
FINAL REPORT

Tessellation, Fairing, Shape Design,
and Trimming Techniques for

Subdivision Surface based Modeling

(DMS-0422126)

PI: Fuhua (Frank) Cheng

Department of Computer Science

College of Engineering

University of Kentucky

Tel: (859) 268-5823

Email: cheng@cs.uky.edu

http://www.cs.engr.uky.edu/˜ cheng/

10/10/2008

Report Summary

This final report summarizes the work we did for the grant DMI-0422126.

Subdivision surfaces are capable of modeling and representing complex shape of arbitrary

topology. However, methods on how to build the control mesh of a complex surface have not

been studied much. Currently, most meshes of complicated objects come from triangulation

and simplification of raster scanned data points, like the Stanford 3D Scanning Repository.

This approach is costly and leads to very dense meshes.

In this project, we develop necessary mathematical theories and geometric algorithms to

support subdivision surface based modeling. First, an explicit parametrization method is pre-

sented for exact evaluation of Catmull-Clark subdivision surfaces. Based on our parametriza-

tion techniques, two approaches have been developed for constructing a control mesh of a

given object with arbitrary topology. The first approach is interpolation. By sampling some

representative points from a given object model, a control mesh can be constructed and

its subdivision surface interpolates all the sampled representative points and meanwhile is

very close to the given data model. Interpolation is a simple way to build models, but the

fairness of the interpolating surface is a big concern in previous methods. By using similarity

based interpolation, we can obtain better modeling result with less undesired artifacts and

undulations.

Another approach is to construct the control mesh of the final object in a design process

through Boolean operations. Boolean operations are a natural way of constructing complex

solid objects out of simpler primitives. Up to this point, accurate Boolean operations over

subdivision surfaces are not reached yet in the literature. We have developed a robust and

error controllable Boolean operation method which is based on voxelization of subdivision

surfaces. Different from previous voxelization based Boolean operation methods, our method

results in a continuous geometric representation, i.e., a polygonal mesh of the resulting

Boolean operations, which can be regarded as a one-piece representation of the final object.

Because the resulting polygonal mesh is very dense, error controllable simplification of the

control meshes is needed. Two methods are presented for this purpose: adaptive tessellation

and multiresolution analysis. Both methods can significantly reduce the complexity of a

polygonal mesh and meanwhile have accurate error estimation.

A system that performs subdivision surface based representation is implemented and a

lot of examples have been tested. All the examples show that our approaches can obtain very

good subdivision based one-piece representation results. Even though our methods are based

on Catmull-Clark subdivision scheme, they can be adapted to other subdivision scheme as

well with small modifications.

Overall, we consider this grant a big success. We not only reached our research goal,

i.e., developing proposed modeling techniques for Catmull-Clark subdivision surfaces, but

also produced a PhD (Dr. Shuhua Lai, graduated in August, 2006, currently an Assistant

Professor at the Virginia State University), an MS (Mr. Gang Chen, graduated in December

2006, currently working in L.A., California), 17 journal papers and 3 conference papers.

Another MS (Mr. Conglin Huang) will be produced at the end of this year (2008) and

another PhD (Mr. Fengtao Fan) will be be produced at the end of next year (2009).

The remaining part of the report is arranged as follows. In Chapter 1, we first present

a parametrization technique for Catmull-Clark subdivision surfaces. Our tessellation tech-

niques for subdivision surfaces are shown in Chapter 2. Our subdivision depth computation

techniques and voxelization techniques are shown in Chapters 3 and 4, respectively. Our in-

terpolation based shape design techniques are shown in Chapter 5. Our trimming techniques

for subdivision surfaces and their applications are shown in Chapter 6. Finally in Chapter

7, we present the structure of a subdivision surface based modeling system.

Table of Contents

1 Subdivision Surface Parametrization and Evaluation 1
1.1 Previous Work . 2
1.2 New Parametrization Technique . 3
1.3 Applications . 7

1.3.1 Fast, Exact and Explicit Rendering 7
1.3.2 Generating Special Features . 8
1.3.3 Texture Mapping . 9
1.3.4 Surface Trimming . 10
1.3.5 Adaptive Rendering . 11
1.3.6 Interpolation . 12
1.3.7 Boolean Operations . 13

2 Tessellation of Subdivision Surfaces 15
2.1 Previous Work . 16
2.2 New Technique . 17

2.2.1 Inscribed Approximation . 17
2.2.2 Adaptive Inscribed Approximation 19

2.3 Crack Elimination . 22
2.4 Degree of Flatness . 24
2.5 Algorithms of Adaptive Tessellation . 25

2.5.1 Global Index ID . 25
2.5.2 Adaptive Marking . 26
2.5.3 Adaptive Rendering a Single Patch 26

2.6 Implementation and Test Results . 29

3 Subdivision Depth Estimation 32
3.1 Subdivision Depth Computation for Extra-Ordinary Patches 32

3.1.1 Distance Evaluation . 34
3.1.2 Subdivision Depth Computation . 35

3.2 New Subdivision Depth Computation Technique for Extra-Ordinary Patches 35
3.2.1 Matrix based Rate of Convergence 36
3.2.2 Distance Evaluation . 39

3.3 Subdivision Depth Computation . 40
3.4 Examples . 40

4

4 Voxelization of Free-form Solids 42
4.1 Previous Voxelization Techniques . 42
4.2 Voxelization based on Recursive Subdivision 43
4.3 Separability, Accuracy and Minimality . 45
4.4 Volume Flooding with Dynamic Programming 46

4.4.1 Seed Selection . 46
4.4.2 3D Flooding using Dynamic Programming 47

4.5 Applications . 48
4.5.1 Visualization of Complex Scenes . 48
4.5.2 Integral Properties Measurement . 50
4.5.3 Performing Boolean and CSG Operations 50

5 Shape Design: Interpolation based 51
5.1 Previous Work . 51
5.2 Similarity based Interpolation . 52

5.2.1 Mathematical Setup . 52
5.2.2 Interpolation Requirements . 53
5.2.3 Similarity Constraints . 53
5.2.4 Global Linear System . 54
5.2.5 Additional Interpolation Requirements 56
5.2.6 Interpolation of Normal Vectors . 56

5.3 Handling Open Meshes . 57
5.4 Test Results . 58

6 Trimming of Subdivision Surfaces and Applications 61
6.1 Related Work . 62
6.2 Performing Boolean Operations on Free-Form Solids 62

6.2.1 Boolean Operations based on Recursive Subdivision & Voxelization . 63
6.2.2 Crack Prevention . 64

6.3 Local Voxelization . 65
6.4 Error Control . 66
6.5 Test Results . 67

7 Subdivision Surface based Modeling 69

Bibliography 69

Chapter 1

Subdivision Surface Parametrization
and Evaluation

In this chapter, a new parametrization technique and its applications for general Catmull-

Clark subdivision surfaces [64] are presented. Our new technique [64] extends J. Stam’s work

[23] by redefining all the eigen basis functions in the parametric representation for general

Catmull-Clark subdivision surfaces and giving each of them an explicit form. The entire

eigen structure of the subdivision matrix and its inverse are computed exactly and explicitly

with no need to precompute anything. Therefore, the new representation can be used not

only for evaluation purpose, but for analysis purpose as well. The new approach is based

on an Ω-partition [23] of the parameter space and a detoured subdivision path. This results

in a block diagonal matrix with constant size diagonal blocks (7 × 7) for the corresponding

subdivision process. Consequently, eigen decomposition of the matrix is always possible and

is simpler and more efficient. Furthermore, since the number of eigen basis functions required

in the new approach is only one half of the previous approach [23], the new parametrization

is also more efficient for evaluation purpose. This is demonstrated by several applications of

the new techniques in texture mapping, special feature generation, surface trimming, boolean

operations and adaptive rendering.

The organization of this chapter is arranged as follows. Section 1 shows an intuitive

but expensive approach in parameterizing an extra-ordinary Catmull-Clark patch. Section

2 shows our more efficient approach in parameterizing a Catmull-Clark patch using an ex-

1

tended subdivision path. Section 3 shows application examples of the new scheme in texture

mapping, special feature generation, surface trimming, adaptive rendering, mesh interpola-

tion and boolean operations.

1.1 Previous Work

An algorithm for the evaluation of a subdivision surface at an arbitrary point was first

proposed by J. Stam in 1998 for Catmull-Clark subdivision surfaces [23] and then in 1999

for Loop subdivision surfaces [24]. Stam’s approach shows that an extra-ordinary surface

patch and its derivatives can be represented as a linear combination of the control points

with weights defined by a set of 2n + 8 eigenbasis functions where n is the valence of the

extra-ordinary patch. The representation satisfies simple scaling relations and can be easily

evaluated in constant time. However, even though analytical expressions for the eigenbasis

functions have been derived, some of them are too complicated to be reported in the paper

[23]. Besides, some of the eigenbasis functions are redundant. We will show in this chapter

that only n + 6 eigenbasis functions are actually needed and, consequently, the evaluation

process can be made more efficient. J. Stam’s approach [23] is mainly developed for evalua-

tion purpose. As we shall present, our parametrization results [64] can be used not only for

evaluation, but for analysis purpose as well.

Warrent and Weimer presented a method in [28] for computing all eigenvalues and eigen-

vectors of the subdivision matrix by writing the subdivision matrix for the 2-ring in block

circulant form. Ball and Storry [5] also used the similar approach to compute the eigen

structure of the subdivision matrix. However, as far as we know, the inverse of the matrix of

the eigenvectors has never been computed explicitly, and the overall explicit eigen structure

has never been integrated into the parametrization formula. In this paper, based on the

eigen analysis results of [5], an explicit and exact evaluation formula is derived.

Zorin extended the work of J. Stam by considering subdivision rules for piecewise smooth

surfaces with parameter-controlled boundaries [26]. The main contribution of their work is

the usage of a different set of basis vectors for the evaluation process which, unlike eigen-

vectors, depend continuously on the coefficients of the subdivision rules. The advantage

of this algorithm is that it is possible to define evaluation for parametric families of rules

without considering excessive number of special cases, while improving numerical stability

of calculation.

In addition to Stam’s approach, two different parameterizations of Catmull-Clark subdi-

vision surfaces have been proposed by Boier-Martin and Zorin [8]. The motivation of their

work is to provide parametrization techniques that are differentiable everywhere. Although

all the natural parameterizations of subdivision surfaces are not C1 around extraordinary

vertices of valence higher than four[8], the resulting surfaces are still C2 almost everywhere.

Moreover, despite of the fact that the partial derivatives diverge around an extraordinary

vertex, in this paper, we will show that an standardized normal vector can be calculated

explicitly everywhere. As we know, precisely calculated normal vector is indispensable for

surface shading purposes.

Exact evaluation of piecewise smooth Catmull-Clark surfaces near sharp and semi-sharp

features is considered in [22]. Constant-time performance is achieved by employing Jordan

decomposition of the subdivision matrix. In this paper we will show that special features can

be generated using ordinary Catmull-Clark rules with constant-time evaluation performance

as well.

1.2 New Parametrization Technique

The regular bicubic B-spline patches {Sm,b}, m ≥ 1, b = 1, 2, 3, induce a partition on the

unit square [0, 1] × [0, 1]. The partition is defined by : {Ωm,b}, m ≥ 1, b = 1, 2, 3, with

Ωm,1 = [1
2m , 1

2m−1] × [0, 1
2m],

Ωm,2 = [1
2m , 1

2m−1] × [1
2m , 1

2m−1],

Ωm,3 = [0, 1
2m] × [1

2m , 1
2m−1]

(see Figure 1.1 for an illustration of the partition [23]). For any (u, v) ∈ [0, 1] × [0, 1] but

(u, v) 6= (0, 0), there is an Ωm,b that contains (u, v). To find the value of S at (u, v), first

map Ωm,b to the unit square. If (u, v) is mapped to (ū, v̄) by this mapping, then compute

u

v

Ω

ΩΩ

Ω

ΩΩ

Ω

ΩΩ
11

1213

21

2223

31

3233

Figure 1.1: Ω-partition of the unit square [23].

the value of Sm,b at (ū, v̄). The value of S at (0, 0) is the limit of the extra-ordinary vertices.

For convenience of subsequent reference, the above partition will be called an Ω-partition of

the unit square.

In the above process, m and b can be computed as follows:

m(u, v) = min{⌈log 1

2

u⌉, ⌈log 1

2

v⌉} ,

b(u, v) =

1, if 2mu ≥ 1 and 2mv < 1
2, if 2mu ≥ 1 and 2mv ≥ 1
3, if 2mu < 1 and 2mv ≥ 1 .

The mapping from Ωm,b to the unit square is defined as:

(u, v) → (ū, v̄) = (φ(u), φ(v)),

where

φ(t) =

{
2mt, if 2mt ≤ 1
2mt − 1, if 2mt > 1 .

(1.1)

Since each Sm,b is a standard B-spline surface, it can be expressed as

S(u, v) = W T (ū, v̄)MGm,b

where Gm,b is the control point vector of Sm,b, W (u, v) is a vector containing the 16 power

basis functions:

W T (u, v) = [1, u, v, u2, uv, v2, u3, u2v, uv2, v3, u3v, u2v2, uv3, u3v2, u2v3, u3v3],

and M is the B-spline coefficient matrix. An important observation is, W T (ū, v̄) can be

expressed as the product of W T (u, v) and two matrices:

W T (ū, v̄) = W T (u, v)KmDb,

where K is a diagonal matrix

K = Diag(1, 2, 2, 4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 32, 32, 64)

and Db is an upper triangular matrix depending on b only. Db can be obtained by replacing

ū, v̄ in W (ū, v̄) with φ(u), φ(v) defined in Eq. (1.1). Therefore, we have

S(u, v) = W T (u, v)KmDbMGm,b.

Through a picking process, we would have

S(u, v) = W T (u, v)KmDbMPbĀAm−1G. (1.2)

This is a parametrization of an extra-ordinary patch. However, this is a costly process to

use because it involves m − 1 multiplications of the (2n + 8) × (2n + 8) matrix A. In the

next section, we will present an efficient approach to calculate Gm,b for any b and m.

We next show that instead of using the direct path from G to Gm−1 to compute Gm−1 =

Am−1G in the above equation, one should use the indirect, longer path (G → g → gm−1 →

Gm−1) in Figure 1.2 to do the job. The reason for doing so is: the corresponding matrix T

is a block diagonal matrix with each diagonal block of dimension 7 × 7 only. Therefore, the

process of computing their eigen decompositions is not only always possible, but also much

simpler and more efficient.

This apporach leads to the following equation:

S(u, v) = W T KmDbMPbĀH−1
1 H−1

2 H−1
3 Tm−1H3H2H1G (1.3)

For a given (u, v), every matrix in (1.3) is known to us if valance n is known. Hence it can be

used to exactly and explicitly evaluate the position of S(u, v). Details of this new approach

and definitions of related mappings can be found in [64].

Ĝ

Ĝ

ĝ

ĝ

ĝ

Ĝ

Ĝ ĝ

G
_

H1 H2 H3

H1 2H 3H
−1 −1 −1

H1 H2 H3

H1 2H 3H
−1 −1 −1

H1 H2 H3

H1 2H 3H
−1 −1 −1

H1 H2 H3

H1 2H 3H
−1 −1 −1

g

g

g

T

T

T

T

T

G

G

G

G

G

G

_

_

_

A

A

A

A

_

_

_

_

A

A

A

A

A

G g

1 1

m

m−1 m−1 m−1 m−1

2 2 2 2 2

3

1 1 1

Figure 1.2: The extended subdivision diagram.

Equation (1.3) provides a formal parametrization of an extra-ordinary patch. This

parametrization, however, is still costly to evaluate because it involves m−1 multiplications

of the matrix T. The evaluation process can be considerably simplified if T is decomposed

as T = X−1ΛX, where Λ is a diagonal matrix of eigenvalues of T and X is an invertible ma-

trix whose columns are the corresponding eigenvectors. Therefore, the evaluation of Tm−1

becomes the evaluation of X−1Λm−1X only.

By doing so, S(u, v) can be expressed as:

S(u, v) = W TKmZbΛ
m−1ZG (1.4)

where Z = XH3H2H1 and Zb = DbMPbĀZ−1. For any given n, these matrices are known

explicitly.

There are totally n + 6 different eigenvalues in Λ. These different eigenvalues of T can

be found in [64].

Eq. (1.4) can be used for both extra-ordinary and regular patches because the derivation

of Eq. (1.4) did not use the assumption that n 6= 4. S(u, v) defined in Eq. (1.4) can be

written as a linear combination of these different eigenvalues in Λ to the (m − 1)st power:

S(u, v) = W TKm

n+5∑

j=0

λm−1
j (ZbΘjZ)G,

where Θj is a 7n × 7n matrix with all the entries being zero except the ones corresponding

to λj in matrix Λ. Those entries of Θj are 1. Let Mb,j = ZbΘjZ. We get

S(u, v) = W T Km

n+5∑

j=0

λm−1
j Mb,j G. (1.5)

The exact expressions of Mb,j are not shown here because of a patent case restriction. Eq.

(1.5) is the most important result of this report [61, 62, 63, 64, 65, 66, 67, 68, 70]. This

equation can be used to evaluate a CCSS patch at any point (including (0, 0)), and it can

also be used to compute the derivative of a CCSS patch at any point (including (0, 0) as

well). The patch can be regular or extra-ordinary.

1.3 Applications

1.3.1 Fast, Exact and Explicit Rendering

Eq. (1.5) not only gives us an explicit method to evaluate S(u, v), but also a faster and

convenient way to render S(u, v). Note that Mb,j depend on the valence of the extra-ordinary

vertex only. They can be explicitly and analytically computed for every different valence.

For a given valence, we only need to perform such calculation once, no matter how many

patches in the mesh are with such a valence. Once the step sizes for u and v are given, we

can calculate all Φb(ui, vk) beforehand and store them in a look-up table. Therefore, the

evaluation of S(u, v) at each point (ui, vk) basically is just a multiplication of Φb(ui, vk) and

G only.

All the examples shown in this chapter are rendered using this apporach. One can see

that it is essentially the same as the rendering process of a regular patch. An important

difference between this approach and the previous approach [23] is that nothing need to be

precomputed when our method is used, while the the Stam method [23] need to precompute

Figure 1.3: left: Control mesh of a horse model, right: exactly evaluated Catmull-Clark
subdivision surface.

a huge number of eigen basis functions and stored them in a file. In addition, the previous

approach [23] was developed for special αn and βn only. Therefore, it cannot handle general

eigen basis functions while we can calculate all the eigen basis functions explicitly with only

a small overhead. The horse shown in Fig. 1.3 (right) is rendered using this algorithm with

all the positions and normals exactly computed, not approximated. Hence, the quality of

the image is better than those generated through the subdivision process. Fig. 1.3 (left) is

the control mesh of the shape shown in Fig. 1.3 (right).

1.3.2 Generating Special Features

Eq. (1.5) can be used to render subdivision surfaces with special features. As we know,

special features can be generated by properly arranging the control mesh. For instance,

tripling a line in the control mesh generates a ridge or edge-like feature; tripling a control

point generates a dart-like feature. One can get subdivision surfaces with complicated fea-

tures and, consequently, complicated shape through this process. However, no matter how

complicated the topology of the control mesh, as long as it is a two-manifold (to satisfy the

definition of a CCSS), Eq. (1.5) will always generate the correct result. An example of a

CCSS with sharp edges, corners and several genera is shown in Fig. 1.4. The control mesh

(a) Mesh with tripled edges (b) Surface with special features

Figure 1.4: Generating special features using Catmull Clark subdivision surfaces

of the surface is shown in Fig. 1.4(a). Since the features are generated from parametrization

of the control mesh directly, the result shown in Fig. 1.4(b) is better than those generated

by Boolean operations.

1.3.3 Texture Mapping

Precise texture mapping on a CCSS is possible only if a proper parametric representation is

available for each extra-ordinary patch.

Without a proper parametrization,texture mapping on object of any topology is almost

impossible. Now with Eq. (1.5), texture mapping is doable on any object of any genus.

However, to implement texture mapping on a CCSS, one needs to divide the interior

faces of the control mesh into regions such that each region is of a rectangular structure first.

Such a division will be called a regular division. The division is not unique.

Figure 1.5 shows a division of the interior faces of a CCSS into seven rectangular regions.

Once a regular division of the interior faces of the control mesh is available, one simply

performs texture mapping on each of these regions using standard approach. Examples of

Figure 1.5: Regular division of the control mesh of a CCSS.

(a) Rock Arm (b) Leopard (c) Space Station

Figure 1.6: Texture mapping on Catmull-Clark subdivision surfaces

texture mapping on three subdivision surface represented objects: a rocker arm, a space

station and a leopard are shown in Fig. 1.6(a), 1.6(b), and 1.6(c), respectively. The regular

division usually is not unique. Different divisions of the interior faces of the control mesh

would lead to different texture outputs.

1.3.4 Surface Trimming

Surface trimming is another important application used in computer graphics and CAD/CAM.

The trimming loops are defined in the parameter space of the surface and iso-parametric lines

in the parameter space are clipped against the trimming loops to have the trimmed regions

removed. Hence, a global or local parametrization is necessary for precise and efficient ren-

dering of a trimmed CCSS. In Fig. 1.3.4, trimmed CCSSs surface are shown. In Fig. 1.7(a),

the trimmed regions are defined by the logo of the 2006 International CAD Conference, and

in Fig. 1.7(b), the trimmed regions are defined by the boundaries of the word ‘SIGGRAPH’.

(a) (b)

Figure 1.7: Surface trimming on Catmull-Clark subdivision surfaces

The CCSS surface has four extra-ordinary vertices in the trimmed region, but partitioning

of the control mesh is not required here because the surface is rendered on the basis of

individual patches.

1.3.5 Adaptive Rendering

Adaptive rendering is a technique for fast rendering of complicated objects. The rendering

process of a patch depends on its flatness. A flat patch will not be tessellated as densely as

other patches. Adaptive rendering is not a problem with (1.5) because Eq. (1.5) is capable

of generating any point of the surface required in the tessellation process. One thing we must

keep in mind is that, in order to avoid crack, we must generate the same number of points

on the shared boundary of adjacent faces. But we can generate any number of points, even

zero, inside a patch. An example of adaptive rendering is shown in Fig. 1.3.5. Fig. 1.8(c)

is the given ventilation control component model which is represented by a single CCSS.

Its control mesh is shown in Fig. 1.8(a). The adaptive tessellation of the model is shown

in Fig. 1.8(b). The flatness of patches is determined by the maximum norm of the second

order forward differences of its control points. More details about the adaptive tessellation

technique is presented in Chapter 6.

(a) Given Mesh (b) Adaptive Tessellation (c) Limit Surface

Figure 1.8: Adaptive tessellation of Catmull-Clark subdivision surfaces

1.3.6 Interpolation

Performing exact interpolation on meshes with arbitrary topology has been done by many

people [30, 31, 29, 15, 32]. Given an control mesh the goal is to produce a smooth and

visually pleasing surface whose shape matches the original data points or given normals in

the given mesh exactly. Usually many constrains on the interpolatory surface need to be

considered when optimization is used. For example, in [15], some energy fairing constrains

are taken into account in building a global system. Because there was not an available explicit

parametrization, the fairing process appeared to be very complicated in [15]. However, with

our explicit parametrization and evaluation, all kinds of constrains can be integrated into

the global system. For example, Fig. 1.9(b) is the interpolating result of the mesh given

in Fig. 1.9(a) using the first, second and third derivatives as the constrains. More details

about the interpolating meshes of arbitrary topology are presented in Chapter 3.

(a) Given Mesh (b) Interpolation

Figure 1.9: Interpolation using Catmull-Clark subdivision surfaces

1.3.7 Boolean Operations

In solid modelling, an object is formed by performing Boolean operations on simpler objects

or primitives. A CSG tree is used in recording the construction history of the object and

is also used in the ray-casting process of the object. Surface-surface intersection (including

the in-on-out test) and ray-surface intersection are the core operations in performing the

Boolean operations and the ray-casting process. Each operation requires a parametrization

of the surface to do the work. This is especially important for the in-on-out test. None of

these is a problem with Eq. (1.5). Examples of performing Boolean operations on two and

three cows are presented in Figure 1.10(a) and 1.10(b), respectively. A difference operation

is first performed to remove some portions from each of these cows and a union operation

is then performed to join them together. Performing Boolean operations on subdivision sur-

faces has been studied by Biermann, Kristjansson, and Zorin [7]. The emphasis of their work

is different though - they focus on construction of the approximating multiresolution sur-

face for the result, instead of precise computation of the surface-surface intersection curves.

More details about performing Boolean operations on surfaces with arbitrary topology are

presented in Chapter 5.

(a) (b)

Figure 1.10: Performing Boolean operations on Catmull-Clark subdivision surfaces

Chapter 2

Tessellation of Subdivision Surfaces

Catmull-Clark subdivision scheme provides a powerful method for building smooth and com-

plex surfaces. But the number of faces in the uniformly refined meshes increases exponentially

with respect to subdivision depth. Adaptive tessellation reduces the number of faces needed

to yield a smooth approximation to the limit surface and, consequently, makes the rendering

process more efficient.

In this chapter, we present a new adaptive tessellation method for general Catmull-

Clark subdivision surfaces. The new adaptive tessellation method can be used to precisely

measure error caused by polygonal approximation. For example the error control in our

Boolean operation process presented in Chapter 5 employs this method. The new adaptive

tessellation method also can be used for significantly reducing face number of dense meshes

with accurate error estimation. As a result our one-piece representation obtained from either

interpolation (See Chapter 2) or performing Boolean operations (See Chapter 5), can be

substantially simplified using the new adaptive tessellation method.

Different from previous control mesh refinement based approaches, which generate ap-

proximate meshes that usually do not interpolate the limit surface, the new method is based

on direct evaluation of the limit surface to generate an inscribed polyhedron of the limit

surface. With explicit evaluation of general Catmull-Clark subdivision surfaces becoming

available, the new adaptive tessellation method can precisely measure error for every point

of the limit surface. Hence, it has complete control of the accuracy of the tessellation result.

15

Cracks are avoided by using a recursive color marking process to ensure that adjacent patches

or subpatches use the same limit surface points in the construction of the shared boundary.

The new method performs limit surface evaluation only at points that are needed for the

final rendering process. Therefore it is very fast and memory efficient. The new method

is presented for the general Catmull-Clark subdivision scheme. But it can be used for any

subdivision scheme that has an explicit evaluation method for its limit surface.

The structure of this chapter is arranged as follows. A brief review of previous works

related to this one is given in Section 1. A description of the basic idea of our adaptive

tessellation technique is given in Section 2. The issue of crack elimination is discussed in

Section 3. Two settings of patch flatness are discussed in Section 4. Algorithms of our

technique are presented in Section 5. Test results are shown in Section 6.

2.1 Previous Work

A number of adaptive tessellation methods for subdivision surfaces have been proposed

[46, 36, 37, 126, 41, 42]. Most of them are mesh refinement based, i.e., approximating the

limit surface by adaptively refining the control mesh. This approach requires the assignment

of a subdivision depth to each region of the surface first. In [46], a subdivision depth

is calculated for each patch of the given Catmull-Clark surface with respect to a given

error tolerance ǫ. In [36], a subdivision depth is estimated for each vertex of the given

Catmull-Clark surface by considering factors such as curvature, visibility, membership to the

silhouette, and projected size of the patch. The approach used in [46] is error controllable.

An error controllable approach for Loop surface is proposed in [126], which calculates a

subdivision depth for each patch of a Loop surface by estimating the distance between two

bounding linear functions for each component of the 3D representation.

Several other adaptive tessellation schemes have been presented as well [42, 41, 37]. In

[37], two methods of adaptive tessellation for triangular meshes are proposed. The adaptive

tessellation process for each patch is based on angles between its normal and normals of

adjacent faces. A set of new error metrics tailored to the particular needs of surfaces with

sharp creases is introduced in [41].

In addition to various adaptive tessellation schemes, there are also applications of these

techniques. D. Rose et al. used adaptive tessellation method to render terrain [44] and

K. Müller et al. combined ray tracing with adaptive subdivision surfaces to generate some

realistic scenes [40]. Adaptive tessellation is such an important technique that an API has

been designed for its general usage [43]. Actually hardware implementation of this technique

has been reported recently as well [39].

A problem with the mesh-refinement-based, adaptive tessellation techniques is the so

called gap-prevention requirement. Because the number of new vertices generated on each

boundary of the control mesh depends on the subdivision depth, gaps (or, cracks) could

occur between the control meshes of adjacent patches if these patches are assigned different

subdivision depths. Hence, each mesh-refinement-based adaptive tessellation method needs

some special mechanism to eliminate gaps. This is usually done by performing additional

subdivision or splitting steps on the patch with lower subdivision depth. As a result, many

unnecessary polygons are generated in the tessellation process. In this paper, we will adap-

tively tessellate a subdivision surface by taking points from the limit surface to form an

inscribed polyhedron of the limit surface, instead of refining the control mesh. Our method

simplifies the process of gap detecting and elimination. It does not need to perform extra or

unnecessary evaluations either.

2.2 New Technique

2.2.1 Inscribed Approximation

One way to approximate a curve (surface) is to use its control polygon (mesh) as the ap-

proximating polyline (polyhedron). For instance, in Figure 2.1(a), at the top are a cubic

Bézier curve and its control polygon. For a better approximation, we can refine the control

polygon using midpoint subdivision. The solid polyline at the bottom of Fig. 2.1(a) is the

(a) Circumscribed (b) Inscribed

Figure 2.1: Inscribed and Circumscribed Approximation.

approximating control polygon after one refinement. This method relies on performing it-

erative refinement of the control polygon or control mesh to approximate the limit curve or

surface. Because this method approximates the limit shape from control polygon or control

mesh “outside” the limit shape, we call this method circumscribed approximation.

Another possible method is inscribed approximation. Instead of approximating the limit

curve (surface) by performing subdivision on its control polygon (mesh), one can approximate

the limit curve (surface) by inscribed polygons (polyhedra) whose vertices are taken from the

limit curve (surface) directly. The easiest approach to get vertices of the inscribed polygons

(polyhedra) is to perform uniform midpoint subdivision on the parameter space and use

the evaluated vertices of the resulting subsegments (subpatches) as vertices of the inscribed

polylines (polyhedra). For instance, in Figure 2.1(b), at the top are a cubic Bézier curve

and its approximating polygon with vertices evaluated at parameter points 0, 1/2 and 1.

Similarly, the solid polygon at the bottom of Figure 2.1(b) is an approximating polygon

with vertices evaluated at five parameter points.

Because inscribed approximation uses points directly located on the limit curve or surface,

in most cases, it has faster convergent rate than the circumscribed approximation. As one

can see clearly from Fig. 2.1 that the inscribed polygon at the bottom of Fig. 2.1(b) is closer

to the limit curve than the circumscribed polygon shown at the bottom of Fig. 2.1(a) even

though the inscribed polygon actually has less segments than the circumscribed polygon.

Inscribed approximation requires explicit evaluation of a CCSS Patch. Several approaches

[23, 24, 26, 64] have been presented for exact evaluation of an extraordinary patch at any

parameter point (u, v). In our implementation, we follow the parametrization technique pre-

sented in [64], because this method is numerically stable, employs less eigen basis functions,

and can be used for the evaluation of 3D position and normal vector of any point in the limit

surface exactly and explicitly. Some most related results of [64] are presented in Chapter

2.

However, the problem with both Inscribed or circumscribed approximation approaches

is that, with uniform subdivision, no matter it is performed on the control mesh or the

parameter space, one would get unnecessarily small and dense polygons for surface patches

that are already flat enough and, consequently, slow down the rendering process. To speed

up the rendering process, a flat surface patch should not be tessellated as densely as a

surface patch with big curvature. The adaptive tessellation process of a surface patch should

be performed based on the flatness of the patch. This leads to our adaptive inscribed

approximation.

2.2.2 Adaptive Inscribed Approximation

For a patch of S(u, v) defined on u1 ≤ u ≤ u2 and v1 ≤ v ≤ v2, we try to approximate

it with the quadrilateral formed by its four vertices V1 = S(u1, v1), V2 = S(u2, v1), V3 =

S(u2, v2) and V4 = S(u1, v2). If the distance (to be defined below) between the patch and

its corresponding quadrilateral is small enough (to be defined below), then the patch is

considered flat enough and will be (for now) replaced with the corresponding quadrilateral

in the tessellation process. Otherwise, we perform a midpoint subdivision on the parameter

space by setting

u12 =
u1 + u2

2
and v12 =

v1 + v2

2

to get four subpatches: [u1, u12] × [v1, v12], [u12, u2] × [v1, v12], [u12, u2] × [v12, v2], [u1, u12] ×

[v12, v2], and repeat the flatness testing process on each of the subpatches. The process is

recursively repeated until the distance between all the subpatches and their corresponding

1 2

3 4

(b)(a)

Figure 2.2: Basic idea of the construction of an inscribed polyhedron.

quadrilaterals are small enough. The vertices of the resulting subpatches are then used as

vertices of the inscribed polyhedron of the limit surface. For instance, if the four rectangles

in Figure 2.2(a) are the parameter spaces of four adjacent patches of S(u, v), and if the

rectangles shown in Figure 2.2(b) are the parameter spaces of the resulting subpatches when

the above flatness testing process stops, then the limit surface will be evaluated at the

points marked with small solid circles to form vertices of the inscribed polyhedron of the

limit surface.

In the above flatness testing process, to measure the difference between a patch (or

subpatch) and its corresponding quadrilateral, we need to parameterize the quadrilateral as

well. The quadrilateral can be parameterized as follows:

Q(u, v) =
v2 − v

v2 − v1
(

u2 − u

u2 − u1
V1 +

u − u1

u2 − u1
V2) +

v − v1

v2 − v1
(

u2 − u

u2 − u1
V4 +

u − u1

u2 − u1
V3) (2.1)

where u1 ≤ u ≤ u2, v1 ≤ v ≤ v2. The difference between the patch (or subpatch) and the

corresponding quadrilateral at (u, v) is defined as

d(u, v) = ‖ Q(u, v) − S(u, v) ‖2 = (Q(u, v) − S(u, v)) · (Q(u, v) − S(u, v))T (2.2)

where ‖ · ‖ is the second norm and AT is the transpose of A. The distance between the patch

(or subpatch) and the corresponding quadrilateral is the maximum of all the differences:

D = max{
√

d(u, v) | (u, v) ∈ [u1, u2] × [v1, v2] }.

To measure the distance between a patch (or subpatch) and the corresponding quadrilateral,

we only need to measure the norms of all local minima and maxima of d(u, v). Note that

Q(u, v) and S(u, v) are both C1-continuous, and d(V1), d(V2), d(V3) and d(V4) are equal to

0. Therefore, by Mean Value Theorem, the local minima and maxima must lie either inside

[u1, u2] × [v1, v2] or on the four boundary curves. In other words, they must satisfy at least

one of the following three conditions:

∂d(u,v)
∂u

= 0
v = v1 or v = v2

u1 ≤ u ≤ u2

∂d(u,v)
∂v

= 0
u = u1 or u = u2

v1 ≤ v ≤ v2

∂d(u,v)
∂u

= 0
∂d(u,v)

∂v
= 0

(u, v) ∈ (u1, u2) × (v1, v2)

(2.3)

For a patch (or subpatch) that is not adjacent to an extraordinary point (i.e., (u1, v1) 6=

(0, 0)), m is fixed and known (m(u, v) = min{⌈log 1

2

u⌉, ⌈log 1

2

v⌉}). Hence Eq. (2.3) can

be solved explicitly. With the valid solutions, we can find the difference for each of them

using Eq. (2.2). Suppose the one with the biggest difference is (û, v̂). Then (û, v̂) is also

the point with the biggest distance between the patch (or subpatch) and its corresponding

quadrilateral. We consider the patch (or subpatch) to be flat enough if

D =
√

d (û, v̂) ≤ ǫ (2.4)

where ǫ is a given error tolerance. In such a case, the patch (or subpatch) is replaced with

the corresponding quadrilateral in the tessellation process. If a patch (or subpatch) is not

flat enough yet, i.e., if Eq. (2.4) does not hold, we perform a midpoint subdivision on the

patch (or subpatch) to get four new subpatches and repeat the flatness testing process for

each of the new subpatches. This process is recursively repeated until all the subpatches

satisfy Eq. (2.4).

For a patch (or subpatch) that is adjacent to an extraordinary point (i.e. (u1, v1) = (0, 0)

in Eq. (2.3)), m is not fixed and m tends to ∞ (see Figure 1.1). As a result, Eq. (2.3)

can not be solved explicitly. One way to resolve this problem is to use nonlinear numerical

method to solve these equations. But numerical approach cannot guarantee the error is less

than ǫ everywhere. For precise error control, a better choice is needed. In the following, an

alternative method is given for that purpose.

Eq. (??) shows that S(u, v) and Q(u, v) both converge to S(0, 0) when (u, v) → (0, 0).

Hence, for any given error tolerance ǫ, there exists an integer mǫ such that if m ≥ mǫ, then the

distance between S(u, v) and S(0, 0) is smaller than ǫ/2 for any (u, v) ∈ [0, 1/2m]× [0, 1/2m],

and so is the distance between Q(u, v) and S(0, 0). Consequently, when (u, v) ∈ [0, 1/2m] ×

[0, 1/2m], the distance between S(u, v) and Q(u, v) is smaller than ǫ. The value of mǫ, in

most of the cases, is a relatively small number and can be explicitly calculated. In next

subsection, we will show how to calculate mǫ.

For other regions of the unit square with ⌈log 1

2

u2⌉ ≤ m < mǫ (see Figure 1.1), eq.

(2.3) can be used directly to find the difference between S(u, v) and Q(u, v) for any fixed

m ∈ (⌈log 1

2

u2⌉, mǫ). Therefore, by combining all these differences, we have the distance

between the given extra-ordinary patch (or subpatch) and the corresponding quadrilateral.

If this distance is smaller than ǫ, we consider the given extra-ordinary patch (or subpatch) to

be flat, and use the distance quadrilateral to replace the extra-ordinary patch (or subpatch)

in the tessellation process. Otherwise, repeatedly subdivide the patch (or subpatch) and

perform flatness testing on the resulting subpatches until all the subpatches satisfy Eq.

(2.4). The procedure of calculating mǫ can be found in [65].

2.3 Crack Elimination

Due to the fact that adjacent patches might be approximated by quadrilaterals correspond-

ing to subpatches from different levels of the midpoint subdivision process, cracks could

occur between adjacent patches. For instance, in Figure 2.3, the left patch A1A2A5A6 is

approximated by one quadrilateral but the right patch is approximated by 7 quadrilaterals.

Consider the boundary shared by the left patch and the right patch. On the left side, that

boundary is a line segment defined by two vertices : A2 and A5. But on the right side,

the boundary is a polyline defined by four vertices : A2, C4, B4, and A5. They would not

A 1

A 5

2C

B 2

A 3

B 4

C 1

A 6
B 3 A 4

B 1

B 5
C 3

4
C 5

A 2

C

Figure 2.3: Crack elimination.

coincide unless C4 and B4 lie on the line segment defined by A2 and A5. But that usually

is not the case. Hence, cracks would appear between the left patch and the right patch.

Fortunately Cracks can be eliminated simply by replacing each boundary of a patch or

subpatch with the one that contains all the evaluated points for that boundary. For exam-

ple, in Figure 2.3, all the dashed lines should be replaced with the corresponding polylines.

In particular, boundary A2A5 of patch A1A2A5A6 should be replaced with the polyline

A2C4B4A5. As a result, polygon A1A2A5A6 is replaced with polygon A1A2C4B4A5A6

in the tessellation process. For rendering purpose this is fine because graphics systems like

OpenGL can handle polygons with non-co-planar vertices and polygons with any number of

sides. However, it should be pointed out that through a simple zigzag technique, triangula-

tion of those polygons is actually a simple and very fast process.

A potential problem with this process is the new polygons generated by the crack elimina-

tion algorithm might not satisfy the flatness requirement. To ensure the flatness requirement

is satisfied everywhere when the above crack elimination method is used, we need to change

the test condition in Eq. (2.4) to the following one:

√
d (ū, v̄) +

√
d (û, v̂) ≤ ǫ (2.5)

where (û, v̂) and (ū, v̄) are solutions of Eq. (2.3) and they satisfy the following conditions:

• Among all the solutions of Eq. (2.3) that are located on one side of Q(u, v), i.e.

solutions that satisfy (Q− S) · ((V1 −V3) × (V2 −V4)) ≥ 0, d(û, v̂) is the biggest. If

there does not exist any solution such that this condition holds, then d(û, v̂) is set to

0;

• Among all the solutions of Eq. (2.3) that are located on the other side of Q(u, v), i.e.

solutions that satisfy (Q− S) · ((V1 −V3) × (V2 −V4)) < 0, d(ū, v̄) is the biggest. If

there does not exist any solution such this condtion holds, then d(ū, v̄) is set to 0.

From the definition of (û, v̂) and (ū, v̄), we can see that satisfying Eq. (2.5) means that the

patch being tested is located between two quadrilaterals that are ǫ away.

Note that all the evaluated points lie on the limit surface. Hence, for instance, in Fig. 2.3,

points A2,C4,B4 and A5 of patch A2A3A4A5 are also points of patch A1A2A5A6. With

the new test condition in Eq. (2.5), we know that a patch or subpatch is flat enough if it is

located between two quadrilaterals that are ǫ away. Because boundary points A2,C4,B4 and

A5 are on the limit surface, they must be located between two quadrilaterals that are ǫ away.

So is the polygon A1A2C4B4A5A6. Now the patch (or subpatch) and its approximating

polygon are both located inside two quadrilaterals that are ǫ away. Hence the overall error

between the patch (or subpatch) and its approximating polygon is guaranteed to be smaller

than ǫ.

In previous methods for adaptive tessellation of subdivision surfaces [46, 36, 37, 41], the

most difficult part is crack prevention. Yet in our method, this part becomes the simplest

part to handle and implement. The resulting surface is error controllable and guaranteed to

be crack free.

2.4 Degree of Flatness

Just like numerical errors have two different settings, the flatness of a patch, which can be

viewed as a numerical error from the approximation point of view, has two different aspects

as well, depending on if the flatness is considered in the absolute sense or relative sense.

The flatness of a patch is called the absolute flatness (AF) if the patch is not transformed in

any way. In that case, the value of ǫ in Eq. (2.4) and (2.5) is set to whatever precision the

flatness of the patch is supposed to meet. AF should be considered for operations that work

on physical size of an object such as machining or prototyping.

For operations that do not work on the physical size of an object, such as the rendering

process, we need a flatness that does not depends on the physical size of a patch. Such a

flatness must be Affine transformation invariant to be a constant for any transformed version

of the patch. Such a flatness is called the relative flatness of the patch. More specifically, if

Q is the corresponding quadrilateral of patch S, the relative flatness (RF) of S with respect

to Q is defined as follows:

RF =
d

max{D1, D2}
where d is the maximal distance from S to Q, and D1, D2 are lengths of the diagonal lines

of Q. It is easy to see that RF defined this way is Affine transformation invariant. Note that

when D1 and D2 are fixed, smaller RE means smaller d. Hence, RE indeed measures the

flatness of a patch. The difference between RF and AF is that RF measures the flatness of a

patch in a global sense while AF measures flatness of a patch in a local sense. Therefore, RF

is more suitable for operations that have data sets of various sizes but with a constant size

display area such as the rendering process. Using RF is also good for adaptive tessellation

process because it has the advantage of keeping the number of polygons low in the tessellation

process.

2.5 Algorithms of Adaptive Tessellation

In this section, we show important steps of the adaptive tessellation process. Corresponding

algorithms can be found in [65].

2.5.1 Global Index ID

Currently, all the subdivision surface parametrization and evaluation techniques are patch

based [23, 26, 64]. Hence, no matter which method is used in the adaptive tessellation process,

a patch cannot see vertices evaluated by other patches from its own (local) structure even

though the vertices are on its own boundary. For example, in Figure 2.3, vertices C4 and B4

are on the shared boundary of patches A1A2A5A6 and A2A3A4A5. But patch A1A2A5A6

can not see these vertices from its own structure because these vertices are not evaluated by

this patch. To make adjacent patches visible to each other and to make subsequent crack

elimination work easier, one should assign a global index ID to each evaluated vertex so that

• all the evaluated vertices with the same 3D position have the same index ID;

• the index ID’s are sorted in v and then in u, i.e., if (ui, vi) ≥ (uj, vj), then IDi ≥ IDj,

unless IDi or IDj has been used in previous patch evaluation.

With a global index ID, it is easy to do crack prevention even with a patch based approach.

Actually, subsequent processing can all be done with a patch based approach and still per-

formed efficiently. For example, in Figure 2.3, patch A1A2A5A6 can see both C4 and B4

even though they are not evaluated by this patch. In the subsequent rendering process, the

patch simply output all the marked vertices (to be defined below) on its boundary that it

can see to form a polygon for the rendering purpose, i.e., A1A2C4B4A5A6.

2.5.2 Adaptive Marking

The purpose of adaptive marking is to mark those points in uv space where the limit surface

should be evaluated. With the help of the global index ID, this step can be done on an

individual patch basis. Initially, all (u, v) points are marked white. If surface evaluation

should be performed at a point and the resulting vertex is needed in the tessellation process,

then that point is marked in black. This process can be easily implemented as a recursive

function.

(a) Uniform (b) Adaptive (c) Adaptive

(d) Adaptive (e) Triangulated (f) Uniform

(g) Adaptive (h) Adaptive (i) Adaptive (j) Adaptive

Figure 2.4: Adaptive rendering on surfaces with arbitrary topology.

(a) Uniform (b) Adaptive (c) Adaptive (d) Adaptive

(e) Adaptive (f) Triangulated (g) Uniform (h) Adaptive

(i) Adaptive (j) Adaptive (k) Adaptive

Figure 2.5: Adaptive rendering on surfaces with arbitrary topology (Continued).

2.5.3 Adaptive Rendering a Single Patch

The purpose of this step is to render the limit surface with as few polygons as possible,

while preventing the occurrence of any cracks. Note that the limit surface will be evaluated

only at the points marked in black, and the resulting vertices are the only vertices that will

be used in the rendering process. To avoid cracks, each marked points must be rendered

properly. Hence special care must be taken on adjacent patches or subpatches. With the

help of adaptive marking, this process can easily be implemented as a recursive function as

well.

2.6 Implementation and Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting

graphics system on the Windows platform. Quite a few examples have been tested with the

method described here. Some of the tested results are shown in Figures 2.4 and 2.5. We

also summarize those tested results in Table 2.1. The column underneath A|U|T in Table

2.1 indicates the type of tessellation technique (Adaptive, Uniform or Triangulated after

adaptive tessellation) used in the rendering process. For instance, Fig. 2.4(e) and Fig. 2.5(f)

are the triangulated results of Fig. 2.4(d) and Fig. 2.5(e), respectively. The term A/U ratio

means the ratio of number of polygons in an adaptively tessellated CCSS to its counter

part in a uniformly tessellated CCSS with the same accuracy. The term Depth means the

number of iterative uniform subdivisions that have to be performed on the control mesh of

a CCSS to satisfy the error requirement. From Table 2.1 we can see that all the adaptively

tessellated CCSS’s have relatively low A/U ratios. This shows the proposed method can

indeed significantly reduce the number of faces in the resulting mesh while satisfying the

given error requirement.

The ‘Error’ column in Table 2.1 represents absolute error. We can easily see that, for

the same model, the smaller the error, the lower the A/U ratio. For example, Fig. 2.4(b)

has lower A/U ratio than Fig. 2.4(c) and Fig. 2.4(d) because the former has smaller

Table 2.1: Experiment data of Figs. ??, 2.4 and 2.5
Figure Object A|U|T polygons A/U Ratio Depth Error RF
Fig. ?? Gargoyle U 16384 100.00% 2 0.0055 12%
Fig. ?? Gargoyle A 14311 5.46% 4 0.0030 6%
Fig. ?? Gargoyle A 5224 7.97% 3 0.0045 9%
Fig. ?? Gargoyle A 2500 15.26% 2 0.0055 12%
Fig. ?? Gargoyle T 6139 37.47% 2 0.0055 12%
Fig. 2.4(a) Bunny U 65536 100.00% 3 0.0008 3%
Fig. 2.4(b) Bunny A 32894 12.55% 4 0.0001 1%
Fig. 2.4(c) Bunny A 9181 14.01% 3 0.0008 3%
Fig. 2.4(d) Bunny A 3412 20.82% 2 0.0010 5%
Fig. 2.4(e) Bunny T 7697 46.98% 2 0.0010 5%
Fig. 2.4(f) Venus U 65536 100.00% 2 0.00095 8%
Fig. 2.4(g) Venus A 29830 2.84% 4 0.00015 3%
Fig. 2.4(h) Venus A 21841 2.08% 4 0.00035 4%
Fig. 2.4(i) Venus A 9763 3.72% 3 0.00060 6%
Fig. 2.4(j) Venus A 6178 9.43% 2 0.00095 8%
Fig. 2.5(a) Rockerarm U 90624 100.00% 4 1.2 3%
Fig. 2.5(b) Rockerarm A 36045 9.94% 5 0.85 1%
Fig. 2.5(c) Rockerarm A 10950 3.02% 5 1.0 2%
Fig. 2.5(d) Rockerarm A 5787 6.39% 4 1.2 3%
Fig. 2.5(e) Rockerarm A 2901 12.80% 3 1.5 5%
Fig. 2.5(f) Rockerarm T 6917 30.53% 3 1.5 5%
Fig. 2.5(g) Beethoven U 65536 100.00% 2 0.041 10%
Fig. 2.5(h) Beethoven A 20893 1.99% 4 0.006 4%
Fig. 2.5(i) Beethoven A 15622 1.48% 4 0.026 6%
Fig. 2.5(j) Beethoven A 7741 2.95% 3 0.035 8%
Fig. 2.5(k) Beethoven A 5230 7.99% 2 0.041 10%

error tolerance than the last two. However, for the same model, if the difference of two

error tolerances is not big enough, the resulting adaptive tessellation would have the same

subdivision depth (see information on Figs. 2.4(g) and 2.4(h) or Figs. 2.5(b) and 2.5(c) in

Table 2.1). As a result, the one with smaller error tolerance would have higher A/U ratio,

because the corresponding uniformly subdivided meshes are the same. Another interesting

fact is that Fig. 2.5(a) uses much more polygons than Fig. 2.5(b) does, while the former

is less accurate than the latter. This shows the presented adaptive tessellation method is

capable of providing a higher accuracy with less polygons.

From Table 2.1 we can easily see that for different models the absolute errors differ

very much. Therefore, for different models, comparing their absolute errors might not make

any practical sense because absolute error is not affine transformation invariant. In the

mean while, from Table 2.1, we can see that RF is a much better and more understandable

measurement for users to specify the error requirement in the adaptive tessellation process.

From Table 2.1, we can also see that triangulated tessellations usually have higher A/U

ratio, because triangulation increases the number of polygons by at lease 2 times. Hence

triangulation will slow down the rendering process while it does not improve accuracy. From

the view point of rendering, triangulation is not really necessary. But for some special

applications, such as Finite Element Analysis, triangulation is indispensable. As mentioned

above, performing triangulation on the resulting mesh of our adaptive tessellation process is

straightforward and fast.

The proposed adaptive tessellation method is good for models that have large flat or

nearly flat regions in its limit surface and would save significant amount of time in the final

rendering process, but may not have low A/U ratios when it is applied to surfaces with

extraordinary curvature distribution or surfaces with very dense control meshes. One main

disadvantage of all the current adaptive tessellation methods (including the method proposed

here) is that they only eliminate polygons inside a patch. They do not take the whole surface

into consideration. For instance, all the flat sides of the rocker arm model in Fig. 2.5 are

already flat enough, yet a lot of polygons are still generated there.

Chapter 3

Subdivision Depth Estimation

In this chapter, we present our recent subdivision depth computation technique for Catmull-

Clark subdivision surface (CCSS) patches. The new technique improves previous techniques

by using a matrix representation of the second order norm in the computation process. This

enables us to get a more precise estimate of the rate of convergence of the second order norm

of an extra-ordinary CCSS patch and, consequently, a more precise subdivision depth for a

given error tolerance.

3.1 Subdivision Depth Computation for Extra-Ordinary

Patches

The distance evaluation mechanism of the previous subdivision depth computation technique

for extra-ordinary CCSS patches utilizes second order norm as a measurement scheme as

well [12], but the pattern of second order forward differences (SOFDs) used in the distance

evaluation process is different.
Let Vi, i = 1, 2, ..., 2n + 8, be the control points of an extra-ordinary patch S(u, v) =

S0
0(u, v), with V1 being an extra-ordinary vertex of valence n. The control points are or-

dered following J. Stam’s fashion [23] (Figure 3.1(a)). The control mesh of S(u, v) is denoted
Π = Π0

0. The second order norm of S, denoted M = M0, is defined as the maximum norm
of the following SOFDs. There are 2n + 10 of them.

32

1

3

4

5
6

7

(a) (b)

2

8

9

10

11

2n+1

. . .

2n+2
2n+3

2n+4

2n+5

2n+6

2n+7

2n+8

1

2 3

4

56
7

8
9

10

11

2n+1

. . .

2n+22n+5

2n+6

2n+7

2n+8

2n+92n+102n+112n+12
2n+13

2n+14

2n+15

2n+16

2n+17

2n+4 2n+3

S

S

S

S

1 1

11

S=S
0

0

0

1 2

3

Figure 3.1: (a) Ordering of control points of an extra-ordinary patch. (b) Ordering of new
control points (solid dots) after a Catmull-Clark subdivision.

M = max{ { ‖2V1 − V2i − V2((i+1)%n+1)‖ | 1 ≤ i ≤ n} ∪ { ‖2V2(i%n+1) − V2i+1 − V2(i%n+1)+1‖ | 1 ≤ i ≤ n}

∪ { ‖ 2V3 − V2 − V2n+8 ‖, ‖ 2V4 − V1 − V2n+7 ‖, ‖ 2V5 − V6 − V2n+6 ‖, ‖ 2V2n+3 − V2n+2 − V2n+4 ‖,

‖ 2V7 − V8 − V2n+5 ‖, ‖ 2V6 − V1 − V2n+4 ‖, ‖ 2V5 − V4 − V2n+3 ‖, ‖ 2V2n+6 − V2n+2 − V2n+7 ‖,

‖ 2V2n+7 − V2n+6 − V2n+8 ‖, ‖ 2V2n+4 − V2n+3 − V2n+5 ‖ } }

(3.1)

By performing a subdividion step on Π, one gets 2n+17 new vertices V1
i , i = 1, ..., 2n+17

(see Figure 3.1(b)). These control points form four control point sets Π1
0, Π1

1, Π1
2 and Π1

3,
representing control meshes of the subpatches S1

0, S1
1, S1

2 and S1
3, respectively (see Figure

3.1(b)) where Π1
0 = {V1

i | 1 ≤ i ≤ 2n + 8 }, and the other three control point sets Π1
1, Π1

2

and Π1
3 are shown in Figure 3.2. S1

0 is an extra-ordinary patch but S1
1, S1

2 and S1
3 are regular

patches. Therefore, second order norm similar to the one defined in (??) can be defined for
S1

1, S1
2 and S1

3, while a second order norm similar to (3.1) can be defined for the control mesh

VV V V V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V V V

1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

8 1 4 2n+7

2 3 2n+8 2n+17

2n+16

2n+15

2n+14

2n+9

7 6 5 2n+6

2n+5 2n+4 2n+3 2n+2

2n+13 2n+12 2n+11 2n+10

Π

Π

Π1

1

1

1

2

3

Figure 3.2: Control vertices of subpatches S1
1, S1

2 and S1
3.

of S1
0. We use M1 to denote the second order norm of S1

0. This process can be iteratively

repeated on S1
0, S2

0, S3
0, ... etc.

3.1.1 Distance Evaluation

To compute the distance between the extra-ordinary patch S(u, v) and the center face of its
control mesh, F = {V1,V6,V5,V4}, we need to parameterize the patch S(u, v) first.

Ω
1
1

2
1

3
1

1
2

2
2

3
2

1
3
2
3

3
3

Ω

u

v

ΩΩ

Ω

Ω Ω

Ω
Ω

Figure 3.3: Ω-partition of the unit square.

By iteratively performing Catmull-Clark subdivision on S(u, v) = S0
0, S1

0, S2
0, ... etc, we

get a sequence of regular patches { Sm
b }, m ≥ 1, b = 1, 2, 3, and a sequence of extra-ordinary

patches { Sm
0 }, m ≥ 1. The extra-ordinary patches converge to a limit point which is the

value of S at (0, 0) [15]. This limit point and the regular patches { Sm
b }, m ≥ 1, b = 1, 2, 3,

form a partition of S. If we use Ωm
b to represent the region of the parameter space that

corresponds to Sm
b then { Ωm

b }, m ≥ 1, b = 1, 2, 3, form a partition of the unit square
Ω = [0, 1] × [0, 1] (see Figure 3.3) with

Ωm
1 = [

1

2m
,

1

2m−1
]× [0,

1

2m
], Ωm

2 = [
1

2m
,

1

2m−1
]× [

1

2m
,

1

2m−1
], Ωm

3 = [0,
1

2m
]× [

1

2m
,

1

2m−1
].

(3.2)
The parametrization of S(u, v) can be found in [10]. If we use L(u, v) to represent the bilinear
parametrization of the center face of S(u, v)’s control mesh F = {V1,V6,V5,V4}

L(u, v) = (1 − v)[(1 − u)V1 + uV6] + v[(1 − u)V4 + uV5], 0 ≤ u, v ≤ 1

then the maximum distance between S(u, v) and its control mesh can be written as

‖ L(u, v) − S(u, v) ‖ ≤ ‖ L(u, v) − L
m

b (um, vm)‖ + ‖Lm

b (um, vm) − S(u, v) ‖ (3.3)

where 0 ≤ u, v ≤ 1 and um and vm are defined in (??). We have the following lemma on the
distance between S(u, v) and its control mesh L(u, v) [12].

Lemma 1: The maximum of ‖ L(u, v) − S(u, v) ‖ satisfies the following inequality

‖ L(u, v) − S(u, v) ‖ ≤

M0, n = 3

5
7
M0, n = 5

4n
n2

−8n+46
M0, 5 < n ≤ 8

n2

4(n2
−8n+46)

M0, n > 8

(3.4)

where M = M0 is the second order norm of the extra-ordinary patch S(u, v).

3.1.2 Subdivision Depth Computation

Lemma 1 can be used to estimate the distance between a level-k control mesh and the surface
patch for any k > 0. This is because the distance between a level-k control mesh and the
surface patch is dominated by the distance between the level-k extra-ordinary subpatch and
the corresponding control mesh which, accoriding to Lemma 1, is

‖ Lk(u, v) − S(u, v) ‖ ≤

Mk, n = 3

18
25

Mk, 5 ≤ n ≤ 8

n2

4(n2
−8n+46)

Mk, n > 8

where Mk is the second order norm of S(u, v)’s level-k control mesh Mk. The previous
subdivision depth computation technique for extra-ordinary surface patches is obtained by
combining the above result with a lemma in [12].

Theorem 2: Given an extra-ordinary surface patch S(u, v) and an error tolerance ǫ, if
k levels of subdivisions are iteratively performed on the control mesh of S(u, v), where

k =

⌈
logw

M

zǫ

⌉

with M being the second order norm of S(u, v) defined in (3.1),

w =

3
2
, n = 3

25
18

, n = 5

4n2

3n2+8n−46
, n > 5

and z =

1, n = 3

25
18

, 5 ≤ n ≤ 8

2(n2
−8n+46)
n2 , n > 8

then the distance between S(u, v) and the level-k control mesh is smaller than ǫ.

3.2 New Subdivision Depth Computation Technique

for Extra-Ordinary Patches

The SOFDs involved in the second order norm of an extra-ordinary CCSS patch (see eq.
(3.1)) can be classified into two groups: group I and group II. Group I contains those SOFDs
that involve vertices in the vicinity of the extra-ordinary vertex (see Figure 3.4(a)). These
are the first 2n SOFDs in (3.1). Group II contains the remaining SOFDs, i.e., SOFDs that
involve vertices in the vicinity of the other three vertices of S (see Figure 3.4(b)). These are
the last 10 SOFDs in (3.1). It is easy to see that the convergence rate of the SOFDs in group
II is the same as the regular case, i.e., 1/4 [11]. Therefore, to study properties of the second
order norm M , it is sufficient to study norms of the SOFDs in group I. The maximum of these

norms will be called the second order norm of group I. We will use M = M0 to represent
group I’s second order norm as well because norms of group I’s SOFDs dominate norms of
group II’s SOFDs. For convenience of reference, in the subsequent discussion we shall simply
use the term “second order norm of an extra-ordinary CCSS patch” to refer to the “second
order norm of group I of an extra-ordinary CCSS patch”.

(b)(a)

1

2
3

4

5
6

7

8

9

10

11 . . .

2n+1

1

2
3

4

5
6

7

8

2n+2
2n+3

2n+4

2n+5

2n+6

2n+7

2n+8

S

S

Figure 3.4: (a) Vicinity of the extra-ordinary point. (b) Vicinity of the other three vertices
of S.

3.2.1 Matrix based Rate of Convergence

The second order norm of S = S0
0 can be put in matrix form as follows:

M = ‖AP‖
∞

where A is a 2n ∗ (2n + 1) matrix

A =

2 −1 0 0 0 −1 0 0 · · · 0 0
2 0 0 −1 0 0 0 −1 · · · 0 0
2 0 0 0 0 −1 0 0 · · · 0 0

...
2 0 0 −1 0 0 0 0 · · · −1 0
0 2 −1 0 0 0 0 0 · · · 0 −1
0 0 −1 2 −1 0 0 0 · · · 0 0

...
0 0 0 0 0 0 0 0 · · · 2 −1

and P is a control point vector

P = [V1, V2, V3, . . . , V2n+1]
T .

A is called the second order norm matrix for extra-ordinary CCSS patches. If i levels of
Catmull-Clark subdivision are performed on the control mesh of S = S0

0 then, following the

notation of Section 2, we have an extra-ordinary subpatch Si
0 whose second order norm can

be expressed as:
Mi =

∥∥AΛiP
∥∥
∞

where Λ is a subdivision matrix of dimension (2n + 1) ∗ (2n + 1). The function of Λ is to
perform a subdivision step on the 2n + 1 control vertices around (and including) the extra-
ordinary point (see Figure 3.4(a)). For example, when n = 3, Λ is of the following form:

Λ =

5/12 1/6 1/36 1/6 1/36 1/6 1/36
3/8 3/8 1/16 1/16 0 1/16 1/16
1/4 1/4 1/4 1/4 0 0 0
3/8 1/16 1/16 3/8 1/16 1/16 0
1/4 0 0 1/4 1/4 1/4 0
3/8 1/16 0 1/16 1/16 3/8 1/16
1/4 1/4 0 0 0 1/4 1/4

.

We are interested in knowing the relationship between ‖AP‖
∞

and ‖AΛiP‖
∞

. We need two
lemmas for this relationship. The first one shows the explicit form of A+A where A+ is the
pseudo-inverse of A. The second one shows that A+A can act as a right identity matrix for
AΛi.

Lemma 3: The product of the second order norm matrix A and its pseudo-inverse ma-
trix A+ can be expressed as follows:

A+A =

H, n = 2k + 1
H + E, n = 4k + 2
H + E + W + Z, n = 4k

(3.5)

where k is a positive integer, and H, E, W and Z are (2n + 1) ∗ (2n + 1) matrices of the

following form with H being a circulant matrix:

H ≡ 1
2n+1

2n −1 · · · −1 −1
−1 2n · · · −1 −1

...
...

−1 −1 · · · 2n −1
−1 −1 · · · −1 2n

, E = 1
n

0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
0 0 −1 0 1 0 · · · 1
0 0 0 0 0 0 · · · 0
0 0 1 0 −1 0 · · · −1
0 0 0 0 0 0 · · · 0

...
...

0 0 −1 0 1 0 · · · 1
0 0 0 0 0 0 · · · 0
0 0 1 0 −1 0 · · · −1

,

W = 2
3n

0 0 0 0 0 · · · 0
0 −1 0 0 0 · · · 0
0 −1 0 −1 0 · · · 0
0 0 0 −1 0 · · · 0
0 1 0 −1 0 · · · 0
0 1 0 0 0 · · · 0
0 1 0 1 0 · · · 0
0 0 0 1 0 · · · 0
0 −1 0 1 0 · · · 0

...
...

0 0 0 1 0 · · · 0
0 −1 0 1 0 · · · 0

, Z = 2
3n

0 0 0 0 0 0 · · · 0
0 0 −1 0 1 0 · · · 1
0 0 −2 0 0 0 · · · 0
0 0 −1 0 −1 0 · · · −1
0 0 0 0 −2 0 · · · −2
0 0 1 0 −1 0 · · · −1
0 0 2 0 0 0 · · · 0
0 0 1 0 1 0 · · · 1
0 0 0 0 2 0 · · · 2

...
...

0 0 1 0 1 0 · · · 1
0 0 0 0 2 0 · · · 2

.

The proof can be found in [10].

Lemma 4: A+A is a right identity matrix of AΛi, i.e., AΛiA+A = AΛi, for any i.

The proof can be found in [10]. With this lemma, we have

‖AΛiP‖
∞

‖AP‖
∞

=
‖AΛiA+AP‖

∞

‖AP‖
∞

≤ ‖AΛiA+‖
∞
‖AP‖

∞

‖AP‖
∞

=
∥∥AΛiA+

∥∥
∞

Use ri to represent ‖AΛiA+‖
∞

. Then, for any 0 < j < i, we have the following recurrence
formula for ri

ri ≡
∥∥AΛiA+

∥∥
∞

=
∥∥AΛi−jA+AΛjA+

∥∥
∞

≤
∥∥AΛi−jA+

∥∥
∞

∥∥AΛjA+
∥∥
∞

= ri−j rj (3.6)

where r0 = 1. Hence, we have the following lemma on the convergence rate of second order
norm of an extra-ordinary CCSS patch.

Lemma 5: The second order norm of an extra-ordinary CCSS patch satisfies the follow-
ing inquality:

Mi ≤ ri M0 (3.7)

where ri = ‖AΛiA+‖
∞

and ri satisfies the recurrence formula (3.6).

The recurrence formula (3.6) shows that ri in (3.7) can be replaced with ri
1. However,

experiment data show that, while the convergence rate changes by a constant ratio in most
of the cases, there is a significant difference between r2 and r1. The value of r2 is smaller
than r2

1 by a significant gap. Hence, if we use ri
1 for ri in (3.7), we would end up with a

bigger subdivision depth for a given error tolerance. A better choice is to use r2 to bound
ri, as follows.

ri ≤

rj
2, i = 2j

r1r
j
2, i = 2j + 1

(3.8)

3.2.2 Distance Evaluation

Following (3.3) and (??), the distance between the extra-ordinary CCSS patch S(u, v) and
the center face of its control mesh L(u, v) can be expressed as

‖L(u, v) − S(u, v)‖ ≤
∑m−2

k=0 ‖Lk
0(uk, vk) − Lk+1

0 (uk+1, vk+1)‖ + ‖Lm−1
0 (um−1, vm−1) − Lm

b (um, vm)‖

+ ‖Lm
b (um, vm) − Sm

b (um, vm)‖
(3.9)

where m and b are defined in (??) and (ui, vi) are defined in (??). By applying Lemma 3,
Lemma 4 and (??) on the first, second and third terms of the right hand side of the above
inequality, respectively, we get

‖L(u, v) − S(u, v)‖ ≤ c

m−2∑

k=0

Mk +
1

4
Mm−1 +

1

3
Mm ≤ M0(c

m−2∑

k=0

rk +
1

4
rm−1 +

1

3
rm)

where c = 1/ min{n, 8}. The last part of the above inequality follows from Lemma 4.
Consequently, through a simple algebra, we have

‖L(u, v) − S(u, v)‖ ≤

M0[c(
1−r

j
2

1−r2

+
1−r

j−1

2

1−r2

r1) +
r1r

j−1

2

4
+

r
j
2

3
], if m = 2j

M0[c(
1−r

j
2

1−r2

+
1−r

j
2

1−r2

r1) +
r

j
2

4
+

r1r
j
2

3
], if m = 2j + 1

It can be easily proved that the maximum occurs at m = ∞. Hence, we have the following
lemma.

Lemma 6: The maximum of ‖L(u, v) − S(u, v)‖ satisfies the following inequality

‖L(u, v) − S(u, v)‖ ≤ M0

min{n, 8}
1 + r1

1 − r2

where ri = ‖AΛiA+‖
∞

and M = M0 is the second order norm of the extra-ordinary patch
S(u, v).

3.3 Subdivision Depth Computation

Lemma 9 can also be used to evaluate the distance between a level-i control mesh and the
extra-ordinary patch S(u, v) for any i > 0. This is because the distance between a level-i
control mesh and the surface patch S(u, v) is dominated by the distance between the level-i
extra-ordinary subpatch and the corresponding control mesh which, accoriding to Lemma 9,
is

‖Li(u, v) − S(u, v)‖ ≤ Mi

min{n, 8}
1 + r1

1 − r2

where Mi is the second order norm of S(u, v)’s level-i control mesh, Mi. Hence, if the right
side of the above inequality is smaller than a given error tolerance ǫ, then the distance be-
tween S(u, v) and the level-i control mesh is smaller than ǫ. Consequently, we have the
following subdivision depth computation theorem for extra-ordinary CCSS patches.

Theorem 7: Given an extra-ordinary surface patch S(u, v) and an error tolerance ǫ, if

i ≡ min{2l, 2k + 1}

levels of subdivision are iteratively performed on the control mesh of S(u, v), where

l = ⌈log 1

r2

(
1

min{n, 8}
1 + r1

1 − r2

M0

ǫ
)⌉ , k = ⌈log 1

r2

(
r1

min{n, 8}
1 + r1

1 − r2

M0

ǫ
)⌉

with ri = ‖AΛiA+‖
∞

and M0 being the second order norm of S(u, v), then the distance
between S(u, v) and the level-i control mesh is smaller than ǫ.

3.4 Examples

The new subdivision depth technique has been inplemented in C++ on the Windows platform
to compare its performance with the previous approach. MatLab is used for both numerical
and symbolic computation of ri in the implementation. Table 1 shows the comparison
results of the previous technique, Theorem 6, with the new technique, Theorem 10. Two
error tolerances 0.01 and 0.001 are considered and the second order norm M0 is assumed
to be 2. For each error tolerance, we consider five different valences: 3, 5, 6, 7 and 8 for
the extra-ordinary vertex. As can be seen from the table, the new technique has a 30%
improvement over the previous technique in most of the cases. Hence, the new technique
indeed improves the previous technique significantly.

To show that the rates of convergence are indeed difference between r1 and r2, their
values from several typical extra-ordinary CCSS patches are included in Table 2. Note that
when we compare r1 and r2, the value of r1 should be squared first.

Table 1. Comparison between the old technique and the new technique

ǫ = 0.01 ǫ = 0.001
N Old New Old New

Technique Technique Technique Technique
3 14 9 19 12
5 16 11 23 16
6 19 16 27 22
7 23 14 33 22
8 37 27 49 33

Table 2. Values of r1 and r2 for some extra-ordinary patches.
N r1 r2

3 0.6667 0.2917
5 0.7200 0.4016
6 0.8889 0.5098
7 0.8010 0.5121
8 1.0078 0.5691

Chapter 4

Voxelization of Free-form Solids

A voxelization technique has been developed for Catmull-Clark subdivision surfaces (CCSSs)
[63]. This technique is needed in performing accurate trimming and Boolean operations on
CCSSs [70]. The trimming and Boolean operations are needed in shape design process.

The voxelization technique converts a free-form object from its continuous geometric rep-
resentation into a set of voxels that best approximates the geometry of the object. Unlike
traditional 3D scan-conversion based methods [80, 81, 82, 97, 83], our voxelization method
is performed by recursively subdividing the 2D parameter space and sampling 3D points
from selected 2D parameter space points. Because we can calculate every 3D point position
explicitly and accurately [64], uniform sampling on surfaces with arbitrary topology is not
a problem any more. Moreover, our discretization of 3D closed objects is guaranteed to be
leak-free when a 3D flooding operation is performed. This is ensured by proving that our
voxelization results satisfy the properties of separability, accuracy and minimality. In addi-
tion, a 3D volume flooding algorithm using dynamic programming techniques is developed
which significantly speeds up the volume flooding process. Hence our method is suitable for
visualization of complex scenes, measuring object volume, mass, surface area, determining
intersection curves of multiple surfaces and performing accurate Boolean/CSG operations.
These capabilities are demonstrated by test examples shown in this chapter.

The structure of this chapter is as follows: In Section 1, related work is discussed. The
voxelization method is presented in Section 2. Correctness of our voxelization method is
proved in Section 3. In Section 4, a dynamic programming method based volume flooding
algorithm is presented. Some applications of the voxelization technique are discussed and
some test examples are shown in Section 5.

4.1 Previous Voxelization Techniques

Voxelization techniques can be classified into two major categories. The first category con-
sists of methods that extend the standard 2D scan-line algorithm and employ numerical
considerations to guarantee that no gaps appear in the resulting discretization. As we know
polygons are fundamental primitives in 3D surface graphics in that they approximate arbi-
trary surfaces as a mesh of polygonal patches. Hence, early work on voxelization focused
on voxelizing 3D polygon meshes [80, 81, 82, 97, 83] by using 3D scan-conversion algorithm.

42

Although this type of methods can be extended to voxelize parametric curves, surfaces and
volumes [84], it is difficult to deal with free-from surfaces of arbitrary topology.

The other widely used approach for voxelizing free-form solids is to use spatial enumer-
ation algorithms which employ point or cell classification methods in either an exhaustive
fashion or by recursive subdivision [90, 91, 92, 93]. However, 3D space subdivision tech-
niques for models decomposed into cubic subspaces are computationally expensive and thus
inappropriate for medium or high resolution grids. The voxelization technique that we will
be presenting uses recursive subdivision. The difference is the new method performs recur-
sive subdivision on 2D parameter space, not on the 3D object. Hence expensive distance
computation between 3D points is avoided.

Like 2D pixelization, voxelization is a powerful technique for representing and modeling
complex 3D objects. This is proved by many successful applications of volume graphics
techniques in recently reported research work. For example, voxelization can be used for
visualization of complex objects or scene [91]. It can also be used for measuring integral
properties of solids, such as mass, volume and surface area [93]. Most importantly, it can
be used for intersection curve calculation and performing accurate Boolean operations. For
example, in [92, 94], a series of Boolean operations are performed on objects represented by
a CSG tree. Voxelization is such an important technique that several hardware implemen-
tations of this technique have been reported recently [86, 87].

4.2 Voxelization based on Recursive Subdivision

Given a free-form object represented by a CCSS and a cubic frame buffer of resolution
M1×M2 ×M3, the goal is to convert the CCSS represented free-form object (i.e. continuous
geometric representation) into a set of voxels that best approximates the geometry of the
object. We assume each face of the control mesh is a quadrilateral and each face has at most
one extra-ordinary vertex (a vertex with a valence different from 4). If this is not the case,
simply perform Catmull-Clark subdivision on the control mesh of the CCSS twice.

With parametrization techniques for subdivision surfaces becoming available, it is pos-
sible now to model and represent any continuous but topologically complex object with an
analytical representation [23, 24, 26, 64]. Consequently, any point in the surface can be ex-
plicitly calculated. On the other hand, for any given parameter space point (u, v), a surface
point S(u, v) corresponding to this parameter space point can be exactly computed as well.
Therefore, voxelization does not have to be performed in the 3D object space, as the previ-
ous recursive voxelization methods did, one can do voxelization in 2D space by performing
recursive subdivision and testing on the 2D parameter space.

We first consider the voxelization process of a subpatch, which is a small portion of a
patch. Given a subpatch of S(u, v) defined on [u1, u2] × [v1, v2], we voxelize it by assuming
this given subpatch is small enough (hence, flat enough) so that all the voxels generated
from it are the same as the voxels generated using its four corners:

V1 = S(u1, v1), V2 = S(u2, v1), V3 = S(u2, v2), V4 = S(u1, v2). (4.1)

Usually this assumption does not hold. Hence a test must be performed before the patch
or subpatch is voxelized. It is easy to see that if the voxels generated using its four corners

1 2

3 4

(b)(a)

Figure 4.1: Basic idea of parameter space based recursive voxelization.

are not N -adjacent (N ∈ {6, 18, 26}) to each other, then there exist holes between them. In
this case, the patch or subpatch is still not small enough. To make it smaller, we perform a
midpoint subdivision on the corresponding parameter space by setting

u12 =
u1 + u2

2
and v12 =

v1 + v2

2

to get four smaller subpatches:

S([u1, u12] × [v1, v12]), S([u12, u2] × [v1, v12]),
S([u12, u2] × [v12, v2]), S([u1, u12] × [v12, v2]),

and repeat the testing process on each of the subpatches. The process is recursively repeated
until all the subpatches are small enough and can be voxelized using only their four corners.

The vertices of the resulting subpatches after the recursive parameter space subdivision
are then used as vertices for voxelization that approximates the limit surface. For example,
if the four rectangles in Figure 4.1(a) are the parameter spaces of four adjacent subpatches
of S(u, v), and if the rectangles shown in Figure 4.1(b) are the parameter spaces of the
resulting subpatches when the above recursive testing process stops, then 3D points will be
evaluated at the 2D parameter space points marked with small solid circles to form voxels
that approximate the limit surface.

To make things simple, we first normalize the input mesh to be of dimension [0, M1−1]×
[0, M2 − 1] × [0, M3 − 1]. Then for any 2D parameter space point (u, v) generated from the
recursive testing process (See Fig. 4.1), direct and exact evaluation is performed to get its
3D surface position and normal vector at S(u, v). To get the voxelized coordinates (i, j, k)
from S(u, v), simply set

i = ⌊S(u, v).x + 0.5⌋, j = ⌊S(u, v).y + 0.5⌋, k = ⌊S(u, v).z + 0.5⌋. (4.2)

Once every single point marked in the recursive testing process is voxelized, the process for
voxelizing the given patch is finished. The proof of the correctness of our voxelization results
will be discussed in the next section.

Since the above process guarantees that shared boundary or vertex of patches or sub-
patches will be voxelized to the same voxel, we can perform voxelization of free-form objects
represented by a CCSS patch by patch. One thing that should be pointed out is, to avoid
stack overflow, only small subpatches should be fed to the recursive subdivision and test-
ing process. This is especially true when a high resolution cubic frame buffer is given or
some polygons are very big in the given control mesh. Generating small subpatches is not a
problem for a CCSS once the parametrization techniques are available. For example, in our
implementation, the size of subpatches (in the parameter space) fed to recursive testing is
1
8
× 1

8
, i.e. each patch is divided into 8 × 8 subpatches before the voxelization process. In

addition, feeding small size subpatches to the recursive testing process ensures the assump-
tion of our voxelization process to be satisfied, because the smaller the parameter size of a
subpatch, the flatter the subpatch.

4.3 Separability, Accuracy and Minimality

Let S be a C1 continuous surface in R3. We denote by S̄ the discrete representation of S.
S̄ is a set of black voxels generated by some digitalization method. There are three major
requirements that S̄ should meet in the voxelization process. First, separability [96, 97], which
requires to preserve the analogy between continuous and discrete space and to guarantee that
S̄ is not penetrable since S is C1 continuous. Second, accuracy. This requirement ensures
that S̄ is the most accurate discrete representation of S according to some appropriate error
metric. Third, minimality [96, 97], which requires the voxelization should not contain voxels
that, if removed, make no difference in terms of separability and accuracy. The mathematical
definitions for these requirements can be found in [97], which are based on [96].

First we can see that voxelization results generated using our recursive subdivision
method satisfy the requirement of minimality. The reason is that voxels are sampled di-
rectly from the object surface. The termination condition of our recursive sampling process
(i.e., Line 8, 9, 10 in algorithm ‘VoxelizeSubPatch’) and the coordinates transformation in eq.
(4.2) guarantee that every point in the surface has one and only one image in the resulting
voxelization. In other words,

∀ P ∈ S, ∃ Q ∈ S̄, such that P ∈ Q. (4.3)

Note that here P is a 3D point and Q is a voxel, which is a unit cube. On the other hand,
because all voxels are mapped directly from the object surface using eq. (4.2), we have

∀ Q ∈ S̄, ∃ P ∈ S, such that P ∈ Q. (4.4)

Hence no voxel can be removed from the resulting voxelization, i.e., the property of mini-
mality is satisfied. In addition, from eq. (4.3) and eq. (4.4) we can also conclude that the
resulting binary voxelization is the most accurate one with respect to the given resolution.
Hence the property of accuracy is satisfied as well.

To prove that our voxelization results satisfy the separability property, we only need
to show that there is no holes in the resulting voxelization. For simplicity, here we only
consider 6-separability, i.e., there does not exist a ray from a voxel inside the free-form

solid object to the outside of the free-form solid object in x, y or z direction that can
penetrate our resulting voxelization without intersecting any of the black voxels. We prove
the separability property by contradiction. As we know violating separability means there
exists at least a hole (voxel) Q in the resulting voxelization that is not included int S̄ but
is intersected by S and, there must also exist two 6-adjacent neighbors of Q that are not
included in S̄ either and are on opposite sides of S. Because S intersects with Q, there
exist at least one point P on the surface that intersects with Q. But the image of P after
voxelization is not Q because Q is a hole. However, the image of P after voxelization must
exist because of the termination condition of our recursive sampling process (i.e., Line 8, 9,
10 in algorithm ‘VoxelizeSubPatch’). Moreover, according to our voxelization method, P can
only be voxelized into voxel Q because of eq. (4.2). Hence Q cannot be a hole, contradicting
our assumption. Therefore, we conclude that S̄ is 6-separating.

4.4 Volume Flooding with Dynamic Programming

4.4.1 Seed Selection

A seed must be designated before a flooding algorithm can be applied. In 2D flooding, a seed
is usually given by the user interactively. However, in 3D flooding, for a closed 3D object,
it is impossible for a user to designate a voxel as a seed by mouse-clicking because voxels
inside a closed 3D object are invisible. Hence an automatic method is needed to select an
inside voxel as a seed for volume flooding. Once we can correctly choose an inside voxel, the
by applying a flooding operation, all inside voxels can be obtained. To select a voxel as a
seed for volume flooding, we need to tell if a voxel is inside or outside the 3D object. This
is not a trivial problem. In the past In-Out test for voxels is not efficient and not accurate
[93], especially for topologically complicated 3D objects.

With the availability of parametrization techniques for subdivision surfaces, we now can
calculate derivatives and normals exactly and explicitly for each point located on the 3D
object surface. Hence the normal for each voxel can also be exactly calculated in the vox-
elization process. Because the direction of a normal is perpendicular to the surface and
points towards the outside of the surface, the closest voxel in its opposite direction must be
located either inside or on the surface (Assume the voxelization resolution is high enough).
For a given voxel (called start voxel), to choose the closest voxel in its normal’s opposite
direction, we just need to calculate the dot product of its normal and one of the axis vectors.
These vectors are: {1, 0, 0}, {−1, 0, 0}, {0, 1, 0}, {0,−1, 0}, {0, 0, 1}, {0, 0,−1} correspond-
ing to x, −x, y, −y, z and −z direction, respectively. The direction with biggest dot product
is chosen for finding an inside voxel. If the closest voxel in this chosen direction is also a
black voxel (i.e., located on the 3D object surface), another start voxel has to be selected
and the above process is repeated until an inside voxel is found. The found inside voxel can
be designated as a seed for inside volume flooding. Similarly, an outside voxel can also be
found for outside volume flooding. In this case, the seed voxel should not be chosen from
the normal’s opposite direction, but along the normal’s direction.

However, if the voxelization resolution is not high enough, the closest voxel in the normal’s
opposite direction might be an outside voxel. For example, in Figure 4.2, ABCD denotes

D

C

A

1P2P

3P

1N2N

3N
B

Figure 4.2: A voxel with multiple pieces of object surface in it.

a voxel and part of the object surface passes through this voxel. Differently, there are two
pieces of surface that are not connected but are all inside this voxel. If we choose P1 as the
start point in Figure 4.2 to find an inside voxel using the above seed selection method, an
outside voxel will be wrongly chosen. Hence the above method is no longer applicable in this
case. To resolve the problem in this situation, higher voxelization resolution could be used.
However, no matter how high the voxelization resolution is, we still cannot guarantee cases
like the one shown in Figure 4.2 will not occur. Hence other approach is needed.

Fortunately, voxels that have multiple pieces of surface passing through, like the one
shown in Figure 4.2, can be easily identified in the voxelization process. To identify these
voxels, we need to calculate normals for each voxel. For example, in Figure 4.2, if surface
point P1 is mapped to voxel ABCD, then the normal at P1 which is N1, is also memorized
as the normal of this voxel. Next time if another surface point, say P2, is also mapped to
voxel ABCD, then the normal at P2 which is N2, will be first compared with the memorized
normal of voxel ABCD by calculating their dot product. If N1 · N2 > 0, then nothing need
to be done. Otherwise, say surface point P3, which is mapped to the same voxel and its
normal is N3, if N1 · N3 ≤ 0, then this voxel is marked as a voxel that has multiple piece
passing through. Once every voxel that has multiple pieces of surface passing through is
marked, we can easily solve the problem simply by not choosing these marked voxels as the
start voxels.

4.4.2 3D Flooding using Dynamic Programming

Here we only present flooding algorithms using 6-separability, but the idea can be applied to
N -separability with N = 18 or 26, Although 6-separability is used in the flooding process,
the voxelization itself can be N -adjacent with N = 6, 18 or 26, Once a seed is chosen, 3D
flooding algorithms can be performed in order to fill all the voxels that are 6-connected
with this seed voxel. The simplest flooding algorithm is recursive flooding, which recursively
search adjacent voxels in 6 directions for 6-connected voxels. This method sounds ideally
reasonable but does not work in real world because even for a very low resolution, it would
still cause stack overflow.

Another method that can be used for flooding is called linear flooding, which searches
adjacent voxels that are 6-connected with the given the seed voxel, linearly from the first
voxel to the last voxel in the cubic frame buffer, and marks all the found voxels with gray.

The search process is repeated until no more white (‘0’) voxels is found that are 6-connected
with one of the gray voxels. Linear flooding is simple and does not require extra memory in
the flooding process. However, it is very slow, especially when a high resolution is used in
the voxelization process.

In many applications, 3D flooding operations are required to be fast with low extra
memory consumption. To make a 3D flooding algorithm applicable and efficient, we can
combine the recursive flooding and the linear flooding methods using the so called dynamic
programming technique.

Dynamic programming usually breaks a problem into subproblems, and these subprob-
lems are solved and the solutions are memorized, in case they need to be solved again.
This is the essentiality of dynamic programming. To use dynamic programming in our 3D
flooding algorithm, we use a sub-routine FloodingXYZ which marks inside voxels having the
same x, y or z coordinates as the given seed voxel, and all marked voxels are memorized by
pushing them into a stack called GRAYSTACK. Note here the stack has a limited space,
whose length is specified by the user. When the stack reaches its maximal capacity, no gray
voxels can be pushed into it. Hence it guarantees limited memory consumption. The 3D
flooding algorithm with dynamic programming can improve the flooding speed significantly.
For ordinary resolution, say, 512 × 512 × 512, a flooding operation can be done almost in
real time.

4.5 Applications

4.5.1 Visualization of Complex Scenes

Ray tracing is a commonly used method in the field of visualization of volume graphics.
This is due to its ability to enhance spatial perception of the scene using techniques such
as transparency, mirroring and shadow casting. However, there is a main disadvantage
for ray tracing approach: large computational demands. Hence rending using this method
is very slow. Recently, surface splatting technique for point based rendering has become
popular [69, 95]. Surface splatting requires the position and normal of every point to be
known, but not their connectivity. With explicit position and exact normal information
for each voxel in our voxelization results, now it is much easier for us to render discrete
voxels using surface splatting techniques. The rendering is fast and high quality results can
be obtained. For example, Fig. 4.3(f) is the given mesh, Fig. 4.3(g) is the corresponding
limit surface. After the voxelization process, Fig. 4.3(h) is generated only using basic point
based rendering techniques with explicitly known normals to each voxel. While Fig. 4.3(i)
is rendered using splatting based techniques. The size of cubic frame buffer used for Fig.
4.3(h) is 512× 512× 512. The voxelization resolution used for Fig. 4.3(i) is 256× 256× 256.
Although the resolution is much lower, we can tell from Fig. 4.3, that the one using splatting
techniques is smoother and closer to the corresponding object surface given in Fig. 4.3(g).

(a) Intersection Curve (b) Intersection Curve

(c) Difference (d) Difference (e) CSG

(f) Mesh (g) Surface (h) Point (i) Splat (j) Difference

(k) Union (l) Difference

Figure 4.3: Applications of Voxelization

4.5.2 Integral Properties Measurement

Another application of voxelization is that it can be used to measure integral properties of
solid objects such as mass, volume and surface area. Without discretization, these integral
properties are very difficult to measure, especially for free-form solids with arbitrary topology.

Volume can be measured simply by counting all the voxels inside or on the surface
boundary because each voxel is a unit cube. With efficient flooding algorithm, voxels inside
or on the boundary can be precisely counted. But the resulting measurement may not be
accurate because boundary voxels do not occupy all the corresponding unit cubes. Hence
for higher accuracy, higher voxelization resolution is needed. Once the volume is known, it
is easy to measure the mass simply by multiplying the volume with density. Surface area
can be measured similarly. But using this approach would lead to big error because we do
not know how surfaces pass through their corresponding voxels. Fortunately, surface area
can be measured much more precisely in the voxelization process. As we know, during the
recursive voxelization process, if the recursive process stops, all the marked parameter points
of a patch or subpatch (See Fig. 4.1) are points used for final voxelization. Hence all these
quadrilaterals corresponding to these marked parameter points can be used for measuring
surface area after these marked parameter space points are mapped to 3D space. The flatness
of these quadrilaterals is required to be tested if high accuracy is needed. The definition of
patch flatness and the flatness testing method can be found in [65].

4.5.3 Performing Boolean and CSG Operations

The most important application of voxelization is to perform Boolean and CSG operations on
free-form objects. In solid modeling, an object is formed by performing Boolean operations
on simpler objects or primitives. A CSG tree is used in recording the construction history
of the object and is also used in the ray-casting process of the object. Surface-surface
intersection (including the in-on-out test) and ray-surface intersection are the core operations
in performing the Boolean and CSG operations. With voxelization, all of these problems
become much easier set operations. For instance, Fig. 4.3(d) is generated by subtracting
a cylinder from the Venus model. While Fig. 4.3(k) and Fig. 4.3(l) are the union and
difference results of the cow model and the rocker arm model shown in Fig. 4.3(g). Note that
all these union and difference pairs are positioned the same way when Boolean operations are
performed. Fig. 4.3(j) is generated by subtracting the the heart model shown in Fig. 4.3(c),
from rock arm model shown in Fig. 4.3(g). And Fig. 4.3(c) is generated by subtracting
the rock arm model shown in Fig. 4.3(g) from the heart model. A mechanical part is also
generated in Fig. 4.3(e) using CSG operations. Intersection curves can be similarly generated
by searching for common voxels of objects. The black curve shown in Fig. 4.3(b) and Fig.
4.3(a) is the intersection curve generated from two different objects.

Chapter 5

Shape Design: Interpolation based

In this chapter we present our interpolation based shape design technique for Catmull-Clark
subdivision surfaces [61]. The new interpolation method [61] handles both open and closed
meshes. Normals or derivatives specified at any vertices of the mesh (which can actually be
anywhere) can also be interpolated. The construction process is based on the assumption
that, in addition to interpolating the vertices of the given mesh, the interpolating surface
is also similar to the limit surface of the given mesh. Therefore, construction of the inter-
polating surface can use information from the given mesh as well as its limit surface. This
approach, called similarity based interpolation, gives us more control on the smoothness of
the interpolating surface and, consequently, avoids the need of shape fairing in the construc-
tion of the interpolating surface. The computation of the interpolating surface’s control
mesh follows a new approach, which does not require the resulting global linear system to
be solvable. An approximate solution provided by any fast iterative linear system solver is
sufficient. Nevertheless, interpolation of the given mesh is guaranteed. This is an impor-
tant improvement over previous methods [15] because with these features, the new method
can handle meshes with large number of vertices efficiently. Although the new method is
presented for CCSSs, the concept of similarity based interpolation can be used for other
subdivision surfaces as well [61].

The remaining part of this chapter is organized as follows. Section 1 gives a brief review
of previous interpolation methods. Our method is given in Section 2. A technique that
works for open meshes is presented in Section 3. Implementation issues and test results are
presented in Section 4.

5.1 Previous Work

There are two major ways to interpolate a given mesh with a subdivision surface: interpo-
lating subdivision [29, 30, 31, 51, 54] or global optimization [32, 48, 61]. In the first case, a
subdivision scheme that interpolates the control vertices, such as the Butterfly scheme[31],
Zorin et al’s improved version [30] or Kobbelt’s scheme [29], is used to generate the inter-
polating surface. New vertices are defined as local affine combinations of nearby vertices.
This approach is simple and easy to implement. It can handle meshes with large number
of vertices. However, since no vertex is ever moved once it is computed, any distortion in

51

the early stage of the subdivision will persist. This makes interpolating subdivision very
sensitive to the irregularity in the given mesh. In addition, it is difficult for this approach to
interpolate normals or derivatives.

The second approach, global optimization, usually needs to build a global linear system
with some constraints [53]. The solution to the global linear system is an interpolating
mesh whose limit surface interpolates the control vertices in the given mesh. This approach
usually requires some fairness constraints in the interpolation process, such as the energy
functions presented in [48], to avoid undesired undulations. Although this approach seems
more complicated, it results in a traditional subdivision surface. For example, the method in
[48] results in a Catmull-Clark subdivision surface (CCSS), which is C2 continuous almost
everywhere and whose properties are well studied and understood. The problem with this
approach is that a global linear system needs to be built and solved. Hence it is difficult to
handle meshes with large number of control vertices.

There are also subdivision techniques that produce surfaces to interpolate given curves or
surfaces that near- (or quasi-)interpolate given meshes [52]. But those techniques are either
of different natures or of different concerns and, hence, will not be discussed here.

5.2 Similarity based Interpolation

Given a 3D mesh P with arbitrary topology, our new method [61] calculates a control mesh
Q whose CCSS interpolates the vertices of P . The CCSS of Q is constructed with the
additional assumption that its shape is similar to a reference surface, the limit surface of P .
A shape fairing process is not required in the construction process of the interpolating surface.
The computation of the control mesh Q follows a new approach which does not require the
resulting global linear system to be solvable. An approximate solution provided by any
fast iterative linear system solver is sufficient. Hence, handling meshes with large number
of vertices is not a problem. Nevertheless, interpolation of the given mesh is guaranteed.
The new method can handle both closed and open meshes. The interpolating surface can
interpolate not only vertices of a given mesh, but also derivatives and normals anywhere in
the parameter space of the surface.

5.2.1 Mathematical Setup

Given a 3D mesh with n vertices: P = {P1,P2, · · · ,Pn}, the goal here is to construct a
control mesh Q whose CCSS interpolates P (the vertices of P , for now). The construction
of Q follows the following path. First, we perform one or more levels of Catmull-Clark
subdivision on P to get a finer control mesh G. G satisfies the following property: each face
of G is a quadrilateral and each face of G has at most one extra-ordinary vertex. The vertices
of G are divided into two groups. A vertex of G is called a Type I vertex if it corresponds to
a vertex of P . Otherwise it is called a Type II vertex. Q is then defined as a control mesh
with the same number of vertices and the same topology as G. We assume Q has m vertices
Q = {Q1,Q2, · · · ,Qm}, m > n, and the first n vertices correspond to the n Type I vertices
of G (and, consequently, the n vertices of P). These n vertices of Q will also be called Type
I vertices and the remaining m− n vertices Type II vertices. This way of setting up Q is to

ensure the parametric form developed for a CCSS patch [23, 64] can be used for the limit
surface of Q, denoted S(Q), and we have enough degree of freedom in our subsequent work.
Note that m is usually much bigger than n. The remaining job then is to determine the
position of each vertex of Q.

In previous methods [32, 48] the n Type I vertices of Q are set as independent variables,
the m − n Type II vertices are represented as linear combinations of the Type I vertices.
Since m − n is bigger than n, this setting leads to an over-determined system. Without
any freedom in adjusting the solution of the system, one has no control on the shape of
the resulting interpolating surface S(Q) even if it carries undesirable undulations. In our
approach [61], instead, the m − n Type II vertices are set as independent variables and
the n Type I vertices are represented as linear combinations of the Type II vertices. This
approach provides us with enough degrees of freedom to adjust the solution of the resulting
linear system and, consequently, more control on the shape of the interpolating surface S(Q).

5.2.2 Interpolation Requirements

Recall that Type I vertices of Q are those vertices that correspond to vertices of P . Hence,
each vertex of P is the limit point of a Type I vertex of Q. We assume the limit point of Qi

is Pi, 1 ≤ i ≤ n. Then for each Type I vertex Qi (1 ≤ i ≤ n), we have

Qi = Ci · Q̃ + cPi (5.1)

where Q̃ = {Qn+1,Qn+2, · · · ,Qm} is the vector of Type II vertices. Vector Ci and constant
c depend on the topology of P and the degree of vertex Pi. Ci and c can be easily obtained
using the formula for calculating the limit point of a CCSS [23, 48, 64]. The conditions in
eq. (5.1) are called interpolation requirements, because they have to be exactly satisfied.

Note that the interpolation requirements in eq. (5.1) form a system of linear equations.
By solving this system of linear equations, we solve the interpolation problem [32]. But in
this case one tends to get undesired undulations on the resulting interpolating surface [48].

5.2.3 Similarity Constraints

Two CCSSs are said to be similar if their control meshes have the same topology and they
have similar ith derivatives (1 ≤ i < ∞) everywhere. The first condition of this definition is
a sufficient condition for the second condition to be true, because it ensures the considered
CCSSs have the same parameter space. The CCSSs considered here, S(Q) and S(G), satisfy
the first condition. Hence, we have the sufficient condition to make the assumption that
S(Q) and S(G) are similar. In the following, we assume S(Q) and S(G) are similar in the
sense of the above definition.

With explicit parametrization of a CCSS available [23], it is possible for us to consider
derivatives of S(Q) and S(G) at any point of their parameter space. However, to avoid
costly integration of derivative expressions, we will only consider derivatives sampled at the
following parameter points [59]:

{(k1/2i, k2/2j) | 0 ≤ i, j ≤ ∞ , 0 ≤ k1 ≤ 2i, 0 ≤ k2 ≤ 2j} (5.2)

for each patch of S(Q) and S(G). In the above similarity definition, two derivatives are
said to be similar if they have the same direction. In the following, we use the similarity
condition to set up constraints in the construction process of S(Q).

Given two surfaces, let Du and Dv be the u and v derivatives of the first surface and D̂u

and D̂v the u and v derivatives of the second surface. These derivatives are similar if the
following condition holds:

Du × D̂u = 0 and Dv × D̂v = 0 (5.3)

A different condition, shown below, is used in [32, 48].

Du · (D̂u × D̂v) = 0 and Dv · (D̂u × D̂v) = 0 (5.4)

These two conditions are not necessarily equivalent. Our test cases show that eq. (5.3)
gives better interpolating surfaces. This is because eq. (5.4) only requires the correspond-
ing derivatives to lie in the same tangent plane, no restrictions on their directions. As a
result, using eq. (5.4) could result in unnecessary undulations. Note that eq. (5.3) requires
directions of Du and Dv to be the same as that of D̂u and D̂v, respectively.

Conditions of the type shown in eq. (5.3) are called similarity constraints. These con-
straints do not have to be satisfied exactly, only to the extent possible. The interpolation
method used in [32] considers interpolation requirements only. The method in [48] also
includes fairness constraints to avoid undesired undulations and artifacts.

5.2.4 Global Linear System

If the derivatives of S(Q) and S(G) are sampled at a point in eq. (5.2) then, according to
eq. (5.3) and the derivative of the parametric form of a CCSS patch [23, 59], we would have

(V T · Q) × (V T · G) = 0 (5.5)

where V is a constant vector of scalars whose values depend on the type of the derivative and
the point where the sampling is performed. This expression actually contains 3 equations,
one for each component. Replace the Type I vertices Q1,Q2, · · · ,Qn in the above expression
with eq. (5.1) and combine all the similarity constraints, we get a system of linear equations
which can be represented in matrix form as follows:

D · X = C

where X is a vector of length 3(m−n), whose entries are the x, y and z components of Q̃. D
usually is not a square matrix. Hence we need to find an X such that (D·X−C)T ·(D·X−C)
is minimized. This is a quadratic programming problem and can be solved using a linear
least squares method. It is basically a process of finding a solution of the following linear
system:

A · X = B (5.6)

where A = DTD and B = DTC. A is a symmetric matrix. Hence only half of its ele-
ments need to be calculated and stored. Once X is known, i.e., Q̃ is known, we can find
Q1,Q2, · · · ,Qn using eq. (5.1).

The matrix D could be very big if many sample points or constrains are used. Fortunately,
we do not have to calculate and store the matrix D and the vector C. Note that A and B
can be written as

A =
∑

Di(Di)
T and B =

∑
Dici

where (Di)
T is the ith row of D and ci is the ith entry of C. Note that the number of

rows (constrains) of D can be as large as possible, but the number of its columns is fixed,
3(m − n). Suppose the ith constraint (See eq. (5.5)), with Q1,Q2, · · · ,Qn replaced, is
written in vector form as UT · X = u. Then UT is the ith row of matrix D and u is the ith
entry of C. Hence rows of matrix D and entries of C can be calculated independently from
eq. (5.5) for each constraint of each sample point. Therefore, A and B can be accumulatively
calculated, constraint by constraint. No matter how many sample points are used, and no
matter how many constraints are considered for every sample point, only a fixed amount
memory is required for the entire process and the size of matrix A is always the same,
3(m − n) × 3(m − n).

Note that the solution of eq. (5.6) only determines the positions of Type II vertices of
Q. Type I vertices of Q are represented as linear combinations of Type II vertices in the
interpolation requirements defined in eq. (5.1). Since interpolation of the vertices of P is
determined by the interpolation requirements (See eq. (5.1)) only, this means as long as
we can find a solution for eq. (5.6), the task of constructing an interpolating surface that
interpolates the vertices of P can always be fulfilled, even if the solution is not precise.
Hence, an exact solution to the linear system eq. (5.6) is not a must for our method. An
approximate solution provided by a fast iterative linear system solver is sufficient. As a
result, the new method can handle meshes with large number of vertices efficiently. This is
an important improvement over previous methods.

With the similarity assumption, the surface interpolation problem is basically a process
of using an iterative method to find an approximate solution for the global linear system eq.
(5.6). An initial guess for the iterative process can be obtained directly from G by scaling
G properly, such that dimension of the scaled limit surface is the same as the interpolating
surface. The required scaling factors sx, sy and sz for such a task can be determined by the
condition that the bounding box of the scaled limit surface is the same as the bounding box
of the interpolating surface. This can easily be done by comparing the maxima and minima
of the vertices of the given mesh in all three directions with the maxima and minima of
their corresponding limit points. The scaled mesh called Ĝ, is a good initial guess for the
iterative process because Ĝ is actually very close to the control mesh of the interpolating
surface we want to obtain. In our implementation, the Gauss-Seidel method is used for the
iterative process. The iterative process would converge to a good approximate solution very
rapidly with this initial guess. However, it should be pointed out that there is no need to
carry out the iterative process to a very precise level. According to our test cases, a residual
tolerance of the size ǫ = 10−6 does not produce much noticeable improvement on the quality
of the interpolating surface than a residual tolerance of the size ǫ = 10−3, while the former
takes much more time than the latter. Therefore a relatively large residual tolerance can
be supplied to the iterative linear system solver to prevent it from running too long on the
iterative process, while not improving the quality of the interpolating surface much. This is
especially important for processing meshes with large number of vertices.

5.2.5 Additional Interpolation Requirements

In addition to the interpolation requirements considered in eq. (5.1), other interpolation
requirements can be included in the global linear system as well. One can also modify or
remove some of the interpolation requirements in eq. (5.1). For example, if we wants the
first u−derivative of the interpolating surface at Pi to be Du, we need to set up a condition
similar to eq. (5.5) as follows:

(V T · Q) ×Du = 0

where V is a constant vector. The difference here is, this is not a similarity constraint, but
an interpolation requirement. However, if we want a particular normal to be interpolated, we
should set up interpolation requirements for the u derivative and the v derivative whose cross
product equals this normal, instead of setting up an interpolation requirement for the normal
directly, to avoid the involvement of non-linear equations in the system. Then by combining
all the new interpolation requirements with the original interpolation requirements in eq.
(5.1), we get all the expressions for vertices that are not considered independent variables
in the linear system in eq. (5.6). Note that including a new interpolation requirement in
the interpolation requirement pool requires us to change a variable vertex in eq. (5.6) to
a non-variable vertex. Actually, interpolation requirements can be specified for any points
of the interpolating surface, not just for vertices of P . This is possible because we have a
parametric representation for each patch of a CCSS [23]. For example, if we want the position
of a patch at parameter (1/2, 3/4) to be T, we can set up an interpolation requirement of the
form: V T ·Q = T where V is a constant vector whose values depend on (1/2, 3/4). Therefore
the interpolating surface can interpolate positions, derivatives and normals anywhere in the
parameter space.

5.2.6 Interpolation of Normal Vectors

The direction of normal vectors can be interpolated exactly by using additional interpola-
tion requirements. The key idea is to change some similarity constrains to interpolation
requirements, which means move some equations in eq. (5.5) into the linear system in eq.
(5.1). Actually the direction of partial derivatives can also be interpolated by using such
additional interpolation requirements. Additional interpolation requirements are conditions
like eq. (5.1) that are guaranteed to be satisfied and hence, are not involved in the solving
of the global linear system in eq. (5.6).

However eq. (5.5) is only good for exactly interpolating partial derivatives. For exactly
interpolating normal vectors, we need to interpolate the derivatives in u- and v-directions
respectively to avoid the involvement of non-linear systems. For example, for a given normal
vector V, whose direction is required to be interpolated at point P in the interpolating
surface. Assume the derivatives at point P in the resulting interpolating surface in u- and
v-directions are D1 and D2, respectively. Then we need to integrate the following two
equations into linear system eq. (5.1):

{
D1 × V = 0
D2 × V = 0

(5.7)

Note that here D1 and D2 can be linearly represented using only the control points of the
corresponding surface patch [23] and these control points are unknowns in eq. (5.1) and eq.
(5.6). Because the above two equations in eq. (5.7) now are in linear system eq. (5.1), which
is required to be satisfied exactly, the exact interpolation of the direction of normal vector
V is guaranteed. For example, Fig. 5.1(f) is interpolated not only at vertex positions, but
normal vectors at boundary vertices as well.

5.3 Handling Open Meshes

(a) (b) (c) (d) (e) (f)

Figure 5.1: Interpolating an open mesh: (a) given mesh; (b) limit surface of (a); (c) extended
version of (a); (d) limit surface of (c); (e) interpolating surface of (a) that uses (d) as a
reference surface; (f) interpolating surface of (a) with additional requirements.

The interpolation process developed in the previous section can not be used for open
meshes, such as the one shown in Fig. 5.1(a), directly. This is because boundary vertices
of an open mesh have no corresponding limit points, nor derivatives, therefore, one can not
set up interpolation requirements for these vertices, as required by the new interpolation
process. One way to overcome this problem is to add an additional ring of vertices along
the current boundary and connect the vertices of this ring with corresponding vertices of the
current boundary to form an additional ring of faces, such as the example shown in Figure
5.1(c). The newly added vertices are called dummy vertices. We then apply the interpolation
method to the extended open mesh as to a closed mesh except that there are no interpolation
requirements for the dummy vertices. This technique of extending the boundary of a given
mesh is similar to a technique proposed for uniform B-spline surface representation in [47].

Note that in this case, the interpolation process does not use the limit surface of the given
mesh, but rather the limit surface of the extended mesh as a reference surface. Therefore,
the shape of the interpolating surface depends on locations of the dummy vertices as well.
Determining the location of a dummy vertex, however, is a tricky issue, and the user should
not be burdened with such a tricky task. In our system, this is done by using locations of the
current boundary vertices of the given mesh as the initial locations of the dummy vertices
and then solving the global linear system in eq. (5.6) to determine their final locations.

This approach of generating dummy vertices works fine because dummy vertices only affect
similarity constraints. Figure 5.1(e) is a surface that interpolates the mesh given in Fig.
5.1(a) and uses 5.1(d) as a reference surface.

The above setting of the dummy vertices usually is not enough to create an interpo-
lating surface with the desired boundary shape. Additional requirements (not constraints)
are needed in the interpolation process. As explained in Section 5.2.5, a platform that al-
lows us to define additional requirements can be created by treating the dummy vertices as
non-variables in eq. (5.6). We can then specify new derivative conditions or normal con-
ditions to be satisfied at the original boundary vertices. With the additional interpolation
requirements, a designer has more control on the shape of the interpolating surface in areas
along the boundary and, consequently, can generate an interpolating surface with the desired
boundary shape. For example, Figure 5.1(f) is an interpolating surface of the mesh given in
Figure 5.1(a), but generated with additional interpolation requirements. The interpolating
surface obviously looks more like a real glass now.

5.4 Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting
graphics system on the Windows platform. Quite a few examples have been tested with the
method described here. All the examples have extra-ordinary vertices. Some of the tested
results are shown in Figures 5.1 and 5.2. Due to limited space, limit surface of the mesh
shown in Figure 5.2(d) which is very simple are not shown here. For all other cases, the limit
surfaces of the given meshes and the interpolating surfaces are both shown so that one can
tell if these surfaces are indeed similar to each other in the least squares sense.

In our implementation, only one subdivision is performed on the given mesh for each
example and the first, second and third derivatives in u and v directions are used to construct
interpolation constraints and build the global linear system. These derivatives are sampled
at points with parameters (k1

2i ,
k2

2j), i, j = 0, 1 or ∞, and 0 ≤ k1 ≤ 2i, 0 ≤ k2 ≤ 2j, for
each patch. That is, 9 points are sampled for each patch, which is good enough for most
cases. For bigger patches one can use more sample points because patches do not have to
be sampled uniformly.

The mesh shown in Figure 5.2(f) is an example of an open mesh with disconnected
boundaries. Figure 5.2(h) is the interpolating surface without using additional interpolation
requirements in the construction process.

As can be seen from Figure 5.2, all the resulting interpolating surface are very smooth
and visually pleasing, except the interpolating surface shown in Figure 5.2(n). The surface
has some undulations around the neck, but we do not think they are caused completely by
our method. We believe this is more of a problem with the general interpolation concept.
Note that the input mesh, Figure 5.2(l), has some abrupt changes of vertex positions and
twists in the neck area. This is also reflected by some visible undulations in the neck area
of the limit surface, Figure 5.2(m), even though they are not as clear as in the interpolating
surface. An approximation curve/surface, like a spline curve, can be regarded as a low
pass filter [30], which makes the given control polygon or mesh smoother. An interpolation
curve/surface, on the other hand, can be regarded as a high pass filter, which magnifies

(a) Given (b) Limit (c) Interpolating (d) Given Mesh (e) Interpolating

(f) Given Mesh (g) Limit Surface (h) Interpolating Surface

(i) Given Mesh (j) Limit Surface (k) Interpolating

(l) Given Mesh (m) Limit Surface (n) Interpolating

Figure 5.2: Interpolating meshes with arbitrary topology.

undulations or twists in the input mesh. Since a limit surface is an approximation surface, it
reduces the impact of abrupt vertex location changes and twists in the input mesh while the
interpolating surface enhances it. This is why the undulations are more obvious in Figure
5.2(n) than in Figure 5.2(m).

The new interpolation method can handle meshes with large number of vertices in a
matter of seconds on an ordinary PC (3.2GHz CPU, 512MB of RAM). For example, the
meshes shown in Figures 5.2(l), 5.2(a) and ?? have 1022, 354 and 272 vertices, respectively.
It takes 51, 14 and 3 seconds, respectively, to interpolate these meshes. For smaller meshes,
like Figures 5.1(a), 5.2(i), 5.2(d) and 5.2(f), the interpolation process is done almost in
real time. Hence our interpolation method is suitable for interactive shape design, where
simple shapes with small or medium-sized control vertex sets are constructed using design
or interpolation methods, and then combined using CSG trees to form complex objects.

Chapter 6

Trimming of Subdivision Surfaces and
Applications

In this chapter a trimming technique and its application on error controllable Boolean oper-
ations on free-form solids represented by Catmull- Clark subdivision surfaces (CCSSs) [70]
are presented. The given objects are voxelized [63] using the voxelization method presented
in chapter 4 first. However, different from previous voxelization based approaches, the final
results of the Boolean operations in our method are represented with a continuous geometric
representation, that is, our results after Boolean operations are one-piece representations of
solid objects. They are represented with topologically correct mesh structure [70].

This is achieved by doing the Boolean operations in the parameter spaces of the solids,
instead of the object space. The 2D parameter space is recursively subdivided until a keep-
or-discard decision can be made for each resulting subpatch using results of the voxelization
process. This approach allows us to easily compute a parametric approximation of the inter-
section curve and, consequently, build a continuous geometric representation for the Boolean
operation result. To make the Boolean operation result more accurate, a secondary local
voxelization can be performed for intersecting subpatches. Because the voxelization process
itself is very fast and robust, the overall process is fast and robust too. Most importantly,
error of Boolean operation result can be estimated, hence error control is possible. In ad-
dition, our method can handle any cases of Boolean operations as long as the given solids
are represented by CCSSs. Therefore there are no special or degenerated cases to take care
of. Although the new method is presented for CCSSs, the concept actually works for any
subdivision scheme whose limit surfaces can be parameterized.

The remaining part of the chapter is arranged as follows. In section 1, a brief review of
previous works related to this one is given. The process of performing Boolean operations
on solids represented by CCSSs is discussed in Section 2. Local voxelization technique is
presented in Section 3. Error control is given in Section 4. Implementation issues and test
cases are shown in Section 5.

61

6.1 Related Work

Performing Boolean operations is a classic problem in geometric modeling. Many approaches
have been reported in the literature, such as [7, 70, 98, 104, 108, 110, 111, 112], to name
a few. Currently most solid modelers can support Boolean operations on solids composed
of polyhedral models or quadric surfaces (like spheres, cylinders etc.). Over the last few
years, modeling using free-form surfaces has become indispensable throughout the commer-
cial CAD/CAM industry. However, the major bottleneck is in performing robust, efficient
and accurate Boolean operations on free-form objects. The topology of a surface patch be-
come quite complicated when a number of Boolean operations are performed and finding a
convenient representation for these topologies has been a major challenge. As a result, some
solid modelers [98] use polyhedral approximation to these surfaces and apply Boolean opera-
tions on these approximate polyhedral objects. Although this approaches seem simple, there
are always some special cases or degenerated cases [100] that are difficult to take care of.
Some modelers use point (or surfel) based approaches [112] to perform Boolean operations
and quite good results are obtained. However, error control is difficult in such approaches.
Zorin etc. proposed a method [7] to perform approximate Boolean operations on free-form
solids represented by subdivision surfaces. The main contribution of their method is the al-
gorithms that are able to generate a control mesh for a multiresolution surface approximating
the Boolean results.

Most of the recent work in the literature on Boolean operations of curved models are
focused on computing the surface intersection [99, 101, 103, 105, 107, 109]. However, the
algebraic degree of the resulting curve can typically be very high (up to 324 for a pair
of bicubic Bézier surfaces) [98] and the genus is also non-zero. Hence it is very difficult to
represent the intersection curve analytically and the current methods are aimed at computing
approximations to the intersection curve.

6.2 Performing Boolean Operations on Free-Form Solids

Because we perform Boolean Operations on Free-Form Solids by voxelizing these solids,
Boolean operations performed on three or more objects can be regarded as a series of Boolean
operations performed on two objects. Therefore, here we only need to consider Boolean
operations performed on two free-form solids A and B. As a result, only two cubic frame
buffers are needed in the whole process, one for each object. The results of Boolean operations
can share a cubic frame buffer with any of them. Once voxelization is done (See chapter
4), a volume flooding (see chapter 4) must be performed to mark the voxels located inside
a given solid. After all these steps, there are three types of voxels in each cubic frame buffer:
(1) inside voxels, (2) boundary voxels and (3) outside voxels.

Several possible Boolean operations may be specified by the users. However, the essential
process is almost the same. Here we illustrate the process by assuming the given Boolean
operation is to find the intersection of two solid objects.

With voxelization, it is actually quite simple to get the resulting voxels for a Boolean
operation. For example, the voxels left after an intersection operation are those located inside
or on the boundary of both objects. The difficult part is how to represent the resulting part

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������A

2A
1B

7A

4B

6B 9B

6A4A

5A

5B

2B

3A1I

2I

0B

3I

0A

3B 8B7B

(a)

1

(b)

Figure 6.1: Performing Boolean operations on 2D parameter space.

properly and accurately. Traditionally the results of Boolean operations are represented
just with voxels. The main disadvantage of this method is the results cannot be scaled
seamlessly because of the nature of discretization. In the following, we present an approach
that represents the final result with a continuous geometric representation.

6.2.1 Boolean Operations based on Recursive Subdivision & Vox-
elization

For a subpatch of S(u, v) of solid A defined on [u1, u2]× [v1, v2], we voxelize it one more time
using the method discussed in Chapter 4. However, this time we do not write the voxels
into A’s cubic frame buffer, but look up the voxel values in both solid A and solid B’s cubic
frame buffers. Recall that we are performing an intersection operation of A and B. If all the
voxel values of the whole subpatch in both cubic frame buffer are not outside, then this is a
subpatch to keep. Subpatches of this type are called K-subpatches (subpatches to be kept).
If the voxel values of this subpatch are all outside in both A and B’s cubic frame buffer, then
this is a subpatch to discard. Subpatches of this type are called D-subpatches (subpatches
to be discarded). Otherwise, i.e., if some of the voxel values are inside, boundary and some
of the voxel values are outside, then this is a patch with some part to keep and some part
to discard. Subpatches whose voxel values contain all of inside, boundary and outside are
called I-subpatches (intersecting subpatches). For example, the rectangles shown in Fig. 6.1
(a) are the parameter spaces of the resulting subpatches when the recursive voxelization
process stops and the dashed polyline is part of the intersection curve of the two given solids
in this patch’s 2D parameter space. We can see that subpatch A1A2A4A3 in Fig. 6.1 (a)
is an I-subpatch. Note here all the marked (dark circles) adjacent points, when evaluated
and voxelized, will be mapped to either the same voxel or adjacent voxels (see Chapter
4). For example, there does not exist any voxel between voxels corresponding to parameter
points A1 and A3. Therefore, even though the intersection curve does not pass through
A1 or A3, the voxel corresponding to the intersection point I1 will fall into the closest voxel
corresponding to parameter point A1 or A3. In this case, it falls into the voxel corresponding
to A1

An intersecting voxel is a voxel whose voxel value is boundary in both cubic frame buffers.
Hence it is very easy to find all the intersecting voxels, which compose the intersection curve
(but at this moment we do not know how to connect these intersecting voxels yet and will be
explained shortly). For example, in Fig. 6.1(a), parameter points A1 and B7 are intersecting
voxels. Once all the intersecting voxels are identified, a continuous geometric representation
for the Boolean operation result can be generated as follows.

K-subpatches and D-subpatches are easy to handle. They are either kept (for K-subpatches)
or discarded (for D-subpatches) totally. For example, in Fig. 6.1(b), A4A5A7A6 is a K-
subpatch, hence A4A5A7A6 will be output wholly in the tessellation or rendering process.
For an I-subpatch, one can determine which part of the subpatch to keep by traversing all
the marked points attached to this subpatch. For example, for the subpatch B0B1B2B3B7

in Fig. 6.1(a), after a traverse of the marked vertices, it is easy to see that the part to keep is
the triangle B2B3B7. Hence B2B3B7 will be used in the tessellation and rendering process
and other region of the subpatch B0B1B2B3B7 in Fig. 6.1(a) will be discarded. Note here
the intersection point I2, after voxelization, maps to the voxel B7. In Fig. 6.1(b) the shaded
part is the result after performing the Boolean operation in the 2D parameter space. Once
we have the result of the Boolean operation in 2D parameter space, the 3D result can be
easily obtained by directly evaluating and tessellating these shaded polygons. Note here we
obtain not only the polygons, but also their connectivity. Hence a mesh structure can be
achieved in the above process. It is the mesh structure that we can consider as a one-piece
representation of the results of Boolean operations. In this stage, we have a continuous
geometric representation (the mesh) as well as a discrete voxel based representation (the
cubic frame buffer) for our resulting shape of Boolean operations. Because now we have
both representations, a connected intersection curve can be easily constructed as well by
picking boundary voxels (from the discrete voxel based representation) and traversing the
mesh structure (information of the continuous geometric representation). For example, in
Figure 6.1, the intersection curve (inside this patch) is A1A4A6B2B7B8.

The above voxelization process and Boolean operations guarantee that shared boundary
or vertex of patches or subpatches will be chopped, kept or discarded in exactly the same
way no matter on which patch the operation is performed. Therefore, in our approach,
Boolean operations of free-form objects represented by CCSSs can be performed on the
basis of individual patches.

6.2.2 Crack Prevention

Due to the fact that adjacent patches might be tessellated by quadrilaterals corresponding to
subpatches from different levels of the midpoint subdivision process mentioned in the above
section, cracks could occur between adjacent patches or subpatches. For instance, in Figure
2.3, the left patch A1A2A5A6 is approximated by one quadrilateral but the right patch is
approximated by 7 quadrilaterals. Consider the boundary shared by the left patch and the
right patch. On the left side, that boundary is a line segment defined by two vertices : A2

and A5. But on the right side, the boundary is a polyline defined by four vertices : A2, C4,
B4, and A5. They would not coincide unless C4 and B4 lie on the line segment defined by
A2 and A5. But that usually is not the case. Hence, cracks would appear between the left
patch and the right patch.

Fortunately Cracks can be eliminated simply by replacing each boundary of a patch or
subpatch with the one that contains all the evaluated points for that boundary. For exam-
ple, in Figure 2.3, all the dotted lines should be replaced with the corresponding polylines.
In particular, boundary A2A5 of patch A1A2A5A6 should be replaced with the polyline
A2C4B4A5. As a result, polygon A1A2A5A6 is replaced with polygon A1A2C4B4A5A6

in the tessellation process. For rendering purpose this is fine because graphics systems like
OpenGL can handle polygons with non-co-planar vertices and polygons with any number of
sides. However, it should be pointed out that through a simple zigzag technique, triangu-
lation of those polygons is actually a simple and very fast process. More details about the
crack prevention problem are presented in Chapter 6.

Cracks could also occur if solids A and B are not connected properly in the intersecting
area. For example in Fig. 6.1 (a), intersection point I1 after evaluation and voxelization falls
to voxel corresponding to 2D parameter point A1 of solid A. If I1 falls to voxel corresponding
to 2D parameter point Ā1 of solid B, then after evaluation, SA(A1) might not equal SB(Ā1)
exactly. Hence crack occurs. To eliminate this kind of cracks, we cannot use the exact 3D
positions evaluated from 2D parameter points for intersection point. Instead we use the
center of the corresponding voxel as the intersection point. In this way, solids A and B
will have exactly the same intersection positions and intersection curve as well. As a result,
solids A and B can be connected seamlessly. Note that for K-subpatches, their vertices
will be evaluated directly from parameter points. Only intersection points of partially kept
I-subpatches are approximated by the centers of their corresponding voxels.

6.3 Local Voxelization

The voxelization process presented in the above section is called a global voxelization, because
it is performed for the entire object space. After all the Boolean operations are performed,
a fine scale voxelization, called a local voxelization, will also be performed. The goal of the
local voxelization is to improve the accuracy of the I-subpatches. For example, in Fig. 6.1(a),
A1A2A4 is used to approximate the area of the I-subpatch A1A2A4A3 that should be kept.
The accuracy of this approximation depends on the resolution of the global cubic frame
buffer, which is always not high enough because of limited memory resource. However,
we can do a secondary voxelization, which has lower resolution, but is only applied to a
very small portion of the object space. As a result high accuracy still can be achieved at
intersecting area.

The process and the approach used for a local voxelization are the same as a global
voxelization. The only difference is that they are applied to different size of the object
space. In order to perform local voxelization, information about which subpatches of solid
A intersecting with which subpatches of solid B must be known first. This information is
very difficult to obtain in previous voxelization based methods. Fortunately, in our method,
it can be readily obtained when performing the Boolean operations, as mentioned in Section
6.2.1. If we mark these intersecting subpatches of solids A and B during the keep-or-discard
test process, we would know exactly which subpatches of solid A intersect which subpatches
of solid B. Once all intersecting subpatches are known, local voxelization can be directly
performed for each pair of intersecting subpatches. For example, suppose subpatch p1 of

object A intersects subpatches q1 and q2 of object B, then a local voxelization is performed
on these 3 subpatches only. Their intersection curve is used to replace the intersection curve
obtained using the global voxelization process. The local voxelization process is applied
to every pair of intersecting subpatches of solids A and B. Consequently, more accurate
intersection curve could be computed. For instance, in Fig. 6.1(a), the intersection curve
A4A1 will be replaced with V1V2 · · ·Vk, k = 10, if Vi, i = 1 · · · 10 are the new intersecting
voxels in the corresponding local cubic frame buffers and polygon A1A2A4V1V2 · · ·Vk will
be used in the tessellation and rendering process. Similar to global voxelization, only two
local cubic frame buffers are needed for local voxelization. The local cubic frame buffers can
be reused for each new pair of intersecting subpatches. Hence local voxelization does not
require a lot of memory.

6.4 Error Control

Given an ǫ, the purpose of error control is to make sure the error of the resulting solid after
performing Boolean operations using our method is less than ǫ to the one hundred percent
accurate result. There are two kinds of error that might occur when our method is applied
to perform Boolean operations among closed free-form solids represented by Catmull-Clark
subdivision surfaces. They are discussed as follows.

The first one possible inaccuracy possibly occurring using our method is the approxi-
mation of resulting solids with polygonal meshes. Because all obtained resulting solids are
approximated with polygonal meshes, even although the approximating meshes are dense
and are very close to the true surface, error inevitably occurs. However, the error caused
by approximation of polygonal meshes can be accurately measured [62, 70]. Hence error
control for this type of error is possible. The measurement of this kind of error is discussed
in Chapter 6.

Another source that could introduce error in the result of the Boolean operations is the
voxelization process. Both the global and the local voxelization can cause inaccuracy. The
kind of error caused by voxelization is easy to estimate if the resolutions of cubic frame
buffers are known. For example, if the cubic frame buffer resolution is R1 ×R2 ×R3 and the
object space is of size X1 ×X2 ×X3, then we can see that each voxel is of size X1

R1

× X2

R2

× X2

R3

.
It is easy to see the maximal error of voxelization is half the size of a voxel. If we perform
local voxelization for every pair of intersecting subpatches, then global voxelization will not
cause any error. Here we can also see why local voxelization can improve the accuracy
dramatically. In local voxelization, because the size of the subpatches being voxelized are
very small, even with a low resolution, the voxel size is still very small.

Therefore the overall error caused by polygonalization and voxelization is the sum of the
errors caused by each of them. To make error of the final Boolean operation results less than
the given ǫ everywhere, the test condition in eq. (2.5) has to be changed to the following
form: { √

d (ū, v̄) +
√

d (û, v̂) ≤ ǫ/2
size of each voxel ≤ ǫ

(6.1)

where (û, v̂) and (ū, v̄) is defined the same way as in eq. (2.5). The first equation in eq.
(6.1) ensures the patch (or subpatch) and its approximating polygon are both located inside

two quadrilaterals that are ǫ/2 away. The second equation in eq. (6.1) ensures the error
caused by voxelization is not bigger than ǫ/2. Hence the total error in the whole process is
guaranteed to be less than ǫ.

6.5 Test Results
The proposed approach has been implemented in C++ using OpenGL as the supporting
graphics system on the Windows platform. Quite a few examples have been tested with the
method described here. All the examples have extra-ordinary vertices. Some of the tested
results are shown in Figures 6.2. The resolution of global voxelization is 512× 512× 512 for
all the test examples, and the error for all of them is set to 10−3. The size of each example is
normalized to [0, 1] before voxelization and Boolean operations are performed. Resolutions
of the local voxelization process depend on error tolerance and the given meshes. Hence
resolution of local voxelization is different for each of the examples shown in Figures 6.2.
For example, resolution of local voxelization used for Figures 6.2(k) and 6.2(l) is 8 × 8 × 8,
while for Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) the resolution used for local voxelization is
32×32×32. Although resolutions used for local voxelization are different, the overall error is
the same in the final results. From eq. (6.1) we can see this difference is because intersecting
subpatches in Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) have bigger size than Figures 6.2(k)
and 6.2(l).

In Figure 6.2, all the Difference and Intersection operations are performed on solids
positioned exactly the same as in the Union operation so that we can easily tell if results of
the Boolean operations are correct within the given error tolerance. For example, Figures
6.2(j) and 6.2(g) are results of Difference operation and Union operation, respectively, on
solids placed in the same positions. Similarly, Figures 6.2(i) corresponds to 6.2(h), 6.2(b)
corresponds to 6.2(a), 6.2(d) corresponds to 6.2(c), 6.2(f) corresponds to 6.2(e) and 6.2(l)
corresponds to 6.2(k).

(a) Union (b) Difference (c) Union (d) Difference

(e) Union (f) Difference (g) Union

(h) Union (i) Intersection (j) Difference

(k) Union (l) Difference

Figure 6.2: Boolean Operations Performed on Solids Represented by CCSSs.

Chapter 7

Subdivision Surface based Modeling

A system that performs subdivision surface based modeling using techniques that we have
developed so far has been implemented. Quite a few examples have been tested. The
examples show that our approaches can obtain very good subdivision based representation
results. The structure of the system is shown in Figure 7.2. A snapshot of the system is
shown in Figure 7.3.

One advantage of subdivision surface based modeling is that one can use just one surface
to represent object of any shape and any topology. A comparison of subdivision surface
based representation and multi-piece representation is given in Figure 7.1. Figure 7.1(a) is
the control mesh of the representation surface shown in Figure 7.1(b) and Figure 7.1(c) is
the mesh of the multi-piece representation surface shown in Figure 7.1(d), where different
colors denoting different parts. We can see from Figure 7.1, with subdivision surface based
representation, the number of component in the representation is only one.

69

(a) One-piece mesh (b) One-piece surface

(c) Multi-piece mesh (d) Multi-piece surface

Figure 7.1: Subdivision surface based one-piece and multi-piece Representations.

Basic

Primitives

Subdivision

Meshes

Subdivision

Surfaces
Voxels

Boolean Results with a

Continuous Geometric

Representation

Dense One-Piece

Representation

Sparse One-Piece

Tessellation

with Error Control

Sparse One-Piece

Representation

with Error Control

Any Surface

Irregular

Meshes

Conversion

Refinement or Direct Evaluation

Voxelization

In-Out Test

Joining

Adaptive Tessellation Multiresolution Analysis

Sampling

Interpolation

Figure 7.2: Structure of the subdivision surface based modeling System

Figure 7.3: A snapshot of the subdivision surface based modeling system.

Bibliography

[1] Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological
meshes, Computer-Aided Design, 1978, 10(6):350-355.

[2] D. Doo and M. A. Sabin. Behaviour of recursive subdivision surfaces near extraordinary
points. Computer-Aided Design, 10:356–360, 1978.

[3] C.T. Loop, Smooth subdivision surfaces based on triangles, M.S. Thesis, Department
of Mathematics, University of Utah, Salt Lake City, 1987.

[4] KOBBELT, L.
√

3 Subdivision, Proceedings of SIGGRAPH 2000, pp. 103–112, July,
2000.

[5] Ball AA, Storry DJT, Conditions for tangent plane continuity over recursively gener-
ated B-spline surfaces, ACM Transactions on Graphics, 1988, 7(2): 83-102.

[6] Ball AA, Storry DJT, An investigation of curvature variations over recursively gener-
ated B-spline surfaces, ACM Transactions on Graphics, 1990, 9(4):424-437.

[7] Biermann H, Kristjansson D, Zorin D, Approximate Boolean operations on free-form
solids, Proceedings of SIGGRAPH, 2001: 185-194.

[8] Boier-Martin I, Zorin D, Differentiable Parameterization of Catmull-Clark Subdivision
Surfaces, Eurographics Symposium on Geometry Processing (2004).

[9] Boullion T, Odell P, Generalized Inverse Matrices, New York, Wiley, 1971.

[10] Chen G, Cheng F, Matrix based Subdivision Depth Computation Method for Extra-
Ordinary Catmull-Clark Subdivision Surface Patches, Lecture Notes in Computer Sci-
ence, Vol. 4077, Springer, 2006, 545-552.

[11] Cheng F, Yong J, Subdivision Depth Computation for Catmull-Clark Subdivision Sur-
faces, Computer Aided Design & Applications 3, 1-4, 2006.

[12] Cheng F, Chen G, Yong J, Subdivision Depth Computation for Extra-Ordinary
Catmull-Clark Subdivision Surface Patches, Lecture Notes in Computer Science, Vol.
4035, Springer, 2006, 545-552.

[13] DeRose T, Kass M, Truong T, Subdivision Surfaces in Character Animation, Proc. of
SIGGRAPH, 1998.

73

[14] Doo D, Sabin M, Behavior of recursive division surfaces near extraordinary points,
Computer-Aided Design, 1978, 10(6):356-360.

[15] Halstead M, Kass M, DeRose T, Efficient, fair interpolation using Catmull-Clark sur-
faces, Proceedings of SIGGRAPH, 1993:35-44.

[16] Litke N, Levin A, Schröder P, Trimming for Subdivision Surfaces, Computer Aided
Geometric Design 2001, 18(5):463-481.

[17] Reif U, A unified approach to subdivision algorithms near extraordinary vertices, Com-
puter Aided Geometric Design, 1995, 12(2): 153-174.

[18] Jörg Peters, Ulrich Reif , Analysis of Algorithms Generalizing B-Spline Subdivision,
SIAM Journal of Numerical Analysis, Vol. 35, No. 2, pp. 728-748, 1998.

[19] Lutterkort D, Peters J, Tight linear envelopes for splines, Numerische Mathematik 89,
4, 735-748, 2001.

[20] Peters J, Patching Catmull-Clark Meshes, Proceedings of SIGGRAPH 2000, 255-258.

[21] Sederberg TW, Zheng J, Sewell D, Sabin M, Non-uniform recursive subdivision sur-
faces, Proceedings of SIGGRAPH, 1998:19-24.

[22] Smith J, Epps D, Sequin C, Exact Evaluation of Piecewise Smooth Catmull-Clark Sur-
faces Using Jordan Blocks, http://www.cs.berkeley.edu/∼jordans/pubs/ June, 2004.

[23] Stam J, Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Param-
eter Values, Proceedings of SIGGRAPH 1998:395-404.

[24] Stam J, Evaluation of Loop Subdivision Surfaces, SIGGRAPH’99 Course Notes, 1999.

[25] Peter Schröder, Denis Zorin, Subdivision for Modeling and Animation, SIGGRAPH’98
Course Notes, 1998.

[26] Zorin D, Kristjansson D, Evaluation of Piecewise Smooth Subdivision Surfaces, The
Visual Computer, 2002, 18(5/6):299-315.

[27] Zorin, D., Schröder, P., and Sweldens, W. Interactive Multiresolution Mesh Editing.
In Proceedings of SIGGRAPH 1997, 259-268.

[28] Joe Warren, Henrik Weimer, Subdivision Methods for Geometric Design: A Construc-
tive Approach. ISBN: 1-55860-446-4, Academic Press, 2002.

[29] Kobbelt, L., Interpolatory subdivision on open quadrilateral nets with arbitrary topol-
ogy, Computer Graphics Forum, Eurographics, V.15, 1996.

[30] D. Zorin, P. Schröder, W. Sweldens, Interpolating Subdivision for meshes with arbi-
trary topology, ACM SIGGRAPH, 1996:189-192.

[31] Dyn,N., Levin, D., and Gregory, J. A., A butterfly subdivision scheme for surface
interpolation with tension control, ACM Transactions on Graphics, 9, 2 (1990) 160169.

[32] Nasri, A. H., Surface interpolation on irregular networks with normal conditions, Com-
puter Aided Geometric Design, 8 (1991), 8996.

[33] Austin SP, Jerard RB, Drysdale RL, Comparison of discretization algorithms for
NURBS surfaces with application to numerically controlled machining, Computer
Aided Design 1997, 29(1): 71-83.

[34] Fuhua (Frank) Cheng, Gang Chen and Junhai Yong, Subdivision
Depth Computation for Catmull-Clark Subdivision Surfaces, submitted.
www.cs.uky.edu/∼cheng/PUBL/sub depth.pdf.

[35] Garland M, Heckber P, Surface simplification using quadric error metrics, Proceedings
of SIGGRAPH 1997:209-216.

[36] Settgast V, Müller K, Fünfzig C, et.al., Adaptive Tesselation of Subdivision Surfaces,
In Computers & Graphics, 2004, pp:73-78.

[37] Amresh A, Farin G, Razdan A, Adaptive Subdivision Schemes for Triangular Meshes,
In Hierarchical and Geometric Methods in Scientific Visualization, Springer-Verlag,
2002 pp:319-327.

[38] Wu X, Peters J, An Accurate Error Measure for Adaptive Subdivision Surfaces, In
Shape Modeling International, 2005

[39] M. Böo, M. Amor, M. Doggett, et.al., Hardware Support for Adaptive Subdivision Sur-
face Rendering, In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop
on Graphics hardware 2001, pp:33-40.

[40] Müller K, Techmann T, Fellner D, Adaptive Ray Tracing of Subdivision Surfaces Com-
puter Graphics Forum Vol 22, Issue 3 (Sept 2003).

[41] Smith J, Séquin C, Vertex-Centered Adaptive Subdivision,
www.cs.berkeley.edu/∼jordans/pubs/vertexcentered.pdf.

[42] Isenberg T, Hartmann K, König H, Interest Value Driven Adaptive Subdivision, In
Simulation und Visualisierung, March 6-7, 2003, Magdeburg, Germany.

[43] Sovakar A, Kobbelt L, API Design for adaptive subdivision schemes. 67-72, Computers
& Graphics, Vol. 28, No. 1, Feb. 2004.

[44] Rose D, Kada M, Ertl T, On-the-Fly Adaptive Subdivision Terrain. In Proceedings
of the Vision Modeling and Visualization Conference, Stuttgart, Germany, pp: 87-92,
Nov. 2001.

[45] Wu X, Peters J, Interference detection for subdivision surfaces, Computer Graphics
Forum, Eurographics 23(3):577-585, 2004.

[46] Yong J, Cheng F, Adaptive Subdivision of Catmull-Clark Subdivision Surfaces,
Computer-Aided Design & Applications 2(1-4):253-261, 2005.

[47] Barsky B A, End conditions and boundary conditions for uniform B-spline curve and
surface representation, Computers in Industry, 1982, 3(1/2):17-29.

[48] Halstead M, Kass M, DeRose T, Efficient, fair interpolation using Catmull-Clark sur-
faces, ACM SIGGRAPH, 1993:35-44.

[49] Kallay, M., Ravani, B., Optimal twist vectors as a tool for interpolating a network
of curves with a minimum energy surface, Computer Aided Geometric Design, 7,6
(1990):465-473.

[50] Kersey S N, Smoothing and near-interpolatory subdivision surfaces,
www.cs.georgiasouthern.edu/faculty/kersey s/
private/res/siam2003.pdf

[51] Levin A, Interpolating nets of curves by smooth subdivision surfaces, ACM SIG-
GRAPH, 1999, 57-64.

[52] Litke N, Levin A, Schröder P, Fitting subdivision surfaces, Proceedings of the confer-
ence on Visualization 2001:319-324.

[53] Nasri A H, Sabin M A, Taxonomy of interpolation constraints on recursive subdivision
curves, The Visual Computer, 2002, 18(4):259-272.

[54] Schaefer S, Warren J, A Factored Interpolatory Subdivision Scheme for Quadrilateral
Surfaces, Curves and Surface Fitting, 2002, 373-382.

[55] Peters J, C1-surface splines. SIAM Journal on Numerical Analysis 1995, 32(2):645-666.

[56] Schaefer S., Warren, J., Zorin, D., Lofting curve networks using subdivision surfaces,
Proc 2004 Eurographics symposium on Geometry processing, 2004:103-114.

[57] Baker, T. J., Interpolation from a cloud of points, Proceedings, 12th International
Meshing Roundtable, Sandia National Laboratories, pp.55-63, Sept 2003.

[58] Xunnian Yang, Surface interpolation of meshes by geometric subdivision, Computer-
Aided Design, 2005, 37(5):497-508.

[59] Kestutis Karciauskas and Jörg Peters, Guided Subdivision,
http://www.cise.ufl.edu/research/ SurfLab/papers/05guiSub.pdf, 2005.

[60] Fuhua (Frank) Cheng, Gang Chen and Junhai Yong, Subdivision Depth Computa-
tion for Catmull-Clark Subdivision Surfaces, to appear in Lecture Notes in Computer
Science, Springer, 2006.

[61] Shuhua Lai, Fuhua (Frank) Cheng, Similarity based Interpolation Using Catmull-Clark
Subdivision Surfaces, The Visual Computer 22,9-11 (October 2006), 865-873.

[62] Shuhua Lai, Fuhua (Frank) Cheng, Inscribed Approximation based Adaptive Tessella-
tion, International Journal of CAD/CAM, Vol. 6, No. 1, 2006.

[63] Shuhua Lai, Fuhua (Frank) Cheng, Voxelization of Free-form Solids Represented by
Catmull-Clark Subdivision Surfaces, Lecture Notes in Computer Science, Vol. 4077,
Springer, 2006, pp. 595-601.

[64] Shuhua Lai, Fuhua (Frank) Cheng, Parametrization of Catmull-Clark Subdivision Sur-
faces and its Applications, Computer Aided Design & Applications, 3, 1-4, 2006.

[65] Shuhua Lai, Fuhua (Frank) Cheng, Near-Optimum Adaptive Tessellation of General
Catmull-Clark Subdivision Surfaces, CGI 2006, Lecture Notes in Computer Science,
Vol. 4035, Springer, 2006, pp. 562-569.

[66] Shuhua Lai, Fuhua (Frank) Cheng, Texture Mapping on Surfaces of Arbitrary Topology
using Norm Preserving based Optimization, The Visual Computer, 21(1-8):783-790,
2005.

[67] Shuhua Lai, Fuhua (Frank) Cheng, Adaptive Rendering of Catmull-Clark Subdivi-
sion Surfaces, 9th International Conference of Computer Aided Design & Computer
Graphics, 125-130, 2005.

[68] Shuhua Lai, Shiping Zou, Fuhua (Frank) Cheng, Constrained Scaling of Catmull-Clark
Subdivision Surfaces, Computer Aided Design & Applications, 1(1-4): 7-16, 2004.

[69] David Guinnip, Shuhua Lai and Ruigang Yang. View Dependent Textured Splatting
for Rendering Live Scenes, ACM SIGGRAPH poster, 2004.

[70] Shuhua Lai, Fuhua (Frank) Cheng, Robust and Error Controllable Boolean Operations
on Free-Form Solids Represented by Catmull-Clark Subdivision Surfaces, Submitted.

[71] V. Settgast, K. Müler, Christoph Füfzig et.al., Adaptive Tesselation of Subdivision
Surfaces in OpenSG, In Proceedings of OpenSG Symposium, 2003, pp:39-47.

[72] Cohen, D. and Kaufman, A., Scan Conversion Algorithms for Linear and Quadratic
Objects, in Volume Visualization, A. Kaufman, (ed.), IEEE Computer Society Press,
Los Alamitos, CA, 1990, 280-301.

[73] Kaufman, A. and Shimony, E., 3D Scan-Conversion Algorithms for Voxel-Based Graph-
ics, Proc. ACM Workshop on Interactive 3D Graphics, Chapel Hill, NC, October 1986,
45-76.

[74] Mokrzycki, W., Algorithms of Discretization of Algebraic Spatial Curves on Homoge-
neous Cubical Grids, Computers & Graphics, 12, 3/4 (1988), 477-487.

[75] A. Kaufman, D. Cohen. Volume Graphics. IEEE Computer, Vol. 26, No. 7, July 1993,
pp. 51-64.

[76] T.A. Galyean and J.F. Hughes. Sculpting: An interactive volumetric modeling tech-
nique. Computer Graphics, Proceedings of SIGGRAPH91, 25(4):267C274, July 1991.

[77] M. W. Jones and R. Satherley. Voxelisation: Modelling for Volume Graphics. In Vision,
Modeling, and Visualization 2000, IOS Press, pp. 319-326.

[78] E.A. Karabassi, G. Papaioannou, and T. Theoharis. A fast depth-buffer-based vox-
elization algorithm. Journal of Graphics Tools, 4(4):5-10, 1999.

[79] M. Sramek. Gray level voxelisation: a tool for simultaneous rendering of scanned and
analytical data. Proc. the 10th Spring School on Computer Graphics and its Applica-
tions, Bratislava, Slovak Republic, 1994, pp. 159-168.

[80] D. Haumont and N. Warzee. Complete Polygonal Scene Voxelization, Journal of Graph-
ics Tools, Volume 7, Number 3, pp. 27-41, 2002.

[81] M.W. Jones. The production of volume data from triangular meshes using voxelisation,
Computer Graphics Forum, vol. 15, no 5, pp. 311-318, 1996.

[82] S. Thon, G. Gesquiere, R. Raffin, A low Cost Antialiased Space Filled Voxelization Of
Polygonal Objects, GraphiCon 2004, pp. 71-78, Moscou, Septembre 2004.

[83] Kaufman, A., An Algorithm for 3D Scan-Conversion of Polygons, Proc. EURO-
GRAPHICS’87, Amsterdam, Netherlands, August 1987, 197-208.

[84] Kaufman, A., Efficient Algorithms for 3D Scan-Conversion of Parametric Curves, Sur-
faces, and Volumes, Computer Graphics, 21, 4 (July 1987), 171-179.

[85] M. Sramek and A. Kaufman, Object voxelization by filtering, IEEE Symposium on
Volume Visualization, pp. 111-118, 1998.

[86] S. Fang and H. Chen. Hardware accelerated Voxelisation. Volume Graphics, Chapter
20, pp. 301-315. Springer-Verlag, March, 2000.

[87] Beckhaus S., Wind J., Strothotte T., Hardware-Based Voxelization for 3D Spatial
Analysis Proceedings of CGIM ’02, pp. 15-20, August 2002.

[88] Sramek M. Non-binary voxelization for volume graphics, Proceedings of Spring Con-
ference on Computer Graphics, 2001. p. 35C51.

[89] J. Baerentzen, Octree-based volume sculpting, Proc. of. IEEE Visualization, pages
9C12, 1998.

[90] N. Stolte, A. Kaufman, Efficient Parallel Recursive Voxelization for SGI Challenge
Multi-Processor System, Computer Graphics International, 1998.

[91] Nilo Stolte, Graphics using Implicit Surfaces with Interval Arithmetic based Recursive
Voxelization, Computer Graphics and Imaging, pp. 200-205, 2003.

[92] T. Duff, Interval arithmetic and recursive subdivision for implicit functions and con-
structive solid geometry, SIGGRAPH, pp. 131–138, July, 1992.

[93] Lee, Y. T. and Requicha, A. A. G., Algorithms for Computing the Volume and Other
Integral Properties of Solids: I-Known Methods and Open Issues; II-A Family of Al-
gorithms Based on Representation Conversion and Cellular Approximation, Commu-
nications of the ACM, 25, 9 (September 1982), 635-650.

[94] S. Fang and D. Liao. Fast CSG Voxelization by Frame Buffer Pixel Mapping.
ACM/IEEE Volume Visualization and Graphics Symposium 2000 (Volviz’00), Salt
Lake City, UT, 9-10 October 2000, 43-48.

[95] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, Markus Gross, Surface Splat-
ting, SIGGRAPH 2001.

[96] Cohen Or, D., Kaufman, A., Fundamentals of Surface Voxelization, Graphical Models
and Image Processing, 57, 6 (November 1995), 453-461.

[97] Jian Huang, Roni Yagel, V. Fillipov and Yair Kurzion, An Accurate Method to Voxelize
Polygonal Meshes, IEEE Volume Visualization’98, October, 1998.

[98] S. Krishnan and D. Manocha, Computing Boolean Combinations of Solids Composed
of Free-form Surfaces, Proceedings of the 1996 ASME Design for Manufacturing Con-
ference, August 1996.

[99] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Surface/surface intersection.
Computer Aided Geometric Design, 4(1-2):3-16, July 1987.

[100] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. On degeneracy in geometric
computations. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp16-23, New York, 1994.

[101] Katrin Dobrindt, Kurt Mehlhorn, and Mariette Yvinec. A complete and efficient al-
gorithm for the intersection of a general and a convex polyhedron. In Algorithms and
data structures, pp314-324, 1993.

[102] Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs. Fast constructive solid ge-
ometry display in the pixel-powers graphics system. Proceedings of SIGGRAPH 1986,
20(4):107-116.

[103] Shankar Krishnan and Dinesh Manocha. An efficient surface intersection algorithm
based on lower-dimensional formulation. ACM Transactions on Graphics, 16(1):74-
106, January 1997.

[104] Ari Rappoport and Steven Spitz. Interactive Boolean operations for conceptual design
of 3D solids. Proceedings of SIGGRAPH 97, pp269-278, 1997.

[105] T. Sederberg and T. Nishita. Geometric hermite approximation of surface patch inter-
section curves. Computer Aided Geometric Design, 8(2):97-114, 1991.

[106] R. Seidel. The nature and meaning of perturbations in geometric computing. Discrete
Comput. Geom., 19(1):1-17, 1998.

[107] N. M. Patrikalakis, Surface-to-surface Intersections, IEEE Computer Graphics and
Applications, 13(1):89-95, 1993.

[108] Bieri, H., Nef,W., Elementary set operations with d-dimensional polyhedra. Computa-
tional Geometry and its Applications, LNCS 333, Springer-Verlag, 1988, pp. 97-112.

[109] Chazelle, B., An optimal algorithm for intersecting three dimensional convex polyhe-
dra. SIAM J. Comput., 21(4):671-696, 1992.

[110] Wiegand, T.F., Interactive rendering of CSG models. Computer Graphics Forum,
15(4):249-261, 1996.

[111] Duoduo Liao, Shiaofen Fang, Fast CSG Voxelization by Frame Buffer Pixel Mapping,
Proceedings of the 2000 IEEE Symposium on Volume Visualization, pp. 43-48, 2000.

[112] Bart Adams, Philip Dutré, Interactive Boolean operations on surfel-bounded solids,
ACM SIGGRAPH 2003, pp651-656.

[113] Grossman, J. P., Dally, W. J. Point sample rendering. Eurographics Rendering Work-
shop 1998, pp181-192.

[114] S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet repre-
sentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, pp.
674–693, Jul 1989.

[115] Charles K. Chui, An Introduction to Wavelets, (1992), Academic Press, San Diego,
ISBN 91-58831.

[116] M. Lounsbery, T. DeRose and J. Warren, Multiresolution analysis for surfaces of ar-
bitrary topological type, Transaction on Graphics 16,1, vol. 99, 1997.

[117] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery and W. Stuetzle, Multires-
olution analysis of arbitrary meshes, ACM SIGGRAPH 1995, pp173-182.

[118] Adam Finkelstein, David H. Salesin, Multiresolution curves, ACM SIGGRAPH 1994,
pp261-268.

[119] Steven J. Gortler and Michael F. Cohen, Hierarchical and Variational Geometric Mod-
eling with Wavelets, In Proceedings Symposium on Interactive 3D Graphics, pp35-42,
April 1995.

[120] L. Kobbelt, S. Campagna, J. Vorsatz and H. P. Seidel, Interactive multi-resolution
modeling on arbitrary meshes, In ACM SIGGRAPH 1998, pp105C114.

[121] R. DeVore, B. Jawerth, and B. Lucier, Image compression through wavelet transform
coding, IEEE Trans. Information Theory, 38, 2 (1992), pp. 719–746, Special issue on
Wavelet Transforms and Multiresolution Analysis.

[122] Dan Piponi, George Borshukov, Seamless texture mapping of subdivision surfaces by
model pelting and texture blending, SIGGRAPH 2000, pp. 471–478.

[123] L. Kobbelt, T. Bareuther, H. P. Seidel, Multiresolution shape deformations for meshes
with dynamic vertex connectivity, Computer Graphics Forum (Eurographics2000),
19(3), C249-C259 (2000).

[124] D. Gonsor and M. Neamtu. Subdivision surfaces - can they be useful for geometric
modeling applications?, Technical Report, Boeing Technical Report 01-011, Boeing
Company, 2001.

[125] Wang H, Qin K, 2004. Estimating Subidivision Depth of Catmull-Clark Surfaces. J.
Comput. Sci. & Technol. 19, 5, 657-664.

[126] Wu X, Peters J, An Accurate Error Measure for Adaptive Subdivision Surfaces, Proc.
Shape Modeling International 2005, 1-6.

