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Abstract

A new technique for the reconstruction of a smooth sur-
face from a set of 3D data points is presented. The re-
constructed surface is represented by an everywhere C1-
continuous subdivision surface which interpolates all the
given data points. The new technique consists of two major
steps. First, an ef£cient surface reconstruction method is
applied to produce a polyhedral approximation to the given
data set M . A Doo-Sabin subdivision surface that smoothly
passes through all the points in the given data set M is then
constructed. The Doo-Sabin subdivision surface is con-
structed by iteratively modifying the vertices of the poly-
hedral approximation until a new control mesh M̄ , whose
Doo-Sabin subdivision surface interpolates M , is reached.
This iterative process converges for meshes of any size and
any topology. Therefore the surface reconstruction process
is well-de£ned. The new technique has the advantages of
both a local method and a global method, and the surface
reconstruction process can reproduce special features such
as edges and corners faithfully.

1. Introduction

In many applications, the only available information on
a surface is a set of unorganized points sampled from that
surface. Before a computation can be perform on that sur-
face, a representation of the surface has to be constructed
from the sample points £rst. This is the problem of sur-
face reconstruction. Problems of this type occur in scienti£c
and engineering applications such as CAD, medical imag-

ing, visualization, computer graphics, computer vision, re-
verse engineering, etc. The reconstructed surface should be
topologically equivalent to and geometrically close to the
sampled surface.

Traditional surface reconstruction methods always pro-
duce a set of triangles to approximate the surface shape.
This usually is not precise enough when small details are
needed. One can solve the precision problem by increas-
ing the number of points sampled in the sampling process.
This is possible because recent advances in laser technology
have made it easier to generate a lot of sample points from
the surface of an object. But there are occassions where a
discrete representation is not good enough no matter how
many points are used in the represenation, such as 3D med-
ical imaging where one needs to scale up an organ or a
cross-section frequently. Construction of smooth represen-
tation of a surface from unorganized data has been studied
for a while and some techniques have already been reported
[22]. But the techniques do not guarantee interpolation of
the sample points by the generated representation.

In this paper we propose to reconstruct a faithful surface
from a set of data points, such that the reconstructed surface
is not approximately represented by a polyhedron, but by an
everywhere C1 continuous subdivision surface which inter-
polates all the given data points. Besides, the topological
structure of the reconstructed surface is exactly the same as
that of the data points. Therefore, the representation is guar-
anteed to be precise if the sampled points are taken directly
from the sampled object. This is done in two steps:

• Use an ef£cient surface reconstruction method to pro-
duce a polyhedral approximation to the given sampled



points.

• Construct a C1 continuous subdivision surface to in-
terpolate all the sampled points in the given data set.

While the £rst step is still a challenging step, it is the sec-
ond step that is our focus here. Constructing a subdivision
surface to interpolate an arbitrary mesh is not a well-solved
problem when the number of vertices is large. In this paper
we will propose a solution to this poblem.

The remaining part of the paper is arranged as follows.
In section 2, background knowledge is reviewed and related
work is discussed. The basic idea of the method of sur-
face reconstruction using Doo-Sabin Subdivision Surfaces
is presented in Section 3. The correctness and convergence
of our method is proven in section 4. Implementation issues
and test results are given in Section 5. Section 6 gives some
concluding remarks.

2. Background and Related Work

2.1. Surface Reconstruction from Unorga-
nized Points

Many techniques have been proposed to reconstruct an
approximated surface from a set of 3D data points. Among
them are greedy methods [23], implicit surfaces [21] and
Delaunay triangulation, etc. However all of them only lead
to a non-smooth polyhedral approximation to the given data
points, or to a smooth surface that does not interpolate the
input data point set [22]. Therefore without dense sampling
of an object surface, none of the methods mentioned above
can reconstruct the original surface precisely.

2.2. Subdivision Surfaces
Subdivision surfaces are popular recently in Computer

Animation, CAD and Geometric Modeling because it is
possible to model any complex shape with only one sub-
division surface. The Catmull-Clark subdivision surfaces
[2], proposed in 1978, generalize bicubic B-spline surfaces,
while the Doo-Sabin subdivision surfaces generalize [1]
quadratic B-spline surfaces. The Loop subdivision sur-
faces [8], developed for triangular meshes, generalize the
Box splines. These three popular representation schemes
are approximating schemes. There are subdivision schemes
that interpolate the given mesh. One of the most famous
interpolating subdivision methods is the butter¤y subdivi-
sion method [6] which was modi£ed subsequently to gener-
ate smoother interpolation surfaces in [9]. An interpolating
scheme for quadrilateral meshes was proposed in [18].

2.3. Surface Interpolation of Irregular
Meshes

Interpolation is a popular technique in surface design and
shape modeling. There are plenty of publications dealing

with the interpolation problem using various surface repre-
sentations. Interpolation methods based on subdivision sur-
faces have also been developed. One such group requires
solving a global system of linear equations, like [3, 4]. To
avoid the computational cost of solving a large system of
linear equations, other methods have been developed. In
[5], an always-working method solved the problem using
a two-phase subdivision method. The method proposed in
[15] avoids exactly solving a system of linear equations by
using the concept of similarity. The approach presented in
[7] avoids solving a system of linear equations by using
quasi-interpolation.

In this paper, based on the results obtained from tra-
ditional surface reconstruction methods which produce a
polyhedral approximation to the given sample points, we
present a new iterative interpolation method using Doo-
Sabin subdivision surface. Our iterative method is an ex-
tension of the progressive iterative interpolation method for
B-splines [13, 10, 12]. The idea of our iterative interpola-
tion method is to use the differences between the (original)
mesh to be interpolated and the Doo-Sabin surface of cur-
rent mesh to get a new mesh. This iterative process will
converge to a Doo-Sabin surface interpolating the original
mesh. The updating operation at each level of the itera-
tion is done by a local operation for each vertex in current
mesh. Therefore our method possesses the property of a lo-
cal method. On the other hand, our method has the form
of a global method due to its actual global linear effect.
Therefore, our method has the advantages of both a local
method and a global method. Experimental results demon-
strate the ef£ciency and ability of our method in handling
large meshes.

3 Surface Reconstruction using Doo-Sabin
Subdivision Surfaces

As mentioned above, there are two major steps in the
new surface reconstruction process. First we apply an ef£-
cient surface reconstruction method to produce a polyhedral
approximation to the given data points, then we £nd an in-
terpolatory surface for the obtained polyhedral approxima-
tion in the £rst step. There are many ef£cient approaches
that we can use for the £rst step [21, 22, 23]. In this pa-
per we regard the polyhedral approximation obtained from
the £rst step as the control mesh of a Doo-Sabin subdivi-
sion surface and focus on how to construct an interpolating
surface for the control mesh.

3.1 Doo-Sabin subdivision surfaces

In Doo-Sabin subdivision scheme, new polygons are
built from the old mesh in the following way. An edge point
is formed from the midpoint of each edge. A face point is



formed as the centroid of each polygon of the mesh. Fi-
nally, each vertex in the new mesh is formed as the average
of a vertex in the old mesh, a face point for a polygon that
is incident to that old vertex, and the edge points for the two
edges that belong to that polygon and are adjacent to that
old vertex.

The new vertices then are connected. There will be two
vertices along each side of each edge in the old mesh, by
construction. These pairs are connected, forming quadrilat-
erals across the old edges. Within each old polygon, there
will be as many new vertices as there were vertices in the
polygon. These are connected to form a new, smaller, inset
polygon. And £nally, around each old vertex there is a new
vertex in the adjoining corner of each old polygon. These
are connected to form a new polygon with as many edges as
there were polygons around the old vertex. The new mesh,
therefore, will create quadrilaterals for each edge in the old
mesh, will create a smaller m-sided polygon for each m-
sided polygon in the old mesh, and will create an n-sided
polygon for each n-valence vertex. After one application of
the scheme all vertices have a valence of four. So subse-
quent applications will create quadrilaterals for the vertices
only. All n-sided polygons are retained in the subdivision
process, and shrink to extraordinary points as the subdivi-
sion scheme is repeatedly applied.

For a vertex V of valance n (See Fig. 1), if its adjacent
edge points are Ei, 1 ≤ i ≤ n and its adjacent face points
are F i

j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi−3, where mi is the number
of edges in the ith adjacent face, then after one subdivision
we have

V ′
i = (1

2 + 1
4mi

)V + (1
8 + 1

4mi
)Ei

+ (1
8 + 1

4mi
)Ei+1 + 1

4mi

∑mi−3
j=1 F i

j ,

where V ′
i , 1 ≤ i ≤ n is one of the newly generated vertex

points around vertex V after one subdivision (See Fig. 1).
After each subdivision we have an n-sided polygon

around vertex V , which will remain to be n-sided in the sub-
division process, and shrink to a limit point as the scheme is
repeatedly applied. The limit point corresponding to V on
the limit surface can be calculated as follows.

V∞ =
1
n

n∑
i=1

V ′
i

The above formula can be expanded and hence V∞ can be
more precisely rewritten as follows.

V∞ = 1
n

(∑n
i=1

4mi+2
8mi

V +
∑n

i=1

(
mi+2
8mi

+ mi−1+2
8mi−1

)
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+
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i=1
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j=1

2
8mi

F i
j

))
.

(1)

3.2 Progressive interpolation using Doo-
Sabin subdivision surfaces

For a given a mesh M0, we will £nd a new mesh M
whose Doo-Sabin limit surface interpolates all vertices of
M0. Instead of solving a global system of linear equations,
we develop a progressive iterative method which only lo-
cally manipulates vertices of the control mesh by an af£ne
operation at each level of iteration. The iteration process is
described as follows.

Initially, for each vertex V 0 of M0, we compute the dif-
ference vector between this vertex and its limit point on the
Doo-Sabin surface S0 calculated from the equation (1),

D0 = V 0 − V 0
∞,

and add the differences D0 to the vertex V 0.

V 1 = V 0 + D0.

Therefore, we get a new control mesh M1 whose vertices
are computed as V 1. By iteratively repeating this process,
we get a sequence of control meshes M0, M1, M2 · · · .

In general, if V k, (0 ≤ k < ∞), is the new location
of vertex V after k iterations of the above process and Mk

is the control mesh consists of all the new V k’s, then we
denote the Doo-Sabin limit surface of Mk, Sk. We £rst
compute the distance between V and the limit point V k

∞ of
V k on Sk

Dk = V 0 − V k
∞. (2)

We then add this distance to V k to get V k+1 as follows:

V k+1 = V k + Dk.

The set of new vertices is called Mk+1.
This process generates a sequence of control meshes Mk

and a sequence of corresponding Doo-Sabin surfaces Sk.
Sk converges to an interpolating surface of M0 if the dis-
tance between Sk and M0 converges to zero (i.e., Dk → 0).
Therefore the key task here is to prove that Dk converges to
zero when k tends to in£nity.

4 Proof of Convergence

To prove the convergence of the above iterative process,
we need a lemma about the eigenvalues of the product of
positive de£nite matrices.

Lemma 1 Eigenvalues of the product of positive de£nite
matrices are positive.

The proof of Lemma 1 follows immediately from the fact
that if P and Q are square matrices of the same dimension,
then PQ and QP have the same eigenvalues (see, e.g., [16],
p.14).



Figure 1. A vertex V of valence n and the new, adjacent vertex points generated after one Doo-Sabin
subdivision.

As mentioned above, to prove that the iterative interpo-
lation process converges, we must prove that the difference
Dk approaches zero when k tends to in£nity. Note that Dk

can be expanded as follows.
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Eq. (3) can be represented in a compact matrix form as
follows.

[
Dk

1 , . . . , Dk
m

]T = (I − B)
[
Dk−1

1 , . . . , Dk−1
m

]T

= (I − B)k
[
D0

1, . . . , D
0
m

]T

where m is the number of vertices in the given mesh, I
is an identity matrix of size m×m, and B is a matrix of the
following form:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n1

(
∑n1

i=1
4mi+2
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( 2
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1
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...
1
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( 2
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) 1
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(
∑nj

i=1
4mi+2
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) . . .

...
. . .

⎞
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Each entry of matrix B can be directly derived from Eq. (1).
Now, to prove Dk approaches zero when k tends to in£nity,
we just need to show that (I − B)k approaches zero when
k tends to in£nity.

Obviously, V i+1, limit points of the mesh control points
V i, ying on the Doo-Sabin subdivision surface Si, now can
be represented in matrix form as V i+1 = BV i. Note that
B can be decomposed into the product of a diagonal matrix
Λ and a symmetric matrix T as follows

B = ΛT

where Λ is of the following form

Λ =

⎛
⎜⎜⎜⎝

1
n1

0 . . . 0
0 1

n2
. . . 0

...
. . .

0 1
nm

⎞
⎟⎟⎟⎠



and T is of the following form

T =
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Note that if (Vi, Vj) is an edge of a mesh, then (Vj , Vi) is
an edge of this mesh as well; if (Vi, Vj) is an edge of a face,
then so is (Vj , Vi). In other words, the relationship between
two edge vertices or two face vertices is symmetric. It is
then easy to see that T is symmetric. Furthermore, it can be
proved that matrix T is positive de£nite.

Proposition 1 The matrix T is positive de£nite.

Proof: It is well-known that a symmetric and strictly diag-
onally dominant matrix with positive diagonal entries is a
positive de£nite matrix. Because all the coef£cients in the
Doo-Sabin subdivision process are non-negative, it is easy
to check that the diagonal entries of T are positive numbers.
Therefore we just need to show that T is a strictly diago-
nally dominant matrix. According to equation (1), each row
of matrix T satis£es

Tkk − ∑nk

l=1,l �=k Tlk =
∑nk

i=1
4mi+2
8mi

− 2
∑nk

i=1
mi+2
8mi

− ∑nk

i=1(
∑mi−3

j=1
2

8mi
) =

∑nk

i=1
4

8mi
> 0

Hence, T is strictly diagonally dominant and, consequently,
T is positive de£nite.

Next we prove convergence of the iterative process.

Proposition 2 The iterative interpolation process for Doo-
Sabin subdivision surface is convergent.

Proof: As mentioned above, we just need to prove that
(I−B)k approaches zero when k tends to in£nity, where B
is de£ned above and I is an identity matrix. Recall that ma-
trix T is a symmetric positive de£nite matrix, and so is the
diagonal matrix Λ. According to Lemma 1, B = ΛT , we
can conclude that B only has positive eigenvalues. Since
Doo-Sabin subdivision scheme satis£es the convex hull
property, we have ‖B‖∞ = 1, which implies all eigenvalue
λi of B satisfy |λi| ≤ 1. Therefore, all eigenvalues of B sat-
isfy 0 < λi ≤ 1. Based on this result, it is easy to see that
the eigenvalues of matrix (I − B) satisfy 0 ≤ 1 − λi < 1.
Consequently, (I − B)k approaches zero when k tends to
in£nity. The convergence of the iterative interpolation pro-
cess for Doo-Sabin subdivision surfaces then is a direct con-
sequence.

5 Implementation & Results

Implementation of the surface reconstruction technique
using Doo-Sabin subdivision surfaces is done on a Windows
platform using OpenGL as the supporting graphics system.
Due to the combination of local and global advantages, the
iterative interpolation method is very ef£cient and can han-
dle very large data sets easily. Besides, our experiment re-
sults show that our approach can generate visually pleasing
surfaces though there is no fairness parameter in the inter-
polation scheme.

Many examples have been tested and some examples are
presented in Fig. 2. In Fig. 2, the input 3D data points for
these examples are listed in the £rst row, the correspond-
ing polyhedral approximations, obtained after applying the
surface reconstruction method [23], are listed in the second
row, and the reconstructed C1-continuous Doo-Sabin subdi-
vision surfaces which interpolate the corresponding polyhe-
dral approximations are shown in the third row. We also tab-
ulate some of the testing parameters (see Table 1), such as
the number of data points in the input model, the number of
vertices in the polyhedral approximation obtained from ap-
plying a traditional surface reconstruction method [21, 23],
the number of iterations used in the iterative interpolation
process to get the interpolating surface and error tolerance
used to stop the iteration.

Note that the number of data points in the input 3D
model is not the same as the number of vertices in the ob-
tained polyhedral approximation. This is because we made
some simpli£cation such that the obtained polyhedral ap-
proximations are not as dense as the input data set and
meanwhile, without losing much precision (by tolerating a
small given error, say 10−6).

6 Concluding Remarks

A new technique for the reconstruction of a smooth sur-
face from a set of 3D sample points is presented. The re-
constructed surface is not represented by a polyhedral ap-
proximation, but an everywhere C1-continuous subdivision
surface which interpolates all the sample points. The recon-
struction process employs a two-step approach: a surface
reconstruction step and a surface interpolation step. The
£rst step produces a polyhedral approximation to the sam-
pled surface from the sample points. The second step pro-
duces a Doo-Sabin subdivision surface that interpolates all
the sample points. The second step is the focus of this paper.
The interpolating surface is generated by iteratively modi-
fying the vertices of the polyhedral approximation M until
a control mesh M̄ , whose Doo-Sabin subdivision surface
interpolates M is reached. It is proved that, for any mesh
M with any size and any topology, the iterative process is
convergent with Doo-Sabin subdivision surfaces. Therefore
the surface reconstruction process is well-de£ned. The new



(a) Data Points (b) Data Points (c) Data Points (d) Data Points

(e) Polyhedral Ap-
proximation

(f) Polyhedral Approxima-
tion

(g) Polyhedral Approximation (h) Polyhedral Approxi-
mation

(i) Reconstruction by
Interpolation

(j) Reconstruction by Inter-
polation

(k) Reconstruction by Interpo-
lation

(l) Reconstruction by In-
terpolation

Figure 2. Examples of surface reconstruction using Doo-Sabin subdivision surfaces.



Table 1. Doo-Sabin surface based progressive interpolation: test results.

Model # of data points # of vertices in poly. Approx. # of iterations Error
CubeHC 81920 7666 9 10−6

Goblet 129280 8082 7 10−6

Rockarm 203904 13984 5 10−6

Beethoven 262016 16378 5 10−6

technique has the advantages of both a local method and a
global method. Therefore it can handle data set of any size
while capable of generating a faithful approximation of the
sampled surface no matter how complicated the shape and
topolgy of the surface. The surface reconstruction process
can also reproduce special features such as edges and cor-
ners faithfully.
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