
Smooth Surfae Reonstrution using Doo-Sabin SubdivisionSurfaesFuhua (Frank) Chenga, Fengtao Fana, Shuhua Laib,Kenjiro T. Miura, Conglin Huanga, Jiaxi WangaaDepartment of Computer Siene, University of Kentuky, Lexington, KY 40506, USAbDepartment of Mathematis and Computer Siene, Virginia State University, Petersburg, VA 23806, USADepartment of Mehanial Engineering, Shizuoka University, Hamamatsu 432-8561, JapanAbstrat. A new tehnique for the reonstrution of a smooth surfae from a set of 3D data pointsis presented. The reonstruted surfae is not represented by a polyhedral approximation, but aneverywhere C1-ontinuous subdivision surfae. The subdivision surfae interpolates all the givendata points. Besides, the topologial struture of the reonstruted surfae is exatly the sameas that of the data points. Therefore the reonstruted surfae is guaranteed to be preise if thedata points are taken diretly from the sampled objet and is good for all subsequent appliations.The new tehnique onsists of two major steps. First, an eÆient surfae reonstrution method isapplied to produe a polyhedral approximation to the given data points. A Doo-Sabin subdivisionsurfae that smoothly passes through all the data points in the given data set is then onstruted. Anew tehnique is presented for the seond step in this paper. The new tehnique iteratively modi�esthe verties of the polyhedral approximation M until a new ontrol mesh �M , whose Doo-Sabinsubdivision surfae interpolates M , is reahed. It is proved that, for any mesh M with any sizeand any topology, the iterative proess is always onvergent with Doo-Sabin subdivision sheme.Therefore the surfae reonstrution proess is well-de�ned. The new tehnique has the advantagesof both a loal method and a global method, and the surfae reonstrution proess an reproduespeial features suh as edges and orners faithfully.Keywords: Surfae reonstrution, Loop subdivision surfaes, interpolation1 IntrodutionIn many appliations, the only available information on a surfae is a set of unorganized pointssampled from that surfae. Before a omputation an be perform on that surfae, a representationof the surfae has to be onstruted from the sample points �rst. This is the problem of surfaereonstrution. Problems of this type our in sienti� and engineering appliations suh as CAD,medial imaging, visualization, omputer graphis, omputer vision, reverse engineering, et. Thereonstruted surfae should be topologially equivalent to and geometrially lose to the sampledsurfae.Traditional surfae reonstrution methods always produe a set of triangles to approximate thesurfae shape. This usually is not preise enough when small details are needed. One an solvethe preision problem by inreasing the number of points sampled in the sampling proess. This ispossible beause reent advanes in laser tehnology have made it easier to generate a lot of samplepoints from the surfae of an objet. But there are oassions where a disrete representation isnot good enough no matter how many points are used in the represenation, suh as 3D medialimaging where one needs to sale up an organ or a ross-setion frequently. Constrution of smoothrepresentation of a surfae from unorganized data has been studied for a while and some tehniqueshave already been reported [22℄. But the tehniques do not guarantee interpolation of the sample1



points by the generated representation.In this paper we propose to reonstrut a faithful surfae from a set of data points, suh thatthe reonstruted surfae is not approximately represented by a polyhedron, but by an everywhereC1 ontinuous subdivision surfae. The subdivision surfae interpolates all the given data points.Besides, the topologial struture of the reonstruted surfae is exatly the same as that of the datapoints. Therefore, the representation is guaranteed to be preise if the sampled points are takendiretly from the sampled objet. This is done in two steps:� Use an eÆient surfae reonstrution method to produe a polyhedral approximation to thegiven sampled points.� Construt a C1 ontinuous subdivision surfae to interpolate all the sampled points in thegiven data set.While the �rst step is still a hallenging step, it is the seond step that is our fous here. Construtinga subdivision surfae to interpolate an arbitrary mesh is not a well-solved problem when the numberof verties is large. In this paper we will propose a solution to this poblem.The remaining part of the paper is arranged as follows. In setion 2, bakground knowledge isreviewed and related work is disussed. The basi idea of the method of surfae reonstrution usingDoo-Sabin Subdivision Surfaes is presented in Setion 3. The orretness and onvergene of ourmethod is proven in setion 4. Implementation issues and test results are given in Setion 5. Setion6 gives some onluding remarks.2 Bakground and Related Work2.1 Surfae Reonstrution from Unorganized PointsA number of appliations ranging from CAD, omputer graphis and mathematial modeling requirethe reonstrution of a smooth surfae from a set of data points. The data points ould be denselysampled or sparsely taken from the surfae suh that they are the representative points of the surfae.Many tehniques have been proposed to reonstrut an approximated surfae from a set of 3D datapoints. Among them are greedy methods [23℄, impliit surfaes [21℄ and Delaunay triangulation,et. However all of them only lead to a non-smooth polyhedral approximation to the given datapoints, or to a smooth surfae that does not interpolate the input data point set [22℄. Thereforewithout dense sampling of an objet surfae, none of the methods mentioned above an reonstrutthe original surfae preisely.2.2 Subdivision SurfaesSubdivision surfaes are popular now in Computer Animation, CAD and Geometri Modeling, et.The ability to model arbitrary topology surfaes makes them more suitable than lassial splinesurfaes in some appliations. The Catmull-Clark subdivision sheme [2℄ was proposed in 1978,whih is the generalization of biubi spline surfae, while the Doo-Sabin subdivision method [1℄ is thegeneralization of quadrati spline surfae. Later, the Loop subdivision sheme [8℄ was developed fortriangular meshes whih generalizes the Box splines. All these three popular subdivision methods areapproximating shemes. There are interpolating subdivision shemes that interpolate the given mesh.One of the most famous interpolating subdivision methods is the buttery subdivision method [6℄whih was modi�ed subsequently to generate smoother interpolation surfaes in [9℄. An interpolatingsheme for quadrilateral meshes was proposed in [18℄.2.3 Surfae Interpolation of Irregular MeshesInterpolation is a popular tehnique used in surfae design and shape modeling. There are plenty ofpubliations dealing with the interpolation problem using various surfae representations. Interpo-lation methods based on subdivision surfaes have also been developed. One group of them requires2



solving a global system of linear equations, like [3, 4℄. To avoid the omputational ost of solvinga large system of linear equations, other methods have been developed. In [5℄, an always-workingmethod solved the problem using a two-phase subdivision method. The method proposed in [15℄avoids exatly solving a system of linear equations by using the onept of similarity. The approahpresented in [7℄ avoids solving a system of linear equations by using quasi-interpolation.In this paper, based on the results obtained from traditional surfae reonstrution methodswhih produe a polyhedral approximation to the given sample points, we present a new iterativeinterpolation method using Doo-Sabin subdivision surfae. Our iterative method is an extension ofthe progressive iterative interpolation method for B-splines [13, 10, 12℄. The idea of our iterativeinterpolation method is to use the di�erenes between the (original) mesh to be interpolated and theDoo-Sabin surfae of urrent mesh to get a new mesh. This iterative proess will onverge to a Doo-Sabin surfae interpolating the original mesh. The updating operation at eah level of the iterationis done by a loal operation for eah vertex in urrent mesh. Therefore our method possesses theproperty of a loal method. On the other hand, our method has the form of a global method dueto its atual global linear e�et. Therefore, our method has the advantages of both a loal methodand a global method. Experimental results demonstrate the eÆieny and ability of our method inhandling large meshes.3 Surfae Reonstrution using Doo-Sabin Subdivision Sur-faesAs mentioned above, there are two major steps in the new surfae reonstrution proess. First weapply an eÆient surfae reonstrution method to produe a polyhedral approximation to the givendata points, then we �nd an interpolatory surfae for the obtained polyhedral approximation in the�rst step. There are many eÆient approahes that we an use for the �rst step [21, 22, 23℄. In thispaper we regard the polyhedral approximation obtained from the �rst step as the ontrol mesh of aDoo-Sabin subdivision surfae and fous on how to onstrut an interpolating surfae for the ontrolmesh.3.1 Doo-Sabin subdivision surfaesIn Doo-Sabin subdivision sheme, new polygons are built from the old mesh in the following way.An edge point is formed from the midpoint of eah edge. A fae point is formed as the entroid ofeah polygon of the mesh. Finally, eah vertex in the new mesh is formed as the average of a vertexin the old mesh, a fae point for a polygon that is inident to that old vertex, and the edge pointsfor the two edges that belong to that polygon and are adjaent to that old vertex.The new verties then are onneted. There will be two verties along eah side of eah edge in theold mesh, by onstrution. These pairs are onneted, forming quadrilaterals aross the old edges.Within eah old polygon, there will be as many new verties as there were verties in the polygon.These are onneted to form a new, smaller, inset polygon. And �nally, around eah old vertex thereis a new vertex in the adjoining orner of eah old polygon. These are onneted to form a newpolygon with as many edges as there were polygons around the old vertex. The new mesh, therefore,will reate quadrilaterals for eah edge in the old mesh, will reate a smaller m-sided polygon foreah m-sided polygon in the old mesh, and will reate an n-sided polygon for eah n-valene vertex.After one appliation of the sheme all verties have a valene of four. So subsequent appliationswill reate quadrilaterals for the verties only. All n-sided polygons are retained in the subdivisionproess, and shrink to extraordinary points as the subdivision sheme is repeatedly applied.For a vertex V of valane n (See Fig. 1), if its adjaent edge points are Ei, 1 � i � n and itsadjaent fae points are F ij , 1 � i � n, 1 � j � mi � 3, where mi is the number of edges in the ith
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Figure 1: A vertex V of valene n and the new, adjaent vertex points generated after one Doo-Sabinsubdivision.adjaent fae, then after one subdivision we haveV 0i = (12 + 14mi )V + (18 + 14mi )Ei + (18 + 14mi )Ei+1 + 14mi mi�3Xj=1 F ij ;where V 0i ; 1 � i � n is one of the newly generated vertex points around vertex V after one subdivision(See Fig. 1).After eah subdivision we have an n-sided polygon around vertex V , whih will remain to ben-sided in the subdivision proess, and shrink to a limit point as the sheme is repeatedly applied.The limit point orresponding to V on the limit surfae an be alulated as follows.V1 = 1n nXi=1V0iThe above formula an be expanded and hene V1 an be more preisely rewritten as follows.V1 = 1n� nXi=1 4mi + 28mi V + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Ei + nXi=1 �mi�3Xj=1 28miFij��: (1)3.2 Progressive interpolation using Doo-Sabin subdivision surfaesFor a given a mesh M0, we will �nd a new mesh M whose Doo-Sabin limit surfae interpolatesall verties of M0. Instead of solving a global system of linear equations, we develop a progressiveiterative method whih only loally manipulates verties of the ontrol mesh by an aÆne operationat eah level of iteration. The iteration proess is desribed as follows.Initially, for eah vertex V0 of M0, we ompute the di�erene vetor between this vertex and itslimit point on the Doo-Sabin surfae S0 alulated from the equation (1),D0 = V0 �V01;and add the di�erenes D0 to the vertex V0.V1 = V0 +D0:Therefore, we get a new ontrol mesh M1 whose verties are omputed as V1. By iterativelyrepeating this proess, we get a sequene of ontrol meshes M0; M1; M2 � � � :4



In general, if Vk , (0 � k < 1), is the new loation of vertex V after k iterations of the aboveproess andMk is the ontrol mesh onsists of all the new Vk's, then we denote the Doo-Sabin limitsurfae of Mk, Sk. We �rst ompute the distane between V and the limit point Vk1 of Vk on SkDk = V0 �Vk1: (2)We then add this distane to Vk to get Vk+1 as follows:Vk+1 = Vk +Dk:The set of new verties is alled Mk+1.This proess generates a sequene of ontrol meshes Mk and a sequene of orresponding Doo-Sabin surfaes Sk. Sk onverges to an interpolating surfae of M0 if the distane between Sk andM0 onverges to zero (i.e., Dk ! 0). Therefore the key task here is to prove that Dk onverges tozero when k tends to in�nity.4 Proof of ConvergeneTo prove the onvergene of the above iterative proess, we need a lemma about the eigenvalues ofthe produt of positive de�nite matries.Lemma 1 Eigenvalues of the produt of positive de�nite matries are positive.The proof of Lemma 1 follows immediately from the fat that if P and Q are square matries ofthe same dimension, then PQ and QP have the same eigenvalues (see, e.g., [16℄, p.14).As mentioned above, to prove that the iterative interpolation proess onverges, we must provethat the di�erene Dk approahes zero when k tends to in�nity. Note that Dk an be expanded asfollows.Dk = V0 �Vk1= V0 � 1n� nXi=1 4mi + 28mi Vk + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Eki + nXi=1 �mi�3Xj=1 28mi (Fij)k��= V0 � 1n� nXi=1 4mi + 28mi Vk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Ek�1i + nXi=1 �mi�3Xj=1 28mi (Fij)k�1��� 1n� nXi=1 4mi + 28mi Dk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Dk�1Ei + nXi=1 �mi�3Xj=1 28miDk�1Fij ��= Dk�1 � 1n� nXi=1 4mi + 28mi Dk�1 + nXi=1 �mi + 28mi + mi�1 + 28mi�1 �Dk�1Ei + nXi=1 �mi�3Xj=1 28miDk�1Fij ��(3)Eq. (3) an be represented in a ompat matrix form as follows.�Dk1 ;Dk2 ; : : : ;Dkm�T = (I �B)26664 Dk�11Dk�12...Dk�1m 37775 = (I �B)k 26664 D01D02...D0m 37775
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where m is the number of verties in the given mesh, I is an identity matrix of size m�m, and Bis a matrix of the following form:
B = 0BBBBBBBBBB�

1n1 (Pn1i=1 4mi+28mi ) : : : 1n1 (mi+28mi + mi�1+28mi�1 ) : : : 1n1 ( 28mi ) : : :... . . .1ni (mi+28mi + mi�1+28mi�1 ) 1ni (Pnii=1 4mi+28mi )... . . .1nj ( 28mi ) 1nj (Pnji=1 4mi+28mi )... . . .
1CCCCCCCCCCAEah entry of matrix B an be diretly derived from Eq. (1). Now, to prove Dk approahes zerowhen k tends to in�nity, we just need to show that (I�B)k approahes zero when k tends to in�nity.Obviously, V i+1, limit points of the mesh ontrol points V i, ying on the Doo-Sabin subdivisionsurfae Si, now an be represented in matrix form as V i+1 = BV i. Note that B an be deomposedinto the produt of a diagonal matrix � and a symmetri matrix T as followsB = �Twhere � is of the following form � = 0BBB� 1n1 0 : : : 00 1n2 : : : 0... . . .0 1nm 1CCCAand T is of the following form

T = 0BBBBBBBBBB�
Pn1i=1 4mi+28mi : : : (mi+28mi + mi�1+28mi�1 ) : : : 28mi : : :... . . .(mi+28mi + mi�1+28mi�1 ) Pnii=1 4mi+28mi... . . .28mi Pnji=1 4mi+28mi... . . .

1CCCCCCCCCCANote that if (Vi; Vj) is an edge of a mesh, then (Vj ; Vi) is an edge of this mesh as well; if (Vi; Vj)is an edge of a fae, then so is (Vj ; Vi). In other words, the relationship between two edge vertiesor two fae verties is symmetri. It is then easy to see that T is symmetri. Furthermore, it anbe proved that matrix T is positive de�nite.Proposition 1 The matrix T is positive de�nite.Proof: It is well-known that a symmetri and stritly diagonally dominant matrix with positivediagonal entries is a positive de�nite matrix. Beause all the oeÆients in the Doo-Sabin subdivisionproess are non-negative, it is easy to hek that the diagonal entries of T are positive numbers.Therefore we just need to show that T is a stritly diagonally dominant matrix. Aording toequation (1), eah row of matrix T satis�esTkk � nkXl=1;l6=k Tlk = nkXi=1 4mi + 28mi � 2 nkXi=1 mi + 28mi � nkXi=1(mi�3Xj=1 28mi )= nkXi=1 48mi > 06



Hene, T is stritly diagonally dominant and, onsequently, T is positive de�nite.With the above results, we are ready to prove the onvergene of the iterative interpolationproess.Proposition 2 The iterative interpolation proess for Doo-Sabin subdivision surfae is onvergent.Proof: As mentioned above, we just need to prove that (I �B)k approahes zero when k tends toin�nity, where B is de�ned above and I is an identity matrix. Reall that matrix T is a symmetripositive de�nite matrix, and so is the diagonal matrix �. Aording to Lemma 1, B = �T , wean onlude that B only has positive eigenvalues. Sine Doo-Sabin subdivision sheme satis�esthe onvex hull property, we have kBk1 = 1, whih implies all eigenvalue �i of B satisfy j�ij � 1.Therefore, all eigenvalues of B satisfy 0 < �i � 1. Based on this result, it is easy to see that theeigenvalues of matrix (I �B) satisfy 0 � 1� �i < 1. Consequently, (I �B)k approahes zero whenk tends to in�nity. The onvergene of the iterative interpolation proess for Doo-Sabin subdivisionsurfaes then is a diret onsequene.5 Implementation & ResultsImplementation of the surfae reonstrution tehnique using Doo-Sabin subdivision surfaes is doneon a Windows platform using OpenGL as the supporting graphis system. Due to the ombinationof loal and global advantages, the iterative interpolation method is very eÆient and an handlevery large data sets easily. Besides, our experiment results show that our approah an generatevisually pleasing surfaes though there is no fairness parameter in the interpolation sheme.Table 1: Doo-Sabin surfae based progressive interpolation: test results.Model # of data points # of verties in poly. Approx. # of iterations ErrorCubeHC 81920 7666 9 10�6Goblet 129280 8082 7 10�6Rokarm 203904 13984 5 10�6Beethoven 262016 16378 5 10�6Many examples have been tested and some examples are presented in Fig. 2. In Fig. 2, theinput 3D data points for these examples are listed in the �rst row, the orresponding polyhedralapproximations, obtained after applying the surfae reonstrution method [23℄, are listed in theseond row, and the reonstruted C1-ontinuous Doo-Sabin subdivision surfaes whih interpolatethe orresponding polyhedral approximations are shown in the third row. We also tabulate someof the testing parameters (see Table 1), suh as the number of data points in the input model, thenumber of verties in the polyhedral approximation obtained from applying a traditional surfaereonstrution method [21, 23℄, the number of iterations used in the iterative interpolation proessto get the interpolating surfae and error tolerane used to stop the iteration.Note that the number of data points in the input 3D model is not the same as the number ofverties in the obtained polyhedral approximation. This is beause we made some simpli�ation suhthat the obtained polyhedral approximations are not as dense as the input data set and meanwhile,without losing muh preision (by tolerating a small given error, say 10�6).6 Conluding RemarksA new tehnique for the reonstrution of a smooth surfae from a set of 3D sample points ispresented. The reonstruted surfae is not represented by a polyhedral approximation, but an7



(a) Data Points (b) Data Points () Data Points (d) Data Points

(e) Polyhedral Ap-proximation (f) Polyhedral Approxi-mation (g) Polyhedral Approxi-mation (h) Polyhedral Ap-proximation

(i) Reonstrutionby Interpolation (j) Reonstrution by In-terpolation (k) Reonstrution by In-terpolation (l) Reonstrution byInterpolationFigure 2: Examples of surfae reonstrution using Doo-Sabin subdivision surfaes.8



everywhere C1-ontinuous subdivision surfae whih interpolates all the sample points. The reon-strution proess employs a two-step approah: a surfae reonstrution step and a surfae inter-polation step. The �rst step produes a polyhedral approximation to the sampled surfae from thesample points. The seond step produes a Doo-Sabin subdivision surfae that interpolates all thesample points. The seond step is the fous of this paper. The interpolating surfae is generated byiteratively modifying the verties of the polyhedral approximationM until a ontrol mesh �M , whoseDoo-Sabin subdivision surfae interpolates M is reahed. It is proved that, for any mesh M withany size and any topology, the iterative proess is onvergent with Doo-Sabin subdivision surfaes.Therefore the surfae reonstrution proess is well-de�ned. The new tehnique has the advantagesof both a loal method and a global method. Therefore it an handle data set of any size whileapable of generating a faithful approximation of the sampled surfae no matter how ompliatedthe shape and topolgy of the surfae. The surfae reonstrution proess an also reprodue speialfeatures suh as edges and orners faithfully.Referenes[1℄ Doo D, Sabin M, Behaviour of reursive division surfaes near extraordinary points, Computer-Aided Design 1978, 10(6):356-360.[2℄ Catmull E, Clark J, Reursively generated B-spline surfaes on arbitrary topologial meshes,Computer-Aided Design 1978, 10(6):350-355.[3℄ Halstead M, Kass M, DeRose T, EÆient, fair interpolation using CatmullCClark surfaes,Pro.SIGGRAPH 1993, 47-61.[4℄ Nasri AH, Surfae interpolation on irregular networks with normal onditions, Computer AidedGeometri Design 1991, 8:89-96.[5℄ Zheng J, Cai YY, Interpolation over arbitrary topology meshes using a two-phase subdivisionsheme, IEEE Trans. Visualization and Computer Graphis 2006, 12(3):301-310.[6℄ Dyn N, Levin D, Gregory JA, A Buttery Subdivision Sheme for Surfae Interpolation withTension Control, ACM Trans. Graphis 1990, 9(2):160-169.[7℄ Litke N, Levin A, Shr�oder P, Fitting Subdivision Surfaes, Pro. Visualization 2001, 319-324.[8℄ Loop C, Smooth Subdivision Surfaes Based on Triangles, Master'thesis, Dept. of Math., Univ.of Utah, 1987.[9℄ Zorin D, Shroder P, Sweldens W, Interpolating Subdivision for Meshes with Arbitrary Topol-ogy, Computer Graphis, Ann. Conf. Series, 1996, 30:189-192.[10℄ de Boor C, How does Agee's method work? Pro. 1979 Army Numerial Analysis and Com-puters Conferene, ARO Report 79-3, Army Researh OÆe, 299-302.[11℄ Lin H, Bao H, Wang G, Totally positive bases and progressive iteration approximation, Com-puter & Mathematis with Appliations, 2005, 50:575-58.[12℄ Lin H, Wang, G, Dong C, Construting iterative non-uniform B-spline urve and surfae to �tdata points, Siene in China, Series F, 2004, 47(3):315-331.[13℄ Qi D, Tian,Z, Zhang Y, Zheng JB, The method of numeri polish in urve �tting, Ata Math-ematia Sinia 1975, 18:173-184 (in Chinese).[14℄ Delgado J, Pe~na JM, Progressive iterative approximation and bases with the fastest onvergenerates, Computer Aided Geometri Design 2007, 24(1):10-18.[15℄ Lai S, Cheng F, Similarity based Interpolation using Catmull-Clark Subdivision Surfaes, TheVisual Computer 2006, 22(9):865-873.[16℄ Magnus IR, Neudeker H, Matrix Di�erential Calulus with Appliations in Statistis andEonometris, New York, John Wiley & Sons, 1988.9



[17℄ Shilane P, Min P, KazhdanM, Funkhouser T. The Prineton Shape Benhmark, Shape ModelingInt'l, 2004.[18℄ Kobbelt L, Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology,Comput. Graph. Forum 1996, 5(3):409-420.[19℄ Zheng J, Cai Y, Making Doo-Sabin surfae interpolation always work over irregular meshes,The Visual Computer 2005, 21(4):242-251.[20℄ Gerald Farin, Curves and Surfaes for CAGD A Pratial Guide, 5th edition, Morgan-Kaufmann, 2001.[21℄ H. Hoppe, T. DeRose, T. Duhamp, et., Surfae reonstrution from unorganized points, SIG-GRAPH 1992, 71-78.[22℄ T. K. Dey and J. Sun, An Adaptive MLS Surfae for Reonstrution with Guarantees, Sympo-sium on Geometry Proessing 2005, 43{52.[23℄ David Cohen-Steiner, Frank Da, Greedy Delaunay Based Surfae Reonstrution Algorithm,tehnial report, ECG-TR-124202-01, http://gal.inria.fr/Reonstrution.

10


