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A new kind of spline 1s defined and its properties are studied. It is also proved
that the B-splines are actually a special case of this kind of spline. ¢ 1987 Academic

Press. Inc.

l. INTRODUCTION
An alternate spline of degree k can be defined in the following way:
DeriNiTION 1. Let 7= {1,} be a knot sequence. The ¢ th alternate spline

of degree k (order k+ 1, k=0) for the knot sequence 1, denoted by
G,y 1., 18 defined recursively by the following procedure:

1, TEX<T,
Gurdlx) = {0, otherwise (L.D)
and

Girs 1,:(35) =Aordx)—=Aoy(x) (1.2)
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for k= 1, where

rX

J G!.k.r(s)ds/éi.k,ri lf (Si.k.r?éo
Aigirx)=¢ " (1.3)
m;(x), otherwise
with
bue=] " Gts) ds (14)
and
0, x<rt,
Ax)=<7 7 1.5
O (L3)

Whenever the knot sequence t can be inferred from the context, we write
G, instead of G, A4, instead of 4, _, d,, instead of J,, . and 7, instead
of m, .

We can use equalities (1.1)-(1.5) to express explicitly the lower degree
alternate splines for a given knot sequence. For example, when 1 is
uniformly spaced, we have

(x—1,)/ 47, T,<x<T,,,
Goylx) = 1, T SX<T,,,
(T4 3—x)/dr, Ti 2 SX<T, .,
0, otherwise,
[ (x—1,)%/4 (A7), TLEX<T,,,
/4 + (x —1,,,)/24x, T SX<T,,,
L= (7, 3—x)*/4(d1)?
Gialx)= —(x =1, 2)/4(41), T2 SX<T,;
3/4 —(x — 1, 3)/24r, T, SX<T, 4
(14 5= x)7/4(41), T aSX<Tiys

0, otherwise
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and
(x—1;)°/24 (47)", T,EX<T,,,
1/24 + (x—1,;,,)/84t
+(x—1,, )48 (47)?, T SX<T;y,

1/44+(x—1,,,)241
+ (143 —x)24(417)°

—(x =1, )12(47), T, <X <1,
23+ (x—1,,5)/4dr
Giulx)= _('t_r1+3)2/4 (df)z, Tii3SX<Tihy

3/4 —(x— t}+4)/2£1‘f
— (T,'+5 —x)3/12 (AT)3
Flr—T, ) ATt <x<,

724 —3(x—1,, 5)/84c

+(x—1,,5)/8 (d1)7, Tips SX<Tiys
(47— x)%/24 (41, Tive SX<Tiyy
0, otherwise

where 4dt is the distance between two consecutive knots. Note that
G, is composed of polynomials of degree one and zero alternately, G, ; is
composed of polynomials of degree two and one alternately, and, G, is
composed of polynomials of degree three and two alternately. Examples of
G5, G,5 and G, for a uniformly spaced knot sequence t are shown in
Fig. 1.

When a set of 3D vectors {C,} is given, by using alternate splines defined

Fic. I. Examples of alternate splines: (a) G5, (b) G5, (c) G,,4.
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in Definition 1, we can define alternate spline curves of degree k the
following way:

()= CiGoy 1 ofx) (1.6)

or
f(x):z C."G2|‘+I.k+l.r(x)- (L.7)

Parametric curves constructed this way are of some interest in that they are
composed of polynomials of degree k and k — [ alternately and, still, are of
class C*~' as well be seen later in Section 2.

2. PROPERTIES AND PROOFS

Properties of alternate splines will be discussed in this section. We shall
call simple facts “propositions” and leave them without proof.
Let 7= {1,} be a knot sequence and 7+ x, = {1+ x0lt,e7), k=0

ProPOSITION 1. (i) G, el X +3X0) =Gp (),
(i) G, . depends on .., Tivops s ORIY.

PROPOSITION 2. The support of G, , . for all values of i and k, is finite.
More precisely,

Gl',k+](x)=0 jor xé[ri’ Ii+2k+l]'

ProrosiTioNn 3. We have

[(s—1)/2]
(1) Z Goiksrex)= Z Goijrdx)=1
i i=[(r—2k+1)2]
and
[(s—2)/2]
(1) ZGE.‘+I.k+l.t(x): z G25+l.k+l.t(x)= [
i i=[{r-2ky2]

for all xe(t,, 1,).
A principal property of alternate splines is given in the following
proposition. We need a definition first.

DErFINITION 2. For the knot sequence 7 = b Liv =T Tiv 2oy s
[=0,1,.., k, are called the even intervals of the alternate spline G, , |, and

A s
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Loy i=[Tiva 1y Tiewl, {=1,2,.. k, are called the odd intervals of
G:,k+l,r'

PrROPOSITION 4. G, . is a polynomial of degree <k in an even interval
and a polynomial of degree <k —1 in an odd interval.

The next theorem will be discussing the effect of multiple knots in the
knot sequence for alternate splines. But, first of all, the definition of mul-
tiple knots.

DermviTion 3.0 Let 1,=1, (s<t) be two knots contained in
[t T4 264 1] such that no other knots in [t;, 7,, 4., ] equal to 7, except
Tyoysem T,y If there are # even intervals of G, ., [, 5,0, [=0, L.,
n— 1, contained in [t,, 7,] then t, =71, is called an (n) multiple knot of
G+ 1. of multiplicity n.

THEOREM 1. The following two statements are true for all non-negative
integer k:

Tk) G (x) >0, xe (s, 700 o)
IF (k). If 1, is an (n) multiple knot of G, ,, and n<k — 1 then G, , ,
has continuous (k— 1 —n)th derivativé at t, but the (kK —n)th derivative

does not exist; if n=4k then G, ., is not continuous at t_; if n=k + 1 then
Gk +1= 0.

The proof of this theorem requires several auxiliary results. We will first
prove these results and then Theorem 1.

LEMMA 1. [f the statements 1(l} and 11(l} in Theorem | hold for
[=1,2,., k=1 then for any integer j, 0<j<k, we can always find j+ 1
positive real numbers C,, [=0,1,..., J, such that

G:','}\')+l(x): Z (_I)ICI’G:+2:‘.I; s 1(x) (2.1)

f=0

Jorall x in [t t,, 4, ] except, possibly, at a finite number of knots where
(2.1) does not hold.

Proof. When j=0 the lemma is obviously true. To prove the lemma is
true for an arbitrary j = 1, assume the lemma holds for all m < /. We have
by induction hypothesis that there exist j positive real numbers C,,
[=0,1,.., /=1, such that, except at a finite number of knots,

i—1

G = Y (1) CG,ap;1a(X) (2.2)

=0
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for all x in [1;,7,,4 ,,]. Now consider Aiiag_jva 1=0,1,..,j, in two
different cases: 6, 5, _,,, =0 and #0.
If 6, 24_,;+,=0 then we have by definition that

A.‘+2l.k—;‘+2:ﬂ::+2l'

Therefore, A, ,,, ., equals zero at all points except t,. ,,. On the other
hand we have by I (k—j) and II {k—J) that

Gi+2m—,'+z =0.
Hence, in this case, we have
:+2Lk7_,'+2(x)=Gi+2:‘.k—;‘+I(x) (2.3)

for all x except the point 1, , ,,.

06, 54 ;401 #0 then G, 5, ;=1 €an have at most one (k — /) multiple
knot of multiplicity & —; and it is either Tiv2: OF Ty, 5y, - Therefore by
IT (k—j) it can be concluded that Giya0k ;41 Is continuous everywhere
except, possibly, at either 7,,,, or Tiv2u+1y- But then we have, when
xeR\ {1, 4, Tiv20e 1))

ALk —i2X)=G, Uk —j+ :(~¥).'"5.'+ 2k 4 L- (24)

Therefore if we set

y I LI ITE TP Oivorp—y 1 #0
.y MWE — - .
AL I otherwise,

(2.5)

then when xe R\ {1, 5, 7,, 5,, 1)} we have, from (2.3) and (2.4),

ok X)) =4;, 2k—i+1Gi 2k —j+ 1(x).

This is also true for A;ysuv k- j+2- Hence from the definition of
G,y 24— j+2 we have that, for all xe R\ {1, ,, Tiv 2+ 1y Tigause)s

G;+2f.k—j+2(x) =4y 2wk 1 Gy 2k —j+ 1(x)

—/~;+2<f+1).k—f+|Gi+z(r+:)_kﬂ'+1(x),
/=0, 1,..,, Substitute these equations into (2.2) then we have, for all
xe[r, Ti+2k+l}\{fh Tid1aens f,'+2k+1}! that

G}i’+ (x)= Z (“1)! (Co 1+ C) ’11+2.'.k—j+ 1 ai e 1(x)

=0

where C_,=C;=0. From (2.5) and [(k—j) it can be seen that

4i+206- ;41> 0 and the proof of the lemma is complete.
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LemMa 2. If the statements 1(k—1) and 11 (k—1} in Theorem 1 are
true for a positive integer k (k= 1) then

(1) If T, is an (k) mudtiple knot of G, | then

rx

Goi(x)=mnlx)— | Gy SV dsio, oy

I

(i) If t,. 9.y s an (k) multiple knot of G, ., then

Graor(0)= [ Guls) dsfd =, ().

o

Proof. Tt suffices to prove (i). Since 7, is a (k) multiple knot of G, it
is also a (k) multiple knot of G,,. We have then by II(k—1) that
G,«(x)=0 or, equivalently, 8, =0. Therefore A, ., =1,

Furthermore, since t, is a (k) multiple knot of G, , ,, it follows that
r,—+3¥r,- .2+ 1. But then by I (k—1) that

G, aals) ds #0

or, equivalently, &, , ., #0. Hence

A a(X) zJ G pauls) dsid, o

T -2

and (i) follows,

LemMa 3. A real-valued function [ has n distinct zeros in the interval
[a, b]. If f satisfies the following two conditions:

(1) fis continuous at each of these n zeros, and

(il) [ does not exist at m points in (a, b) then the number of distinct
zeros of [ in (a, b) is at least n — 1 —m.

Proof. Assume the n distinct zeros of fare: a<x, <x,<--<x,<h If
/" exists at all the points of the open interval (x;, x,, ) then by Rolle’s
Theorem we know that /7 has at least one zero in (x;. x;, ). Since, by (it),
there are at most m distinct open intervals in the n— 1 open intervals
(X,.X;4), i=1..., n—1, which contains one of the points where /" does
not exist, therefore, the number of distinct zeros of /7 is at least n — 1 —m.

Lemma 4. Let (N, Ny, N,} (N <N,<--<N,) be the sei of
positive integers such that each number in this set is the multiplicity of some
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multiple knot of G, . G,,., has no multiple knot of multiplicity k or
greater. For each te {1,2,.., p} define

A, = {1,|7,is a multiple knot of Gk + 1 with multiplicity > N, }

and set Ny =0. Furthermore, for each non-negative integer j, let Z, denote the
number of distinct zeros of Gy in (2.7, .1). Then for any
te{l,2,.,p}if :

k=1-N,,, <j<k—1-N,

r

and 11 (k) in Theorem | holds then
Z, 2 Z+1—A,,, .
Proof. The proof will be discussed in four cases.

I- rl!Tl'+2k+]¢Ap+]—r'

Since in this case none of 7, and Tivax+ 1 18 @ multiple knot of G,, , , of
multiplicity greater than N, ,and j<k—1 —N,_,, it follows by II (k)
that G}/, | is continuous at 7, and T,+ 2+ 1. Hence by Proposition 2 we can
conclude that

] — (i —
G}_’L’+ l(rr) - Gr.i')—+ I{Tl+ 2k + I}* 0,

ie, GI}, | has Z,+2 distinct zeros in [z, T; 42+ 1]. Furthermore we can
also tell that G!? , is continuous at all these zeros because by
Proposition 4 and II (k) we know that if G, | exists at x then G, is
continuous there. Next look at the points where Gi4* ') does not exist. By
1T (k) we know

k—l—NF+1_1£j<k—l*Np_,l
then G{;*') does not exist at the points of Ay ST, Tip e, ) only.
Hence by Lemma 3 we have

Z,-+|?(Zj+2)_1*‘|Ap-+l——ll
or,
Zj+1->"Zj+l"_IAp+lfr B

IL 1ed,,, , Tivak 1 4,00

Since the fact that j<k -1 =N, implies that G, (1,5, ,,=0, it
follows that G, | has at least Z;+ 1 distinct zeros in [7,.7,,,,,,] and
G}, is continuous at all these points.
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Since G}~ does not exist only at the pointsof 4, ,, ,andt,e4,,, ,,
it follows that G does not exist in (7, 7,.5.,) only at most at
{4,,, . —1 points. Hence by Lemma 3 we have

Z,oz(Z+ ) -1=(JA4, -1
—Z 4+ 1

Ap+l— r[-

ML 7t ¢d, T €d, 00

This case can be processed the same way as case IL
Iv. T TEFZJ'\'~IEA[)+1—!'
G, has Z, distinct zeros in (¢, 7., 5 .,), and G}, , is continuous at

these points. Since G4*1) does not exist only at the points of 4,,, , and
p N y P pl

T T 1 €A, it follows that in (7.7, , 5 ) G}47 ) does not exist

at, at most, |4,,,_,| —2 points. Hence by Lemma 3 we have
Zf+|22j“17{|Af,,L|,,|“2)
:Zf+1ﬁ!‘4fr'fl—'—r|

and the proof of Lemma 4 is complete.

Lemma 5. If the statements 1 (1), =0, L., k—1, and 11 (I), | =0, 1,..,
k, are all true then G, (x)#0 for all x in (1, T, 3 1)

Proof. There are three cases to consider:

[. G,.,, has (k+ I) multiple knot.
In this case (1,, T, , 1 . ;) is empty and the lemma is obviously true.
I, G, ., has (k) multiple knots but no (k+ 1) multiple knot.
In this case a (k) multiple knot would either be t; or 7, 5., ,. Without
loss of generality we may assume that 7, is an (k) multiple knot of G, . ;.
In that case we have by Lemma 2 that

v

Goolx)=mix)—

Gi B Z,k(‘g) d“‘/(ﬁf + Lk

Then by I (k — 1) we have, for xe(t;, 1,, 5. ), that

~x

Dis2k >

G, auls)ds>0

]

or

X

m(x)>

Giauls)dsid ox

VT2
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Hence

Gi.k+ (x)= nf(x) - J Gr+ z.k(-s') ds.’/(s.‘-v- 2k = 0

Tie2

for all xe(z,, rf-‘+ [T
II. G,; ., has no multiple knot of multiplicity & or greater.
In this case let {N,, N,,..., N} (N <N,<-- < N,) be the set of positive

integers such that each number in this set is the multiplicity of some mul-
tiple knot of G, ... For each te {1,2,., p} define

A, = {z,|t,is a multiple knot of G, , ,
with multiplicity = N, }

and set Ny=0, N, =k — 1. For each nonnegative integer j, let Z, denote
the number of distinct zeros of Gl in (1,,7,.5,,) Then for each
te{1,2,..,p} by applying Lemma 4 N,.1 ,—N,_, times we have

Ziv-wpZZiaong =14, DN, =N, ). (26)

(2.6) is true even when /=0 as can be seen below,
L N,=N,, ,=k—1.
In this case (2.6) is obviously true when 7 = 0.
IL N, <N, =k-1.

Then for any nonnegative integer j <k — 1 — N,, G', | is continuous on
(i, Tiv s 1] and Gl ()= G e 1(tic 2+ 1) =0. Hence Gli. has Z;+2
distinct zeros in [t,,7,, 5 ,,]. By applying Rolle’s theorem we have, for

each 0<j<k—1-N,,
Ziz2Z+1

Therefore
Zi’w l—NP;ZO"'k_ 1 ﬁN,')

and this is exactly what we have when 0 is substituted into (2.6) for ¢
Hence (2.6) is true for 1€ {0, 1, 2, p}
By adding (2.6)’s up for 1=0, I,.., p we have

¥
Zi \2Zo+ ) (I=14,,  Nyey =N, )

=0
p+1

=ZD+ Z (l_IAJI)‘N:_Nr—l) (27)

t=1
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Since
p+1
Y (N—=N, )=k—1 and A, N, =N, ) =0
r=1 )

(2.7) can be further simplified as

»
Z, 2Zy+k—1=3 AN =N, )
r=1
=Zo+k—1-3 n,. (2.8)

r=1

Now if G, ,(x)=0 for some x in (1, T, 2 1) ie, Z,=1, then from
(2.8) we get

Zi 2k=Y n. (29)

=1

On the other hand, by Lemma | we know there exist k positive numbers
C,, 1=0, 1., k—1, such thal, except for a finite number of knots where
G does not exist,

kol
GHLM) =Y (1) CG,yanlx) (2.10)

=10
for all xin [7,, 7,42 ] But, if none of ; and 7,5 4y is a multiple knot
of G, then from (2.10) we arrive at the following result:

Z, =k—=1=% n

{=1

which is contrary to (2.9). Hence G, (x)#0 for all x in (7, 7,, k1)

R

Now the Proof of Theorem 1. By induction on k. When k=0 the
theorem follows directly from (1.1). Now assume the theorem holds for all
m < k and prove that it is also true for k. We will prove 11 (k) first and then
I (k). The proof of IT (k) is discussed in three cases.

Casel:n=k+ 1.

In this case both G, and G, ,, have a multiple knot of multiplicity £,
and so by Il (k— 1), G, =0 and G, ,,=0. But then G, ., =0 too!
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Case II: n=k.

In this case either 7, or 1,5, ,, is a (k) multiple knot of G,, , ,, say, T;.
Then by Lemma 2 we have

Giolx)=m(x)— ji Giyapls) d5/55+1.ks

Tit2
and so G, ,, is not continuous at t,.

Case III: n<k—1.

In this case a (n) multiple knot of G,, will be a (1) or (n— 1) multiple
knot of G,,. This is also true for G,, ,,. No matter which case happens
since in this case (1, 7,. 5 ) # @ and (1,,5, 7T, 5 ) # & it follows from
[(k—1) and the definition of G, , , that

Gu(0=] Gl sl — [ G, yaul)dsfd,nee (211)

b Tis2

therefore G, ., is continuous everywhere. If n<k—1 then, since by
IM(k—1) we know that G, and G,,,, have at least continuous
(k—2—n)th derivative at (n) multiple knots of Gy, it follows from
(2.11) that G, ,, has continuous (k— 1 —n)th derivative at (n) multiple
knots. Next we shall show that G does not exist at (n) multiple knot.
Let 7,,, be a (n) multiple knot of G, ,. If n=k—1 then Tis =T,
Tita, OF Tiw2k41e Saye Tit 21:1'-!" Since (ris Ti+2k—l} and (1’,—+3,
Tiroks ) #J, by I{(k—1), (1.2) and (1.3) G,, , , can be expressed as

rx

Giaar(¥)= | Guls) a5/ = G,yauls) dsid, .

T

However, since 7, is a (k— 1) multiple knot of G, it follows by Lemma 2
that

G ls)=m(s)— f Gioap (1) dtfd, 54

Tits

and so G, is not continuous at 1,. Therefore, the derivative of Goppolx)
does not exist at t,. The cases when Tiyy=7T,.pand 1,. ., ., can be proved
in a similar way.

If n<k—1 then by the fact that G/ | ™ is continuous at 7,,, and
Lemma 1 we can find kK — n positive numbers C,, /=0, 1,.., k—1—n, and a

neighborhood, N(t,, ,,), of 7,, ; such that for all x in Nt )
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k—=1—n

Ggi;l]_”)(x): Z (_1)" Cer+2l,,r+2{x)

/=0
= ( -1 )J‘-_2 (C; - EG{'P'Z{}.—:].H‘PE('Y)
=G Gt eax) + CiGitajn+a(x))

+ 2 (._. I)I CtGi+2Ln+2{x)' (212}

(#j -2 1J

Since, by 11 (n+ 1), the derivative of the last term of (2.12) exists at 7, .,
to prove that the derivative of G,y at 7,5 does not exist, we only have
to show that the derivative of

CJ'--- G = k2T C,ﬂ— Gy =1+ 2 + C;'G:+ 2+ 2 (2.13)
at t,, ,, does not exist. Rewrite (2.13) as
(C; ——ZAiw- A2+ 2 C}'Ap+2(f+ L+ 2)
o {(C‘;--B + (‘1,1——— l) Ai+2(_,ﬂ— Ly +2 7 (C_,l 1 + C;) Ai+2j.n+l)' (214)

Then the first part can be ignored again because derivative of it at 7,. 5
exists. Now since 7, ,.-; is a (n) multiple knot of G, 5,1 and a (n) multiple
knot of G, , 2, _ ).+ 1, by Lemma 2 the second part of (2.14) can be formed

as
- (a J.x Tiy20i-1) (j! T2 Gis 20— 1al?) df) dS)
+b r Titay (Jﬂ Tiag+nOivaus Halt) df) dS)
[ e o) ds @215)
where

a=(C, ++C, iz vy Oiyatrasth
b=(C, ;+CNI, 20411 Gigajma1h
c=(C, 1+ C, )dia b r1 >0,
d=(C, |+ C)d 42010
Derivative of the first part of (2.15) at 1, ,, exists. But derivative of the

second part at T, 5, does not exist. Therefore G4 7" does not exist at the
(n) multiple knot ;5.
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Now the proof of /(k). If xe (z,, T,,2) then by I(k — 1) and Proposition 2
we have 4,,, ,(x)>0 and A2k 4 1(x)=0. Therefore

G,,k+1(«t)>0 if XE('C,-, r!+2)' (216)

This is also true for (t,, .. |, T;, 5, ). Hence to prove I (k) we only have
to show that G, , ;>0 on [1,,,, Tivak 1]

Now assume, on the contrary, that Gixs1(¥)<0 for some y in
[tiva, Tipon ). Since (1, 7,4 5, ) # &, T, can not be a (k+ 1) multiple
knot of G, , ,. Hence we have only two cases to consider: T, is not a mul-
tiple knot, and, 7, is an (n) multiple knot of G but0<n<k,

Case 1. 7, is not a multiple knot of Giksi-

In this case G,,,, must be continuous. For, otherwise, G,,,, would
have a (k) multiple knot and it could only be 7,,..,,, but then
(T Tivaw=1) = (1, 7,,5) and by (2.16) we have G+ 1(y)>0 contrary to
the assumption. However, if G+ 1s continuous in [t;, 7, ,,] and

(i, 7,,2) # & then by (2.16) and Bolzano’s theorem, G, ., has a zero in
(7;, ¥), a contradiction to Lemma 5.

Case II. 1, is an (n) multiple knot of Girirand 1<n<k
In this case by Lemma 1 there exist C,>0,1=0,1,.., k—n, such that

k—n
Gf_’f(:_’i)(X): Z (‘“l)lchwz.',nH(x) (2.17)

=0
forall x in [7,,7,,, ., ,] except at a finite number of knots. Since T; 18 an
(n) multiple knot of G,, ., we have by Lemma 2 that if n#0 then

G-‘.n + l(x) = Kl'(x) - J‘x Gi+ Z,Jr('g) ds/5i+ 2.

Tit+ 2

and consequently

Gi‘n+ 1({,—)}0 and Gl',n-}-l € C(ris +CC’]- (218)

(2.18) is also true when n=0 by checking the definition of G;,. Further-
more, since 7, is an (n) multiple knot of G.iy1, 1t follows that
Tiv2a<T,y 41, and therefore

G£+11'.H+IGC(_CK:sri+2n+])7 !:1,2,...,k—ﬂ.
Consequently, by Proposition 2,

Giromir(t)=0,  I=1,2, k—n (2.19)
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But then by (2.17), (2.18), and (2.19) we have

k—n

S (D' CGapni(z)>0

=0
and

k—;l
Z (_1)! C.’Gf—k 2+ 1 € (,j[l',-. Tigon~ I)-

/=0

Therefore there exists an &> 0 such that

Gh-meC(t,1,+¢) and Gh7 x>0

ihk+ 1

for XE(T,,T,+E)

Since for j=1,2..., k —n we have

GU-N(x) = G2, (s)ds,  xe(t,t+e),

1k +1
Jo,

it follows that

G (x)>0 for xe(r, t,+¢)

On the other hand, from the discussion of case I we know that il G, . 1s
not continuous then

Gi.k+ l{x) >0, XE (T,', Tig 2k l)= (TH Tig E)'

Therefore we only have to consider the case when G, is continuous, But
then by Bolzano’s theorem there exists a point fe {r,,v) such that
G, (1)=0, a contradiction. This completes the proof of Theorem 1.

COROLLARY 1.1. The degree of smoothness of G al Tz
(1 <I<k) will not be affected if the odd interval 7; 5 is empty. lLe,
Tivar—1 = T2

In other words, the degrees of smoothness of G,y al Ty 2 and T, 5
are the same no matter T, 1, equals T, 5, or not.

COROLLARY 1.2, G, is a polynomial of degree k on even intervals and
of degree k — 1 on odd intervals.

Proof. By taking j=k—1in Lemma I and then using Proposition 4.
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3. ALTERNATE SPLINES AND B-SPLINES

In this section we shall prove that B-spline is actually a special case of
alternate spline if the knots are chosen properly.

THEOREM 2. If the knot sequences t= {1,} and t={t,} satisfy the con-
ditions t,=1,,=1,,_, then for all values of i and k (=1) we have

sz_k+ L= sz — Lkt 2 Bi.k + s

where B, is the ith B-spline of degree k for the knot sequence 1.

Theorem 2 implies that for a given knot sequence t= {z,} if all the odd
intervals of G,, , ;. are empty then G,, , , . becomes a B-spline of degree k,
and if all the even intervals of G, , , . are empty then G,,, ,, becomes a
B-spline of degree kK — 1. This property of alternate splines shows that for
any given knot sequence ¢ a proper knot sequence t can always be found so
that B-splines for r are equal to the corresponding alternate splines for .
Therefore, a parametric B-spline curve is also a parametric alternate spline
curve, i€, a parametric B-spline curve can always be represented by

~ alternate splines.

Before we give the proof of Theorem 2, let us recall from [1, p, 131] the
definition of B-splines. For a given knot sequence ¢= {¢,}, B-splines for the
knot sequence  can be recursively defined as follows:

I’ tl “<- X< It + 1
0, otherwise

B, Ax)= {

and

X—1; iy —X
B.:k+1,;(x) = ——— B.:k‘r(x)'i",—_— B dx)
ivk 1 ts+k+1“t:+l

for k= 1. It is easy to see that

xX—t;
P x,.sx<x”l
Livr— 1

lLiy2—X

B, x)={ ——"——, X1 €Sx<X,,,
Lipa— 14

0, otherwise.
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Now the proof of Theorem 2. By induction on k. It suffices to prove that
Goxsro=B,1, Let k=1 By definition I we have
(.V*T:,-)/i(f3,+1—'fg,), Tlxgx‘(‘r?:-f-l
1, Tyl SX< T4
(Toes =) (To 3= Toi s ah Taup 1 X< Ty

0, otherwise.

Since Ty, =Ty.2s 184 [Taip s T2iaa) =, and 1,=17y, L1 = Tasr
{,,2=Ts, 3. it follows that

(x—1)t o — 1) LEx<Ii
Goa )= Lt (trpa= 1 b Gy SX<1is
0, otherwise
=B, (1)

Now assume G, 4 1« = B 1, for all m <k Then by assumption we have

| Buls) ds{,ﬁ"' B (s) ds,

“ 4

Ao 1X) = i [ Buds) ds#0
(X)), otherwise. (3.1)

From [1, p. 151] with a slight modification we have the following formula
for the integration of B-splines

v M m !
J Z a B (s)ds= Z (Z CE,-({;'H:" f,')/k) Bk w1l

o= T=i Nj=1i

x"<‘-fm+l' (3'2)

Therefore for any real number x by choosing a sufficiently large m so that
x<t, ., then by (3.2) we have

" ‘
Bi.k..’(s)dsz(ti+k—{|)(2 B!,k+l,r(5))”k (3.3)

X

I = i
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and, similarly,

[ Busds) ds = (1= k. (34)

i

(3.4) follows from the fact that

y—1

ZB;.A»J(I)= Y Budx)=1 (3.5)

i=r+1—k

if 1,<x<t, [1, p. 1107]. Hence, by (3.1), (3.3), and (3.4),

Agiiyr(x Z By dx) if J ? B,y s)ds#0.
—_ 1

i

If

' fivk . T+ k-1

J Bi.k.f(s) ds = 01 Le., j GZi.k.r(s) ds = 0,
then, by Theorem 1, 75;=7y 4 2c 1> OL L= 1Lk and therefore by (3.5) we
also have

Azi.k+ LX) =m,,(x)

=3 Bi1dx) if J. B, (s)ds=0.
I=i I

i

Therefore for any real number x, by choosing m large enough so that

x<t,, ,,, we always have the following equation

Ali.k+l.r{x): z By 1.Ax). (3.6)
(=i
Similarly we can prove that, for any real number x, by choosing m large
enough so that x<t,,, then

"

A2i+2.k+i.r(x): Z B!,k+l,r(x) (37)
I=i+1
(remember that o, =71y ,), and the theorem follows from (3.6), (3.7),

and (1.2).
Representation of alternate splines by B- splines is given in the following

theorem:

THEOREM 3. If G.x ... is the ith alternate spline of degree k (=0) for
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the knot sequence t={1,} then there exists k+1 real numbers aff+"),
=0, 1,.., k, such that

k
Gr.k+ l.t(x) = z af’j"# UB:+UC+ },r(x)

=0

for all x where o**", [=0,1,...k, can be defined recursively for £ as

follows:
() —
10.1 - 1"
and
A ahtU=aft D —aftsl, 1=0, 1.k
! for k >0 with
L i+
< {A) _ I ALK) i (k)
!E e Yo oal At TR if A% £0
! ay, - j=1i
I, otherwise,
i+ K 1
(ky _ 13
Ai - Z 1;7;.:(1;'-}-&71-_,')! (3 8)

and

Proof. By induction on k. When k = 0 the theorem follows directly from
the definition of G, and B,,,. Now assume the theorem holds for all
m < k. We have by induction hypothesis that

k—1
| G.ﬂ.k,r(s)z Z a.(’,‘:>Bx+x'.k‘r(S)'
{=0

By finding m large enough so that x <7, ,, then by (3.2) we have

. m s
[. Gipols)ds= Z (Z Of:-k_]s,s (Tjes— Tj)/fk) By 1.:(x) (39)

T (=i Nj=i
Since By, (£)=0il 1¢ [t 7,.,. ], it follows that

[ TE
| Gy as

T

' ' = Z (Z a;k_]j(‘rj-f-k - TJ)/k) Bisro(tivon 1)

J=i
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Furthermore, since af*' =0 if />k — 1, we have

Tiv2k~1
[ Guuats) s

Ti

m i+ k—1
= Z ( Z 9‘;( LTk T)/k)BHcHr( Tiva—1)

f=itvhk—1 N j=i
mn
= Z AEMBU(#— 1,:(T.'+2k ik
Ptk 1

and then by (3.5)

Jﬂnu -1 G‘l‘k'r(s)ds=dgkl/k

T

or
Ope=ANk, (3.10)

Again, since a/¥' =0 if /> k — 1, (3.9) can be simplified as

i+k—2

| Gudsras=" 3

i 1=i

(Z 20,5y~ )/k) B idx)

S (A B ()

I=i+hk—1

Therefore if 6,, . #0 then by (1.3) and (3.10)

i+k-2

Ay x)= Z (Z 0‘:“,,(‘5”1\- - f_,-)/dﬁ’”) Biiy1.x)

I=i

m

+ Z Biy1:(x)

l=i+k-—-1
or

k i+

(k) . /ALK

fk+lr Z( aj u f+k rj)fA: ])Bl+l.k+l.r(x)
I=0 Nj=7

m

+ Z Biyi(x) (3.11)

l=i+k+1
This is because that, from the definition of A*) and induction hypothesis,

P+

Z a}.“ (T;+k"fj)/dﬁk]=1
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if =k —1ork. On the other hand, if 4, . =0 then by (1.4) and Theorem |
we can conclude that t,=1,,,,_,. Hence by (3.5) we have

A rdx) =12} =3 By ()

I=i
for a sufficiently large m, or
i+ k ”m .
A fx)= E B X))+ Z By (x)
— J=i+k+1 .
k m
Z ek 12 (X)F z By (x) (3.12)
= F=itk+1
Therefore by (3.11) and (3.12) we then get

Ay 1_r(-‘C) = Z a;_’f * ”Ba b Lk 1.1()5)
=0

e

+ Y By (3.13)

l=i+k+1

with a!* * ! defined as in (3.8). Similarly, it can be proved that

k
Aiopvrddx)= Z [I,":_[fjvjan-+2+,.,\.+ LX)
i=0

n

+ Z Bl,k+ 1:(x)

IT=it+k+3
for the same m. Since alf *'). ,=al’ Y =1 it follows that
_' m
k+1) ! -
Ai+'2‘k+l,r(x): Z aj,rh B(+ +ik+lr(‘c)+ 2 Bi,k+l.t(l)
[=0 l=i+k+1
14
. m (3 )
k -
=3 a5 0B e ne(X) + Z By 1.(x)
=0 I=i+k+1

by setting %, ), =a'* ), =0. The theorem now follows from (3.13),
(3.14), and (1.2).

COROLLARY 3.1. If the knot sequence ©={t,} is uniformly spaced then

Sfor integers k (>0) and { we have

Z() a2
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Proof. ai+" is determined by the relative position of 7, T4 1
T,, 41 Hence if 7 is uniformly spaced then, for any /€ £0,1,.., k} and
integers s and ¢, we have

(k+1) — n(k+1)
As _Gt.',r -

If we replace /%~ " by a{** ! and simplify the recurrence relation of afert)
in Theorem 3 to be as follows:

Al =P =1
/k—l
oc}"’*“=(oc$’i’1+a}’”)f Yook, =01,k
j=0
where 2%} =a{f' =0, then it is easy to see by induction that
. .
Y ak*t=2 and a&"+"=(k)/2“
J /
j=0 ! !

and the proof of the corollary is complete
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