Smooth Surface Reconstruction using Doo-Sabin Subdivision Surfaces
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Abstract ing, visualization, computer graphics, computer visias, r
verse engineering, etc. The reconstructed surface sheuld b
topologically equivalent to and geometrically close to the
sampled surface.

Traditional surface reconstruction methods always pro-

. . . . .~ duce a set of triangles to approximate the surface shape.
given data points. The new technique consists of two major_, . : . ]
This usually is not precise enough when small details are

steps. First, an efficient surface reconstruction method is - )
. o . needed. One can solve the precision problem by increas-
applied to produce a polyhedral approximation to the given . . ; .
X . ing the number of points sampled in the sampling process.
data setM . A Doo-Sabin subdivision surface that smoothly _*= . . .
o . . This is possible because recent advances in laser techynolog
passes through all the points in the given data/geis then . : .
. L . have made it easier to generate a lot of sample points from
constructed. The Doo-Sabin subdivision surface is con- . i
. ; o . the surface of an object. But there are occassions where a
structed by iteratively modifying the vertices of the poly- . L
e X - discrete representation is not good enough no matter how
hedral approximation until a new control medHf, whose . ) )
. R . ; many points are used in the represenation, such as 3D med-
Doo-Sabin subdivision surface interpolatgs, is reached. Lo .
o . : ical imaging where one needs to scale up an organ or a
This iterative process converges for meshes of any size an . :
i cross-section frequently. Construction of smooth represe
any topology. Therefore the surface reconstruction preces , . . .
. . . ation of a surface from unorganized data has been studied
is well-defined. The new technique has the advantages o or a while and some techniques have already been reported
both a local method and a global method, and the surface 9 y P

X : [22]. But the techniques do not guarantee interpolation of
reconstruction process can reproduce special featurek suc . )

: the sample points by the generated representation.
as edges and corners faithfully.

In this paper we propose to reconstruct a faithful surface

from a set of data points, such that the reconstructed surfac
. is not approximately represented by a polyhedron, but by an

1. Introduction everywhereC'! continuous subdivision surface which inter-

In many applications, the only available information on polates all the given data points. Besjdes, the topological
a surface is a set of unorganized points sampled from thatStructure of the re_constructed surface is exactly the same a
surface. Before a computation can be perform on that sur-tnat of the data points. Therefore, the representationds-gu
face, a representation of the surface has to be constructe@nt€€d to be precise if the sampled points are taken directly
from the sample points first. This is the problem of sur- TomM the sampled object. This is done in two steps:
face reconstruction. Problems of this type occur in sdienti e Use an efficient surface reconstruction method to pro-
and engineering applications such as CAD, medical imag- duce a polyhedral approximation to the given sampled

A new technique for the reconstruction of a smooth sur-
face from a set of 3D data points is presented. The re-
constructed surface is represented by an everywiigre
continuous subdivision surface which interpolates all the



points. with the interpolation problem using various surface repre
sentations. Interpolation methods based on subdivisien su
faces have also been developed. One such group requires
solving a global system of linear equations, like [3, 4]. To
While the first step is still a challenging step, it is the sec- avoid the computational cost of solving a large system of
ond step that is our focus here. Constructing a subdivisionlinear equations, other methods have been developed. In
surface to interpolate an arbitrary mesh is not a well-gblve [5], an always-working method solved the problem using
problem when the number of vertices is large. In this papera two-phase subdivision method. The method proposed in
we will propose a solution to this poblem. [15] avoids exactly solving a system of linear equations by
The remaining part of the paper is arranged as follows. using the concept of similarity. The approach presented in
In section 2, background knowledge is reviewed and related[7] avoids solving a system of linear equations by using
work is discussed. The basic idea of the method of sur- quasi-interpolation.
face reconstruction using Doo-Sabin Subdivision Surfaces In this paper, based on the results obtained from tra-
is presented in Section 3. The correctness and convergenceitional surface reconstruction methods which produce a
of our method is proven in section 4. Implementation issues polyhedral approximation to the given sample points, we
and test results are given in Section 5. Section 6 gives someyresent a new iterative interpolation method using Doo-

e Construct aC*' continuous subdivision surface to in-
terpolate all the sampled points in the given data set.

concluding remarks. Sabin subdivision surface. Our iterative method is an ex-
tension of theprogressive iterative interpolatiomethod for
2. Background and Related Work B-splines [13, 10, 12]. The idea of our iterative interpola-

tion method is to use the differences between the (original)
mesh to be interpolated and the Doo-Sabin surface of cur-
rent mesh to get a new mesh. This iterative process will

Many techniques have been proposed to reconstruct arconverge to a Doo-Sabin surface interpolating the original
approximated surface from a set of 3D data points. Amongmesh. The updating operation at each level of the itera-
them are greedy methods [23], implicit surfaces [21] and tion is done by a local operation for each vertex in current
Delaunay triangulation, etc. However all of them only lead mesh. Therefore our method possesses the property of a lo-
to a non-smooth polyhedral approximation to the given datacal method. On the other hand, our method has the form
points, or to a smooth surface that does not interpolate theof a global method due to its actual global linear effect.
input data point set [22]. Therefore without dense sampling Therefore, our method has the advantages of both a local
of an object surface, none of the methods mentioned abovanethod and a global method. Experimental results demon-
can reconstruct the original surface precisely. strate the efficiency and ability of our method in handling
large meshes.

2.1. Surface Reconstruction from Unorga-
nized Points

2.2. Subdivision Surfaces

Subdivision surfaces are popular recently in Computer 3 g rface Reconstruction usi ng Doo-Sabin
Animation, CAD and Geometric Modeling because it is Subdivision Surfaces

possible to model any complex shape with only one sub-

division surface. The Catmull-Clark subdivision surfaces a5 mentioned above. there are two major steps in the
[2], proposed in 1978, generalize bicubic B-spline susace e\ syrface reconstruction process. First we apply an effi-
while the Doo-Sabin subdivision surfaces generalize [1] cient surface reconstruction method to produce a polyhedra
quadratic B-spline surfaces. The Loop subdivision sur- 4n5r6ximation to the given data points, then we find an in-

faces [8], developed for triangular meshes, generalize thewerpolatory surface for the obtained polyhedral approxima
Box splines. These three popular representation schemegqy in the first step. There are many efficient approaches

are approximating schemes. There are subdivision schemeg 5t we can use for the first step [21, 22, 23]. In this pa-
that interpolate the given mesh. One of the most famousper we regard the polyhedral approximation obtained from
interpolating subdivision methods is the butterfly subdivi ihe first step as the control mesh of a Doo-Sabin subdivi-

sion method [6] which was modified subsequently to gener- gjon syrface and focus on how to construct an interpolating
ate smoother interpolation surfaces in [9]. Aninterpolati ¢, face for the control mesh.

scheme for quadrilateral meshes was proposed in [18].

2.3. Surface Interpolation of Irregular 3.1 Doo-Sabin subdivision surfaces

Meshes In Doo-Sabin subdivision scheme, new polygons are
Interpolation is a popular technique in surface design andbuilt from the old mesh in the following way. An edge point
shape modeling. There are plenty of publications dealingis formed from the midpoint of each edge. A face point is



formed as the centroid of each polygon of the mesh. Fi- 3.2 Progressive interpolation using Doo-
nally, each vertex in the new mesh is formed as the average Sabin subdivision surfaces

of a vertex in the old mesh, a face point for a polygon that . 0 —
A . For a given a mest/°, we will find a new mesh\/
is incident to that old vertex, and the edge points for the two L . .
. whose Doo-Sabin limit surface interpolates all vertices of
edges that belong to that polygon and are adjacent to thaTMO. Instead of solving a global system of linear equations

old vertex. we develop a progressive iterative method which only lo-

The new vertices then are connected. There will be two . : .
: . : cally manipulates vertices of the control mesh by an affine
vertices along each side of each edge in the old mesh, by

construction. These pairs are connected, forming quadrila operation at each level of iteration. The iteration prodgss

. described as follows.
erals across the old edges. Within each old polygon, there Initially, for each vertexy’® of M°, we compute the dif-

will be as many new vertices as there were vertices in the . T
olygon. These are connected to form a new, smaller, inse ference vector between this vertex and its limit point on the
b ' . ' tDoo-Sabin surfacé’ calculated from the equation (1),

polygon. And finally, around each old vertex there is a new

vertex in the adjoining corner of each (_)Id polygon. These DY = VO _yO

are connected to form a new polygon with as many edges as

there were polygons around the old vertex. The new mesh,and add the differencda® to the vertexy/°.

therefore, will create quadrilaterals for each edge in tde o

mesh, will create a smallen-sided polygon for eactm- vi=v'4+ D"

sided polygon in the old mesh, and will createrassided

polygon for each-valence vertex. After one application of Therefore, we get a new control mesh' whose vertices

the scheme all vertices have a valence of four. So subseare computed a&". By iteratively repeating this process,

quent applications will create quadrilaterals for theices ~ We get a sequence of control mesti¢8, M', M?--- .

only. All n-sided polygons are retained in the subdivision  In general, ifV*, (0 < k < o0), is the new location

process, and shrink to extraordinary points as the subdivi-Of vertexV afterk iterations of the above process atf

sion scheme is repeatedly applied. is the control mesh consists of all the né&i’s, then we
For a vertext/ of valancen (See Fig. 1), if its adjacent  denote the Doo-Sabin limit surface of*, S*. We first

edge points aré;, 1 < i < n and its adjacent face points compute the distance betwe&nand the limit point’* of

areFi,1<i<mn,1<j <m;—3, wherem, is the number V*ongs*

of edges in théth adjacent face, then after one subdivision DF =V’ -V 2)

we have We then add this distance 16" to getV*+! as follows:
k+1 _ k k
V= (VG ) B V=Vt
mi—3 1 The set of new vertices is called *+1.
+ (4 2B + i P :
5+ 7)) B + 3 21*1 7 This process generates a sequence of control mégties

whereV}, 1 < i < nis one of the newly generated vertex and a sequence of corresponding Doo-Sabin surf4ées
points around vertek after one subdivision (See Fig. 1).  S* converges to an interpolating surface/df if the dis-
After each subdivision we have am-sided polygon  tance betweef* andM° convergesto zero (i.eQ* — 0).
around verteX’, which will remain to be:-sided in the sub-  Therefore the key task here is to prove thétconverges to
division process, and shrink to a limit point as the scheme iszero wherk tends to infinity.
repeatedly applied. The limit point correspondingtmn
the limit surface can be calculated as follows. 4 Proof of Convergence
Voo = 1 Z V! To prove the convergence of the above iterative process,
i we need a lemma about the eigenvalues of the product of
The above formula can be expanded and héfigecan be  positive definite matrices.

more precisely rewritten as follows. ) i o
Lemma 1l Eigenvalues of the product of positive definite

Ve, =1 <Z?1 dmit2y g §n (mi+2 + mH+2)Ei matrices are positive.

T n 8m; 8m; 8m;_1
The proof of Lemma 1 follows immediately from the fact

Ly (Zmﬁs 2 F’) _ that if P and@ are square matrices of the same dimension,
i=1 =1 8m;1ij thenPQ and@ P have the same eigenvalues (see, e.g., [16],

1)  p.14).




Figure 1. A vertex V of valence n and the new, adjacent vertex points generated after one Doo-Sabin
subdivision.

As mentioned above, to prove that the iterative interpo-  wherem is the number of vertices in the given megh,
lation process converges, we must prove that the differencds an identity matrix of sizen x m, andB is a matrix of the
D* approaches zero whéntends to infinity. Note thab* following form:
can be expanded as follows.

k _ 0 _ k n m; ™m; m;_1+2
br=V Vo n%(zz:ll 48m_i-—2) n%( 87:,2 8m,-1,1 ) - n%(
v (oL v T (e _ _
my mi—1+2 ni my
S| Ay rema
mi_1+2 X n m;—3 ik o '
ﬁ)Ei + 2ic1 (Zj:l 831,- (F])k)> : .
L (2) L
v 3 (S v w (g2
mio1+2\ pk-1 n mi=3 _2 (piyk—1 Each entry of matrib3 can be directly derived from Eq. (1).
8mi_1 i + Zz’:l Zj:l 8m; ( j) k Ffini
Now, to proveD” approaches zero whertends to infinity,

we just need to show th&af — B)* approaches zero when
1 ( Zn 4m;+2 Dk*l + Z?—l (Tn,'+2+ k tendS to |nf|n|ty

n i=1 8m; 8m;
Obviously, Vit limit points of the mesh control points
V', ying on the Doo-Sabin subdivision surfagg now can
”;;;—:Z)ngl +3r, (Z}Zfs o D2g1)> be represented in matrix form &+' = BV’. Note that
’ B can be decomposed into the product of a diagonal matrix
A and a symmetric matriX' as follows

— pk-1 _ %(Zn 4mit2 pk—1 Z?:I (mi+2+

i=1 8m; 8m,;

B =AT

mi—1+2 k—1 n m;—3 2 k—1
8m; _1 )DEi +Zi:1 (Zj:l SmiDF]? ))

. _ (3) whereA is of the following form
Eq. (3) can be represented in a compact matrix form as

follows.

-
ja=}

D, DE]" = (- By [DF Y, DT 0

Mm



andT is of the following form 5 Implementation & Results

S 4?“}2 o (n;i+_2 rgpﬁz) o inpleme_r!t_a.'on of t.hg_surface recqnstruction technique
! i i i uditig Doo-Sabif subdivision surfaces is done on a Windows
: . platform usingOpenGLas the supporting graphics system.
(k2 y mie1d2) S, dnud2 Due to the comBination of local and global advantages, the
T= ) iterative interpolption method is very efficient and can-han
; ndle4veQ/2Iarge data sets easily. Besides, our experiment re-
8ms Ziémlt%léhow that gur approach can generate visually pleasing
: surfaces theugl] there is no fairness parameter in the inter-

polation scheme.

Note that if(V;, V;) is an edge of a mesh, théW;, V;) is Many ex.amples have peen teste_d and some examples are
an edge of this mesh as well;(iF;, V;) is an edge of aface, ~Presented in Fig. 2. In Fig. 2, the input 3D data points for
then so igV;, V;). In other words, the relationship between these examples are listed in the first row, the correspond-
two edge vertices or two face vertices is symmetric. It is ing polyhedral approximations, obtained after applying th
then easy to see th#tis symmetric. Furthermore, it can be Surface reconstruction method [23], are listed in the secon

proved that matrig’ is positive definite. row, and the reconstructé# -continuous Doo-Sabin subdi-
vision surfaces which interpolate the corresponding palyh
Proposition 1 The matrixT" is positive definite. dral approximations are shown in the third row. We also tab-

ulate some of the testing parameters (see Table 1), such as
the number of data points in the input model, the number of
vertices in the polyhedral approximation obtained from ap-

lying a traditional surface reconstruction method [21], 23
the number of iterations used in the iterative interpotatio
process to get the interpolating surface and error toleranc
used to stop the iteration.

Note that the number of data points in the input 3D

model is not the same as the number of vertices in the ob-

Proof: It is well-known that a symmetric and strictly diag-
onally dominant matrix with positive diagonal entries is a
positive definite matrix. Because all the coefficients in the
Doo-Sabin subdivision process are non-negative, it is eas
to check that the diagonal entriesBfare positive numbers.
Therefore we just need to show tHatis a strictly diago-
nally dominant matrix. According to equation (1), each row
of matrix T" satisfies

Thr — Zln:kl#k T = Y1 41;;-:2 —2ym wg::z? tained polyhe_dral approximation. This is because we made
some simplification such that the obtained polyhedral ap-

Ly (TS 2y oy 4 proximations are not as dense as the input data set and
i=1\22j=1  Bm, =1 8m; meanwhile, without losing much precision (by tolerating a

Hence T is strictly diagonally dominant and, consequently, Small given error, say0~°).
T is positive definite.
Next we prove convergence of the iterative process. 6 Concluding Remarks

Proposition 2 The iterative interpolation process for Doo- A new technique for the reconstruction of a smooth sur-
Sabin subdivision surface is convergent. face from a set of 3D sample points is presented. The re-
constructed surface is not represented by a polyhedral ap-
Proof: As mentioned above, we just need to prove that proximation, but an everywherg! -continuous subdivision
(I - B)* approaches zero whértends to infinity, where3 surface which interpolates all the sample points. The recon
is defined above andis an identity matrix. Recall that ma-  struction process employs a two-step approach: a surface
trix T is a symmetric positive definite matrix, and so is the reconstruction step and a surface interpolation step. The
diagonal matrixA. According to Lemma 1B = AT, we first step produces a polyhedral approximation to the sam-
can conclude thaB only has positive eigenvalues. Since pled surface from the sample points. The second step pro-
Doo-Sabin subdivision scheme satisfies the convex hullduces a Doo-Sabin subdivision surface that interpolates al
property, we hav@ B|| . = 1, which implies all eigenvalue  the sample points. The second step is the focus of this paper.

A; of B satisfy|A;| < 1. Therefore, all eigenvalues & sat- The interpolating surface is generated by iteratively modi
isfy 0 < A; < 1. Based on this result, it is easy to see that fying the vertices of the polyhedral approximatidh until
the eigenvalues of matrif¢ — B) satisfy0 < 1 — \; < 1. a control mesh/, whose Doo-Sabin subdivision surface

Consequently(I — B)* approaches zero whentends to interpolatesM is reached. It is proved that, for any mesh
infinity. The convergence of the iterative interpolatioopr A with any size and any topology, the iterative process is
cess for Doo-Sabin subdivision surfaces then is a direct con convergent with Doo-Sabin subdivision surfaces. Thegefor
sequence. the surface reconstruction process is well-defined. The new
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Figure 2. Examples of surface reconstruction using Doo-Sabin subdivision surfaces.
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Table 1. Doo-Sabin surface based progressive interpolation: test results.

Model # of data points| # of vertices in poly. Approx| # of iterations| Error
CubeHC 81920 7666 9 1075
Goblet 129280 8082 7 1076
Rockarm 203904 13984 5 1075
Beethoven 262016 16378 5 1076
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