V after one subdivision(See Fig. 1).After ea
h subdivision we have an n-sided polygon around vertex V , whi
h will remain to ben-sided in the subdivision pro
ess, and shrink to a limit point as the s
heme is repeatedly applied.The limit point 
orresponding to V on the limit surfa
e 
an be 
al
ulated as follows.V1 = 1n nXi=1V0iThe above formula 
an be expanded and hen
e V1 
an be more pre
isely rewritten as follows.V1 = 1n� nXi=1 4mi + 28mi V + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Ei + nXi=1 �mi�3Xj=1 28miFij��: (1)3.2 Progressive interpolation using Doo-Sabin subdivision surfa
esFor a given a mesh M0, we will �nd a new mesh M whose Doo-Sabin limit surfa
e interpolatesall verti
es of M0. Instead of solving a global system of linear equations, we develop a progressiveiterative method whi
h only lo
ally manipulates verti
es of the 
ontrol mesh by an aÆne operationat ea
h level of iteration. The iteration pro
ess is des
ribed as follows.Initially, for ea
h vertex V0 of M0, we 
ompute the di�eren
e ve
tor between this vertex and itslimit point on the Doo-Sabin surfa
e S0 
al
ulated from the equation (1),D0 = V0 �V01;and add the di�eren
es D0 to the vertex V0.V1 = V0 +D0:Therefore, we get a new 
ontrol mesh M1 whose verti
es are 
omputed as V1. By iterativelyrepeating this pro
ess, we get a sequen
e of 
ontrol meshes M0; M1; M2 � � � :4



In general, if Vk , (0 � k < 1), is the new lo
ation of vertex V after k iterations of the abovepro
ess andMk is the 
ontrol mesh 
onsists of all the new Vk's, then we denote the Doo-Sabin limitsurfa
e of Mk, Sk. We �rst 
ompute the distan
e between V and the limit point Vk1 of Vk on SkDk = V0 �Vk1: (2)We then add this distan
e to Vk to get Vk+1 as follows:Vk+1 = Vk +Dk:The set of new verti
es is 
alled Mk+1.This pro
ess generates a sequen
e of 
ontrol meshes Mk and a sequen
e of 
orresponding Doo-Sabin surfa
es Sk. Sk 
onverges to an interpolating surfa
e of M0 if the distan
e between Sk andM0 
onverges to zero (i.e., Dk ! 0). Therefore the key task here is to prove that Dk 
onverges tozero when k tends to in�nity.4 Proof of Convergen
eTo prove the 
onvergen
e of the above iterative pro
ess, we need a lemma about the eigenvalues ofthe produ
t of positive de�nite matri
es.Lemma 1 Eigenvalues of the produ
t of positive de�nite matri
es are positive.The proof of Lemma 1 follows immediately from the fa
t that if P and Q are square matri
es ofthe same dimension, then PQ and QP have the same eigenvalues (see, e.g., [16℄, p.14).As mentioned above, to prove that the iterative interpolation pro
ess 
onverges, we must provethat the di�eren
e Dk approa
hes zero when k tends to in�nity. Note that Dk 
an be expanded asfollows.Dk = V0 �Vk1= V0 � 1n� nXi=1 4mi + 28mi Vk + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Eki + nXi=1 �mi�3Xj=1 28mi (Fij)k��= V0 � 1n� nXi=1 4mi + 28mi Vk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Ek�1i + nXi=1 �mi�3Xj=1 28mi (Fij)k�1��� 1n� nXi=1 4mi + 28mi Dk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Dk�1Ei + nXi=1 �mi�3Xj=1 28miDk�1Fij ��= Dk�1 � 1n� nXi=1 4mi + 28mi Dk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Dk�1Ei + nXi=1 �mi�3Xj=1 28miDk�1Fij ��(3)Eq. (3) 
an be represented in a 
ompa
t matrix form as follows.�Dk1 ;Dk2 ; : : : ;Dkm�T = (I �B)26664 Dk�11Dk�12...Dk�1m 37775 = (I �B)k 26664 D01D02...D0m 37775
5



where m is the number of verti
es in the given mesh, I is an identity matrix of size m�m, and Bis a matrix of the following form:
B = 0BBBBBBBBBB�

1n1 (Pn1i=1 4mi+28mi ) : : : 1n1 (mi+28mi + mi�1+28mi�1 ) : : : 1n1 ( 28mi ) : : :... . . .1ni (mi+28mi + mi�1+28mi�1 ) 1ni (Pnii=1 4mi+28mi )... . . .1nj ( 28mi ) 1nj (Pnji=1 4mi+28mi )... . . .
1CCCCCCCCCCAEa
h entry of matrix B 
an be dire
tly derived from Eq. (1). Now, to prove Dk approa
hes zerowhen k tends to in�nity, we just need to show that (I�B)k approa
hes zero when k tends to in�nity.Obviously, V i+1, limit points of the mesh 
ontrol points V i, ying on the Doo-Sabin subdivisionsurfa
e Si, now 
an be represented in matrix form as V i+1 = BV i. Note that B 
an be de
omposedinto the produ
t of a diagonal matrix � and a symmetri
 matrix T as followsB = �Twhere � is of the following form � = 0BBB� 1n1 0 : : : 00 1n2 : : : 0... . . .0 1nm 1CCCAand T is of the following form

T = 0BBBBBBBBBB�
Pn1i=1 4mi+28mi : : : (mi+28mi + mi�1+28mi�1 ) : : : 28mi : : :... . . .(mi+28mi + mi�1+28mi�1 ) Pnii=1 4mi+28mi... . . .28mi Pnji=1 4mi+28mi... . . .

1CCCCCCCCCCANote that if (Vi; Vj) is an edge of a mesh, then (Vj ; Vi) is an edge of this mesh as well; if (Vi; Vj)is an edge of a fa
e, then so is (Vj ; Vi). In other words, the relationship between two edge verti
esor two fa
e verti
es is symmetri
. It is then easy to see that T is symmetri
. Furthermore, it 
anbe proved that matrix T is positive de�nite.Proposition 1 The matrix T is positive de�nite.Proof: It is well-known that a symmetri
 and stri
tly diagonally dominant matrix with positivediagonal entries is a positive de�nite matrix. Be
ause all the 
oeÆ
ients in the Doo-Sabin subdivisionpro
ess are non-negative, it is easy to 
he
k that the diagonal entries of T are positive numbers.Therefore we just need to show that T is a stri
tly diagonally dominant matrix. A

ording toequation (1), ea
h row of matrix T satis�esTkk � nkXl=1;l6=k Tlk = nkXi=1 4mi + 28mi � 2 nkXi=1 mi + 28mi � nkXi=1(mi�3Xj=1 28mi )= nkXi=1 48mi > 06



Hen
e, T is stri
tly diagonally dominant and, 
onsequently, T is positive de�nite.With the above results, we are ready to prove the 
onvergen
e of the iterative interpolationpro
ess.Proposition 2 The iterative interpolation pro
ess for Doo-Sabin subdivision surfa
e is 
onvergent.Proof: As mentioned above, we just need to prove that (I �B)k approa
hes zero when k tends toin�nity, where B is de�ned above and I is an identity matrix. Re
all that matrix T is a symmetri
positive de�nite matrix, and so is the diagonal matrix �. A

ording to Lemma 1, B = �T , we
an 
on
lude that B only has positive eigenvalues. Sin
e Doo-Sabin subdivision s
heme satis�esthe 
onvex hull property, we have kBk1 = 1, whi
h implies all eigenvalue �i of B satisfy j�ij � 1.Therefore, all eigenvalues of B satisfy 0 < �i � 1. Based on this result, it is easy to see that theeigenvalues of matrix (I �B) satisfy 0 � 1� �i < 1. Consequently, (I �B)k approa
hes zero whenk tends to in�nity. The 
onvergen
e of the iterative interpolation pro
ess for Doo-Sabin subdivisionsurfa
es then is a dire
t 
onsequen
e.5 Implementation & ResultsImplementation of the surfa
e re
onstru
tion te
hnique using Doo-Sabin subdivision surfa
es is doneon a Windows platform using OpenGL as the supporting graphi
s system. Due to the 
ombinationof lo
al and global advantages, the iterative interpolation method is very eÆ
ient and 
an handlevery large data sets easily. Besides, our experiment results show that our approa
h 
an generatevisually pleasing surfa
es though there is no fairness parameter in the interpolation s
heme.Table 1: Doo-Sabin surfa
e based progressive interpolation: test results.Model # of data points # of verti
es in poly. Approx. # of iterations ErrorCubeHC 81920 7666 9 10�6Goblet 129280 8082 7 10�6Ro
karm 203904 13984 5 10�6Beethoven 262016 16378 5 10�6Many examples have been tested and some examples are presented in Fig. 2. In Fig. 2, theinput 3D data points for these examples are listed in the �rst row, the 
orresponding polyhedralapproximations, obtained after applying the surfa
e re
onstru
tion method [23℄, are listed in these
ond row, and the re
onstru
ted C1-
ontinuous Doo-Sabin subdivision surfa
es whi
h interpolatethe 
orresponding polyhedral approximations are shown in the third row. We also tabulate someof the testing parameters (see Table 1), su
h as the number of data points in the input model, thenumber of verti
es in the polyhedral approximation obtained from applying a traditional surfa
ere
onstru
tion method [21, 23℄, the number of iterations used in the iterative interpolation pro
essto get the interpolating surfa
e and error toleran
e used to stop the iteration.Note that the number of data points in the input 3D model is not the same as the number ofverti
es in the obtained polyhedral approximation. This is be
ause we made some simpli�
ation su
hthat the obtained polyhedral approximations are not as dense as the input data set and meanwhile,without losing mu
h pre
ision (by tolerating a small given error, say 10�6).6 Con
luding RemarksA new te
hnique for the re
onstru
tion of a smooth surfa
e from a set of 3D sample points ispresented. The re
onstru
ted surfa
e is not represented by a polyhedral approximation, but an7



(a) Data Points (b) Data Points (
) Data Points (d) Data Points

(e) Polyhedral Ap-proximation (f) Polyhedral Approxi-mation (g) Polyhedral Approxi-mation (h) Polyhedral Ap-proximation

(i) Re
onstru
tionby Interpolation (j) Re
onstru
tion by In-terpolation (k) Re
onstru
tion by In-terpolation (l) Re
onstru
tion byInterpolationFigure 2: Examples of surfa
e re
onstru
tion using Doo-Sabin subdivision surfa
es.8



everywhere C1-
ontinuous subdivision surfa
e whi
h interpolates all the sample points. The re
on-stru
tion pro
ess employs a two-step approa
h: a surfa
e re
onstru
tion step and a surfa
e inter-polation step. The �rst step produ
es a polyhedral approximation to the sampled surfa
e from thesample points. The se
ond step produ
es a Doo-Sabin subdivision surfa
e that interpolates all thesample points. The se
ond step is the fo
us of this paper. The interpolating surfa
e is generated byiteratively modifying the verti
es of the polyhedral approximationM until a 
ontrol mesh �M , whoseDoo-Sabin subdivision surfa
e interpolates M is rea
hed. It is proved that, for any mesh M withany size and any topology, the iterative pro
ess is 
onvergent with Doo-Sabin subdivision surfa
es.Therefore the surfa
e re
onstru
tion pro
ess is well-de�ned. The new te
hnique has the advantagesof both a lo
al method and a global method. Therefore it 
an handle data set of any size while
apable of generating a faithful approximation of the sampled surfa
e no matter how 
ompli
atedthe shape and topolgy of the surfa
e. The surfa
e re
onstru
tion pro
ess 
an also reprodu
e spe
ialfeatures su
h as edges and 
orners faithfully.Referen
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