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Report SummaryWe onsider this grant, up to this point, a big suess. We not only have reahed most of ourresearh goals, i.e., developing the neessary mathematial theories and geometri algorithmsto support Catmull-Clark subdivision surfae (CCSS) based modeling (with the exeptionof one item: fairing), but also produed a PhD (Dr. Shuhua Lai, graduated in August, 2006,urrently an Assistant Professor at the Virginia State University), an MS (Mr. Gang Chen,graduated in Deember 2006, urrently working in L.A., California), and 11 journal papersand 1 onferene paper. We antiipate another MS (Mr. Conglin Huang) to be produed atthe end of this year and another PhD (Mr. Fengtao Fan) to be produed at the end of nextyear.Subdivision surfaes are apable of representing any geometri shape with only one sur-fae, no matter how ompliated the topology. However, modeling tehniques for CCSSshave not been well developed yet. A main reason is we don't know how to preisely estimatethe error of the subdivision proess yet. Consequently, to ensure the modeling result wouldsatisfy the preision requirement, we usually over-subdivide the ontrol meshes of the CCSSsinvolved. This ertainly is not preferred beause not only the subdivision proess itself ismore ostly then, the resulting meshes are also more ostly to use.In this projet, we address this problem �rst. We need to know how to ompute subdi-vision depth for CCSSs for given error tolerane. We also need to know how to eÆientlyevaluate the value of a subdivision surfae at a given point, the so-alled parametrizationproblem. This is beause tessellation, trimming, fairing and shape design all need this apa-bility of a subdivision surfae. Hene, this problem has to be addresses before other issuesas well. One these problems are addressed, four approahes for CCSS based modeling willthen be developed.The �rst approah is interpolation. By sampling some representative points from a given



objet model, a ontrol mesh an be onstruted and its subdivision surfae interpolatesall the sampled representative points and meanwhile is very lose to the given data model.Interpolation is a simple way to build models, but the fairness of the interpolating surfae isa big onern in previous methods. By using similarity based interpolation, we an obtainbetter modeling result with less undesired artifats and undulations.The seond approah is to performed trimming operation on CCSSs and use this operationas a ore proess in performing Boolean operations on objets represented by CCSSs. Booleanoperations are a natural way of onstruting omplex solid objets out of simpler primitives.Up to this point, aurate Boolean operations over subdivision surfaes are not reahed yetin the literature. We have developed a robust and error ontrollable trimming operationmethod whih is based on voxelization of subdivision surfaes. Di�erent from previousvoxelization based Boolean operation methods, our method results in a ontinuous geometrirepresentation, i.e., a polygonal mesh of the resulting trimming operation. Beause theresulting polygonal mesh is very dense, error ontrollable simpli�ation of the ontrol meshesis needed. A method is presented for this purpose: adaptive tessellation. This method (to bedisussed below) an signi�antly redue the omplexity of a polygonal mesh and meanwhilehave aurate error estimation.The third approah is adaptive tessellation of CCSSs. Catmull-Clark subdivision shemeprovides a powerful method for building smooth and omplex surfaes. But the numberof faes in the uniformly re�ned meshes inreases exponentially with respet to subdivisiondepth. Adaptive tessellation redues the number of faes needed to yield a smooth approx-imation to the limit surfae and, onsequently, makes the rendering proess more eÆient.Di�erent from previous ontrol mesh re�nement based approahes, whih generate approx-imate meshes that usually do not interpolate the limit surfae, the new method is basedon diret evaluation of the limit surfae to generate an insribed polyhedron of the limitsurfae. Our method has omplete ontrol of the auray of the tessellation result. Craks



are avoided by using a reursive olor marking proess to ensure that adjaent pathes orsubpathes use the same limit surfae points in the onstrution of the shared boundary.The new method performs limit surfae evaluation only at points that are needed for the�nal rendering proess.A system that performs subdivision surfae based modeling is implemented and quitea few examples have been tested. All the examples show that our approahes an obtainvery good subdivision based representation results. Details of the new methods and relatedmaterials an be found in the attahed pdf �le of the 'Annual Report'. The fourth approah:fairing, is not inluded in this report beause we are still working on it now.The remaining part of the report is arranged as follows. In Chapter one, we desribeour goal and present the struture of a subdivision surfae based modeling system. Ourparametrization tehnique for a CCSS is presented in Chapter 2. A subdivision depth om-putation tehnique for CCSSs is presented in Chapter 3. An interpolation based shape designtehnique for CCSSs is shown in Chapter 4. A trimming tehnique with its appliations inBoolean operations for objets represented by CCSSs is shown in Chapter 6. A voxelizationtehnique required in the trimming proess is disussed in Chapter 5 �rst. The last hap-ter, Chapter 7, shows the simpli�ation tehniques: adaptive tessellation, developed by thisprojet to redue the omplexity of a polygon mesh.
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Chapter 1Introdution
1.1 MotivationSubdivision surfaes [1, 2, 3, 4, 7, 12, 14, 15, 22, 27℄ have beome popular reently in graphialmodeling and animation beause of their apability in modeling and representing omplexshape of arbitrary topology , their relatively high visual quality, and their stability andeÆieny in numerial omputation. Subdivision surfaes an model and represent omplexshape of arbitrary topology beause there is no limit on the shape and topology of theontrol mesh of a subdivision surfae [1, 2, 3℄. Atually, subdivision surfaes have alreadybeen used as primitives in several ommerial systems suh as AliasjWavefronts's Maya,Pixar's Renderman, Nihimen's Mirai, and Newtek's Lightwave 3D.Basially, subdivision is a method for generating smooth surfaes, whih �rst appearedas an extension of splines to arbitrary topology ontrol meshes [1, 2, 3℄. Subdivision shemesan be onsidered as an algorithmi generalization of lassial spline tehniques enablingontrol meshes with arbitrary topology. They provide easy aess to globally smooth sur-faes of arbitrary shape by iteratively applying simple re�nement rules to the given ontrolmesh. A sequene of meshes generated by this proess quikly onverges to a smooth limitsurfae. For most pratial appliations, the re�ned meshes are already suÆiently lose tothe smooth limit after only a few re�nement steps. Complex smooth surfaes an be derived1



in a reasonably preditable way from relatively simple meshes. There are many subdivisionshemes that have been proposed in past thirty years [1, 2, 3, 4, 16, 20, 28, 29, 30, 53℄. TheCatmull-Clark subdivision sheme [1℄, the Doo-Sabin subdivision sheme [2℄ and the Loopsubdivision sheme [3℄ are the most well-known, and are used in many high-end modelingand animation pakages. There are quite a few other shemes. The Buttery sheme [30℄and a losely related sheme known as Modi�ed Buttery [29℄ also use triangle meshes. Oth-ers inlude the Kobbelt's Interpolation Quadrilateral sheme [28℄, the Loal Surfae Fittingsheme [53℄, and many variations on the themes of the above. The rules given for the aboveshemes are usually only suitable for losed surfaes. Surfaes with boundaries need speialase rules to handle the boundary without unpleasant artifats.With the parametrization tehnique for subdivision surfaes beoming available [8, 22,23, 63℄ and with the fat that non-uniform B-spline and NURBS surfaes are speial asesof subdivision surfaes beoming known [20℄, we now know that subdivision surfaes overboth parametri forms and disrete forms. Parametri forms are good for design and repre-sentation, disrete forms are good for mahining and tessellation (inluding Finite Elementmesh generation). Hene, we have a representation sheme that is good for all graphis andCAD/CAM appliations.Researh work for subdivision surfaes has been done in several important areas, suhas surfae texture mapping [65, 121℄, surfae interpolation [14, 28, 29, 30, 31, 60℄, exatsurfae evaluation [8, 21, 22, 23, 25℄, surfae trimming [15℄, Boolean operations [7, 69, 97℄,deformation [122℄, mesh editing [26, 115, 116℄, omputer animation [12, 24℄ et.Although subdivision surfaes are apable of modeling and representing omplex shapeof arbitrary topology and are well studied in many appliations, methods on how to buildthe ontrol mesh of a omplex surfae are not studied muh. Currently, most meshes ofompliated objets ome from triangulation and simpli�ation of raster sanned data points,like the Stanford 3D Sanning Repository. This approah is ostly and leads to very dense



meshes.The objetive of this researh work is to develop neessary mathematial theories andgeometri algorithms to support subdivision surfae based modeling. Subdivision surfaebased modeling means to represent the �nal objet in a design proess with only a subdivisionsurfae (i.e. a sparse ontrol mesh), no matter how ompliated the objet's topology orshape. No deomposition of the objet into simpler omponents is neessary. Hene thenumber of parts in the �nal representation is always the minimum: one. Another goalof this work is to build a system that an represent any ompliated 3D objet and theirBoolean operation results with only one sparse mesh struture. One every given objet anbe represented with one simple mesh, it would be very onvenient and eÆient to render,manipulate, store and transmit any virtual environment.1.2 Subdivision SurfaesWe onsider primarily stationary subdivision shemes in this researh work, whih meansthat the hoies of the re�nement rules do not depend on the subdivision level. One amesh is re�ned, the old mesh will not be used in omputing the next level of verties. Thepositions of verties for the next subdivision step only rely on the topology and positionof the urrent mesh. This requirement makes the implementation highly eÆient and alsomakes the analysis of subdivision surfaes muh simpler.Many di�erent shemes exist for the atual subdivision proess [1, 2, 3, 4, 16, 20, 28,29, 30, 53℄. The �rst two were developed in 1978 by two di�erent pairs of people. TheDoo-Sabin sheme [2℄ and the Catmull-Clark sheme [1℄ are the most well-known, and areused in many high-end modeling and animation pakages. A third popular sheme developedrelatively reently, the Loop sheme [3℄, works only on triangle meshes. There are also othersubdivision shemes, like p3 sheme [4℄ et. Most subdivision methods are approximating.But there are also some interpolating subdivision shemes whose limit surfae interpolates



the given initial ontrol points. Suh sheme inludes Buttery sheme [30℄ and Kobbeltinterpolating sheme [28℄ et.Given an initial mesh, subdivision omputes a sequene of re�ned meshes onverging toa limit surfae. The re�ned meshes are obtained by adding new verties to the mesh andonneting them with old verties. The positions of new verties are omputed as funtions ofpositions of the old verties. The positions of old verties in the re�ned mesh an be modi�edas well. To speify a subdivision sheme, two rules need to be desribed: a topologial rulefor obtaining the graph of the re�ned mesh from the graph of the initial mesh and a rule foromputing the positions of new verties and modifying positions of the old verties. As anexample, the Catmull-Clark subdivision sheme [1℄ is introdued below.
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Figure 1.1: Basi Conept of the Catmull-Clark Sheme.Given a ontrol mesh, a Catmull-Clark subdivision surfae (CCSS) is generated by itera-tively re�ning the ontrol mesh [1℄. The limit surfae is alled a subdivision surfae beausethe mesh re�ning proess is a generalization of the uniform B-spline surfae subdivision teh-nique. Therefore, CCSSs inlude uniform B-spline surfaes and pieewise B�ezier surfaesas speial ases. It is known now that CCSSs inlude non-uniform B-spline surfaes andNURBS surfaes as speial ases as well [20℄. The valene of a mesh vertex is the numberof mesh edges adjaent to the vertex. A mesh vertex is alled an extra-ordinary vertex if its



valene is di�erent from four. Vertex V in Figure 1.1 is an extra-ordinary vertex of valene�ve. A mesh fae with an extra-ordinary vertex is alled an extra-ordinary fae. The valaneof an extra-ordinary fae is the valene of its extra-ordinary vertex. In the following, for thesake of simpliity, a mesh fae and the orresponding surfae path will be denoted by thesame notation.In the Catmull-Clark subdivision sheme[1℄, eah mesh re�ning step involves the on-strution of three new types of points: fae points, edge points and vertex points, see Figure1.1. New points are onneted to form a new ontrol mesh. These ontrol meshes onvergeto a limit surfae. A fae point is reated for eah old polygon, de�ned as the average ofevery point in the polygon, i.e., entroid of eah fae:Fk+1i = Vk + Eki + Fki +Eki+14where k is the subdivision level. An edge point is reated for eah old edge, de�ned as theaverage of the midpoint of the original edge and the midpoint of the two new fae points forthe polygons that adjoin the original edge:Ek+1i = Vk +Eki + Fk+1i�1 + Fk+1i4And �nally, new vertex points are de�ned as follows.Vk+1 = n� 2n Vk + 1n2 nXi=1 Eki + 1n2 nXi=1 Fkiwhere n is the valane of vertex V and k is the subdivision depth. In this report, we onsidergeneral CCSSs. That is, the new vertex point Vk+1 is omputed as follows:Vk+1 = �nVk + �nn nXi=1 Eki + nn nXi=1 Fki (1.1)where �n, �n and n are positive numbers and their sum equals one.The new points then are onneted (see Fig. 1.1): eah fae point onnets to an edgepoint, whih onnets to a new vertex point, whih onnets to the edge point of the adjoining



edge, whih returns to the fae point. This is done for eah suh quadruple, fanning outquadrilaterals around the faes. The sheme only produes quadrilaterals, although they arenot neessarily planar.
(a) Initial ontrol mesh (b) ontrol mesh after one re�ne-ment

() after two re�nements (d) limit surfae of a ventilationontrol omponentFigure 1.2: An example of Catmull-Clark Subdivision Surfaes.CCSSs an model/represent omplex shape of arbitrary topology beause there is nolimit on the shape and topology of the ontrol mesh of a CCSS [1℄. See Figure 1.2(d)for the representation of a ventilation ontrol omponent with a single CCSS. The initialontrol mesh of the surfae and the ontrol mesh after one re�nement and two re�nementsare shown in Figure 1.2(a), Figure 1.2(b) and Figure 1.2(), respetively. The ventilationontrol omponent is a solid with seventeen holes (handles). It an not be represented by asingle trimmed B-spline or NURBS surfae.



1.3 Subdivision Surfae based RepresentationSubdivision surfaes have important impat on several areas of geometri modeling:� Representation: Subdivision surfaes provide a more general surfae representationsheme to the design ommunity beause subdivision surfaes inlude traditional sur-fae representation shemes as speial ases. For instane, a NURBS surfae an begenerated as a subdivision surfae through knot insertion. Subdivision surfaes alsoprovide a di�erent way to generate traditional surfaes.� Modeling Capability: Subdivision surfaes provide more exibility in shape mod-eling than traditional surfae representation shemes. It is possible to represent anyomplex shape with only one subdivision surfae. It is even possible to represent theresult of a Boolean operation of two surfaes by a single subdivision surfae. This isdue to the fat that the ontrol mesh of a subdivision surfae an be of any shape andof any topology.� Numerial Stability: The onstrution proess of a subdivision surfae is numeriallystable no matter how ompliated the shape of the surfae. This is beause the meshre�ning proess of a subdivision surfae is a loal proess. It shares the same kind ofnumerial stability as the deCasteljau algorithm and the De Boor algorithm. Note thatthese algorithms represent some mesh re�ning proesses as well.� Smoothness and Disretization: Subdivision surfaes an be represented both inparametri form and disrete form. Therefore subdivision surfaes enjoy advantagesof both representation shemes. The polygonal mesh form of a subdivision surfae isextremely suitable for mahining and tessellation (inluding FE mesh generation). Onthe other hand, it is possible to generate smooth parametri subdivision surfaes ofany shape and any topology for any design purpose. These surfaes an be C1, G1, C2



or G2 ontinuous everywhere exept at a few extraordinary points where smoothnessof the surfae is only one order lower that that at other points. Hene we have arepresentation sheme that is good for all CAD/CAM appliations.However, geometri algorithms and modeling tehnologies required in subdivision surfaebased modeling operations are not well studied yet [123℄. For instane, even though it isknown that one an use a subdivision surfae to model/represent omplex shape of arbitrarytopology, a methodology on how to build the ontrol mesh of suh a surfae has never beenpresented. The onstrution is basially a trial-and-error proess.Hene we need approahes to onstrut one-piee represented ontrol meshes for omplexshape with arbitrary topology. Subdivision surfae based modeling representation means torepresent the �nal objet in a design proess with a subdivision surfae (i.e. a sparse ontrolmesh), no matter how ompliated the objet's topology or shape. No deomposition ofthe objet into simpler omponents is neessary. Hene the number of parts in the �nalrepresentation is always the minimum: one.In this annual report, we study four tehniques for subdivision surfae based modeling.One tehnique is to use the subdivision surfae interpolation tehnique to approximate thesurfae of the given model. But this approah would be diÆult to build features suh asusps, reases and darts into the resultant surfae in suh a proess. A seond tehnique is toonstrut a mesh through Boolean operations and multiresolution analysis. Both approahesan ahieve good results and an have expliit error ontrol.A omparison of subdivision surfae based representation and multi-piee representationis given in Figure 1.3. Figure 1.3(a) is the ontrol mesh of the representation surfae shownin Figure 1.3(b) and Figure 1.3() is the mesh of the multi-piee representation surfaeshown in Figure 1.3(d), where di�erent olors denoting di�erent parts. We an see fromFigure 1.3, with subdivision surfae based representation, the number of omponent in therepresentation is only one.



(a) One-piee mesh (b) One-piee surfae

() Multi-piee mesh (d) Multi-piee surfaeFigure 1.3: Subdivision surfae based one-piee and multi-piee Representations.1.4 Struture of the Subdivision based Modeling Sys-temThe objetive of the subdivision based one piee representation system is to represent the�nal objet in a design proess with only one subdivision surfae (i.e. a sparse ontrol mesh),no matter how ompliated the objet's topology or shape and no deomposition of the objetinto simpler omponents is neessary. Hene the output of our system is always a sparseontrol mesh whose Catmull-Clark subdivision surfae approximates the target model. Thesystem provides two possible ways to onstrut suh sparse ontrol mesh: interpolation andBoolean operations. Our system supports CSG (Construtive Solid Geometry) operationsas well as long as the CSG primitives are represented in subdivision surfaes. The overall
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framework of the system is shown is Figure 1.4. The main steps of the framework will bedisussed in the later hapters.1.5 ContributionsOur researh work for this projet is foused on developing neessary mathematial theoriesand geometri algorithms to support subdivision surfae based modeling. In this setion wesummarize the ontributions of this annual researh work as follows.� Parametrization of CCSSs [63℄:Subdivision methods for evaluating surfaes rely on performing repeated subdivisionsuntil the ontrol struture approximates the limit surfae within some tolerane. Itis then possible to push the ontrol points to their limit positions and bilinearly in-terpolate values aross an inexat surfae path. One of the main problems that mayhinder the usage of subdivision surfaes in shape design is the exponential growth rateof the number of verties in the re�ned mesh with respet to the subdivision depth.This would make realisti rendering and auray requirement both diÆult to ahievefor ompliated objets. Hene an expliit and exat evaluation and parametrizationmethod for subdivision surfae is indispensable.However, powerful evaluation and analysis tehniques for subdivision surfaes have notbeen fully developed yet. Parametrization methods that have been developed so far aresuitable for evaluation purpose only, not for analysis purpose, beause these methodseither do not have an expliit expression, or are too ompliated for eah part to beexpliit. For instane, in [22℄, eigen funtions are pre-omputed numerially and storedin a �le. So they an be used for evaluation purpose only.We proposed a new parametrization tehnique for general Catmull-Clark subdivisionsurfaes. The new tehnique extends J. Stam's work [22℄ by rede�ning all the eigen



(a) Control mesh (b) Limit surfaeFigure 1.5: Diret and exat evaluation of Catmull-Clark subdivision surfaes.basis funtions in the parametri representation for general Catmull-Clark subdivisionsurfaes and giving eah of them an expliit form. The entire eigen struture of thesubdivision matrix and its inverse are omputed exatly and expliitly with no needto preompute anything. Therefore, the new representation an be used not onlyfor evaluation purpose, but for analysis purpose as well [63℄. Our new approah isbased on an 
-partition of the parameter spae and a detoured subdivision path. Thisresults in a blok diagonal matrix with onstant size diagonal bloks (7 � 7) for theorresponding subdivision proess. Consequently, eigen deomposition of the matrixis always possible and is simpler and more eÆient. Furthermore, sine the numberof eigen basis funtions required in the new approah is only one half of the previousapproah [22℄, our new parametrization is also more eÆient for evaluation purpose.



The amel model shown in Figure 1.5 is rendered using our parametrization tehniqueswith all the positions and normals exatly omputed, not approximated. Hene, thequality of the image is better than those generated through the subdivision proess.� Interpolation of meshes of arbitrary topology [60℄:Interpolation is a diret approah for building a sparse mesh struture of a given modelin our subdivision based modeling system. Although there exist some interpolationmethods using subdivision surfaes [14, 30, 31, 57℄, most of them annot handle openmeshes and the resultant surfae exhibits undesired artifats and undulations. Weproposed a new method for onstruting a sparse mesh whose smooth Catmull-Clarksubdivision surfae (CCSS) interpolates the verties of a mesh with arbitrary topol-ogy. The new method handles both open and losed meshes. Normals or derivativesspei�ed at any verties of the mesh (whih an atually be anywhere) an also beinterpolated. The onstrution proess is based on the assumption that, in addition tointerpolating the verties of the given mesh, the interpolating surfae is also similar tothe limit surfae of the given mesh. Therefore, onstrution of the interpolating surfaean use information from the given mesh as well as its limit surfae. This approah,alled similarity based interpolation [60℄, gives us more ontrol on the smoothness ofthe interpolating surfae and, onsequently, avoids the need of shape fairing in the on-strution of the interpolating surfae. The omputation of the interpolating surfae'sontrol mesh follows a new approah, whih does not require the resulting global linearsystem to be solvable. An approximate solution provided by any fast iterative linearsystem solver is suÆient. Nevertheless, interpolation of the given mesh is guaranteed.This is an important improvement over previous methods beause with these features,the new method an handle meshes with large number of verties eÆiently. Althoughthe new method is presented for CCSSs, the onept of similarity based interpolation



an be used for other subdivision surfaes as well.Figure 1.6 gives us an example of subdivision surfae based representation using inter-polation tehniques. Figure 1.6(a) is a given model for whih we need to onstrut aspars ontrol mesh. Figure 1.6(b) is a mesh whose ontrol points are diretly sampledfrom the model shown in Figure 1.6(a). By using our interpolation tehnique, we anonstrut a sparse ontrol mesh shown in Figure 1.6(d), whose limit surfae interpo-lates the sampled mesh shown in Figure 1.6(b) and would also be almost the sameas the given model shown in Figure 1.6(a). Figure 1.6() is the limit surfae of themesh shown in Figure 1.6(b), whih an be used as a referene surfae in the proessof onstruting the mesh shown in Figure 1.6(d). The mesh shown in Figure 1.6(d) isalled the subdivision surfae based representation of the given model shown in Figure1.6(a).

(a) Given model (b) Sampled meshof model (a) () Limit surfaeof sample mesh(b) (d) Mesh ofone-piee rep-resentation of(a)Figure 1.6: subdivision surfae based representation using interpolation tehniques.
� Voxelization of free-form solids [62℄:A voxelization tehnique and its appliations for objets with arbitrary topology are



presented. With parametrization tehniques for subdivision surfaes beoming avail-able, it is possible now to model and represent any ontinuous but topologially om-plex objet with an analytial representation. We proposed a method to onvert afree-form objet from its ontinuous geometri representation into a set of voxels thatbest approximates the geometry of the objet. Unlike traditional 3D san-onversionbased methods, our voxelization method is performed by reursively subdividing the2D parameter spae and sampling 3D points from seleted 2D parameter spae points.Beause we an alulate every 3D point position expliitly and aurately, uniformsampling on surfaes with arbitrary topology is not a problem any more.

(a) Given mesh (b) Limit surfaeof (a) () Voxelization of(b) with resolution128� 128� 128 (d) Voxelization of(b) with resolution512� 512� 512Figure 1.7: Voxelization of free-form solids.Moreover, our disretization of 3D losed objets is guaranteed to be leak-free when a3D ooding operation is performed. This is ensured by proving that our voxelizationresults satisfy the properties of separability, auray and minimality. In addition, a 3Dvolume ooding algorithm using dynami programming tehniques is presented whih



signi�antly speeds up the volume ooding proess. Hene our method is suitable forvisualization of omplex senes, measuring objet volume, mass, surfae area, deter-mining intersetion urves of multiple surfaes and performing aurate Boolean/CSGoperations. These apabilities are demonstrated by test examples shown in the report.For example, Figure 1.7 gives two results of voxelization of the roker arm model shownin Figure 1.7(b), whose mesh is shown in Figure 1.7(a). The result shown in Figure1.7() is obtained by voxelizing the roker arm model using resolution 128� 128� 128,while Figure 1.7(d) is obtained using resolution 512�512�512. It is easy to see, whenresolution is high enough, the voxelization result would be lose enough to the originalmodel.� Boolean operations on free-form solids [69℄:A method for performing robust and error ontrollable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfaes (CCSSs) is developed.The given objets are voxelized to make Boolean operations more eÆient. However,di�erent from previous voxelization based approahes, the �nal result of the Booleanoperations in our method is represented with a ontinuous geometri representation( i.e. a polygonal mesh). This is ahieved by doing the Boolean operations in theparameter spaes of the solids, instead of the objet spae. The 2D parameter spae isreursively subdivided until a keep-or-disard deision an be made for eah resultingsubpath using results of the voxelization proess. This approah allows us to easilyompute a ontinuous approximation of the intersetion urve and, onsequently, builda ontinuous geometri representation for the Boolean operation result. To make theBoolean operation result more aurate, a seondary loal voxelization an be per-formed for interseting subpathes. Beause the voxelization proess itself is very fastand robust, the overall proess is fast and robust too. Most importantly, error of



Boolean operation result an be estimated, hene error ontrol is possible. In addition,our method an handle any ases of Boolean operations as long as the given solids arerepresented by CCSSs. Therefore there are no speial or degenerated ases to takeare of. Although the new method is presented for CCSSs, the onept atually worksfor any subdivision sheme whose limit surfaes an be parameterized. See Figure 1.8for an example of performing Boolean operations between two solids represented byCatmull-Clark subdivision surfaes. Figure 1.8(a) is the union of the ylinder and thebunny model, while Figure 1.8(b) is the di�erene of the two models.

(a) Union (b) Di�ereneFigure 1.8: Boolean operations on free-form solids.
� Adaptive tessellation of CCSSs [61, 64, 66℄:Catmull-Clark subdivision sheme provides a powerful method for building smooth andomplex surfaes. But the number of faes in the uniformly re�ned meshes inreasesexponentially with respet to subdivision depth. Adaptive tessellation redues thenumber of faes needed to yield a smooth approximation to the limit surfae and,



onsequently, makes the rendering proess more eÆient. We have developed a newadaptive tessellation method for general Catmull-Clark subdivision surfaes. Di�erentfrom previous ontrol mesh re�nement based approahes, whih generate approximatemeshes that usually do not interpolate the limit surfaes, the new method is basedon diret evaluation of the limit surfae to generate an insribed polyhedron of thelimit surfae. With expliit evaluation of general Catmull-Clark subdivision surfaesbeoming available, the new adaptive tessellation method an preisely measure errorfor every point of the limit surfae. Hene, it has omplete ontrol of the auray ofthe tessellation result. Craks are avoided by using a reursive olor marking proessto ensure that adjaent pathes or subpathes use the same limit surfae points inthe onstrution of the shared boundary. The new method performs limit surfaeevaluation only at points that are needed for the �nal rendering proess. Thereforeit is very fast and memory eÆient. The new method is presented for the generalCatmull-Clark subdivision sheme. But it an be used for any subdivision shemethat has an expliit evaluation method for its limit surfae. An example of adaptivetessellation is shown in Figure 1.9. Figure 1.9(a) is the given gargoyle model, whihis a subdivision surfae. Figure 1.9(b) is a uniform tessellation of Figure 1.9, whihis very dense. Figures 1.9(), 1.9(d) and 1.9(e) are three adaptive tessellations ofthe given model with di�erent error toleranes. From these �gures we an see sparsepolygonal approximation an be ahieved through adaptive tessellation. Figure 1.9(f)is the triangulated tessellation of Figure 1.9(e), whih onsists of only triangles in thepolygonal approximation.� A system that supports subdivision surfae based modeling is implemented and alot of examples have been tested. All the examples show that our approahes anobtain very good subdivision based representation results. The following Figure 1.10



(a) Given model (b) Uniform tessellation () Adaptive tessellation

(d) Adaptive tessellation (e) Adaptive tessellation (f) Triangulated tessella-tionFigure 1.9: Adaptive tessellation on surfaes with arbitrary topology.is a snapshot of our subdivision surfae based modeling system.� Others results:We also ahieved some other good results during the annual researh. Although theyare not diretly related to our subdivision surfae based modeling system, they all aregood appliations of subdivision surfaes and may have some impats in my futureresearh work.



Figure 1.10: A snapshot of the subdivision surfae based modeling system.{ Constrained Saling of CCSSs [67℄:A method to sale a Catmull-Clark subdivision surfae while holding the shapeand size of spei� features (sub-strutures) unhanged is presented. The basiidea of the method, �x-and-streth, is similar to a previous approah for trimmedNURBS surfaes, i.e., the new surfae is formed by �xing seleted regions ofthe given subdivision surfae that ontain the features, saling and strethingthe remaining part; the goal is to ensure that the resulting surfae reets theshape and urvature distribution of the unonstrainedly saled version of the givensurfae. However, the strething proess, the ore of the entire proess, is moreompliated beause of the omplexity of a subdivision surfae's topology. Themajor ontributions of the new onstrained saling tehnique inlude new strain



energy omputation tehniques and energy optimization tehniques for regionsaround extra-ordinary points. The new method is more powerful than the previousmethod in that it an handle more ompliated shapes and, onsequently, an beused for more hallenging appliations. Test results on the roker arm model thatan not be represented by trimmed NURBS surfaes are shown in Figure 1.11.The left model in Figures 1.11(a) and 1.11(b) is the given model. The blue parts inthese �gures are the spei�ed feature whih will not be hanged in the onstrainedsaling proess. The right part of Figure 1.11(a) is onstrained saling with salefators Sx = 1:3, Sy = 1:2 and Sz = 1:1. The right part of Figure 1.11(b) isobtained in the onstrained saling proess with sale fator Sx = 0:8, Sy = 0:95and Sz = 0:9.

(a) Constrained saling (bigger) (b) Constrained saling (smaller)Figure 1.11: Constrained saling of Catmull-Clark subdivision surfaes.{ Texture mapping on surfaes of arbitrary topology [65℄:A very simple and yet highly eÆient, high quality texture mapping method for



surfaes of arbitrary topology has been presented. The new method projets thegiven surfae from the 3D objet spae into the 2D texture spae to identify the2D texture struture that will be used to texture the surfae. The objet spae totexture spae projetion is optimized to ensure minimum distortion of the texturemapping proess. The optimization is ahieved through a ommonly used normpreserving minimization proess on edges of the surfae. The main di�erenehere is, by using an initial value approah, the optimization problem an be setup as a quadrati programming problem and, onsequently, solved by a linearleast squares method. Three methods to hoose a good initial value are presented.Test ases show that the new method works well on surfaes of arbitrary topology,with the exeption of surfaes with exeptionally abnormal urvature distribution.Other advantages of the new method inlude uniformity and seamlessness of thetexture mapping proess. The new method is suitable for appliations that donot require preise texture mapping results but demand highly eÆient mappingproess suh as omputer animation or video games. Examples of texture mappingon surfaes of arbitrary topology are shown in Figure 1.12. Figures 1.12(a) and1.12(b) are obtained with a global norm preserving based optimization, whileFigures 1.12() and 1.12(d) are obtained through path based parametrization. Itis easy to see global method an obtain uniform texture mapping results, whihare more realisti than non-uniform ones.{ Rendering live senes using view dependent textured splatting tehniques [68℄:We presented a novel approah for rendering low resolution point louds withmultiple high resolution textures, the type of data ommonly generated by real-time vision systems. The low preision, noisy, and sometimes inomplete natureof suh data sets is not suitable for existing point-based rendering tehniquesthat are designed to work with high preision and high density point louds.



Our new algorithm, View-dependent Textured Splatting (VDTS), ombines tra-ditional splatting with a view-dependent texturing strategy to inrease renderingquality of low resolution data sets with high resolution images. VDTS requiresno pre-proessing, addresses texture visibility and anti-aliasing on the y, andan be eÆiently aelerated by ommodity graphis hardware. Therefore it ispartiularly well-suited for rendering dynami senes in real time and online.1.6 NotationsThe following notational onventions are adopted in this report. Spae objets suh aspoints, lines and parametri funtions are denoted by boldfae upper ase roman haraters,e.g., V. Linearly transformed items or Fourier points are denoted by boldfae lower aseroman haraters, e.g., v. All vetors are assumed to be olumns. Vetors of ordinary items(resp. linearly transformed items or Fourier points) are denoted by upper (resp. lower) aseitaliized haraters, e.g., V (resp. g). Matries are denoted by upperase roman haraters,e.g., M. The transpose of a vetor V (resp. matrix M) is denoted by V T (resp. MT).1.7 OverviewThe organization of this report is as follows.� First an expliit parametrization method is presented for exat evaluation of Catmull-Clark subdivision surfaes in Chapter 2. With an expliit parametrization, subdivi-sion is no longer a must in order to obtain the limit surfae of a given mesh, beausediret and exat evaluation an be diretly applied now.� In Chapter 3, an interpolation method for meshes of arbitrary topology is presented.Using interpolation, a subdivision surfae based representation for any model witharbitrary topology an be ahieved.



� A voxelization tehnique and its appliations for objets with arbitrary topology arepresented in Chapter 4. The new tehnique onverts a free-form objet from itsontinuous geometri representation into a set of voxels that best approximates thegeometry of the objet. The voxelization results an further be used for perform-ing robust and error ontrollable Boolean operations in our subdivision surfae basedmodeling system.� A tehnique for performing robust and error ontrollable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfaes (CCSSs) is presented inChapter 5. After the Boolean operations, a representation an be ahieved in thisstage, although the resulting meshes ould be dense.� Beause subdivision surfae based representations obtained from interpolation or Booleanoperations usually are dense meshes, good mesh simpli�ation or redution methodsare needed. Adaptive tessellation is suh a method, whih redues the number of faesneeded to yield a smooth approximation to the limit surfae and, onsequently, makesthe rendering proess more eÆient. In Chapter 6, we present a new adaptive tessel-lation method for general Catmull-Clark subdivision surfaes whih an signi�antlyredue the number of polygons for representing a CCSS with aurate error ontrol.� Multiresolution analysis is another good method for simplifying dense meshes with ar-bitrary topology. In Chapter 7 multiresolution representation for subdivision surfaebased representations is presented, whih results in muh sparse ontrol meshes andhas expliit error estimation.� We onlude the report in Chapter 7 and point out some diretions for future work.



(a) Uniform texture Mapping (b) Uniform tex-ture Mapping

() Path based texture Mapping (d) Path basedtexture MappingFigure 1.12: Texture Mapping on surfaes of arbitrary topology.



Chapter 2Parametrization and Evaluation ofGeneral Catmull-Clark SubdivisionSurfaes
In this hapter, a new parametrization tehnique and its appliations for general Catmull-Clark subdivision surfaes are presented. Our new tehnique [63℄ extends J. Stam's work[22℄ by rede�ning all the eigen basis funtions in the parametri representation for generalCatmull-Clark subdivision surfaes and giving eah of them an expliit form. The entireeigen struture of the subdivision matrix and its inverse are omputed exatly and expliitlywith no need to preompute anything. Therefore, the new representation an be used notonly for evaluation purpose, but for analysis purpose as well. The new approah is basedon an 
-partition [22℄ of the parameter spae and a detoured subdivision path. This resultsin a blok diagonal matrix with onstant size diagonal bloks (7� 7) for the orrespondingsubdivision proess. Consequently, eigen deomposition of the matrix is always possible andis simpler and more eÆient. Furthermore, sine the number of eigen basis funtions requiredin the new approah is only one half of the previous approah [22℄, the new parametrizationis also more eÆient for evaluation purpose. This is demonstrated by several appliations ofthe new tehniques in texture mapping, speial feature generation, surfae trimming, booleanoperations and adaptive rendering. 26



The organization of this hapter is: A brief introdution is given in Setion 1. Setion2 gives a brief review of the Catmull-Clark subdivision sheme and previous evaluationtehniques. Setion 3 shows an intuitive but expensive approah in parameterizing an extra-ordinary Catmull-Clark path. Setion 4 shows a more eÆient approah in parameterizinga Catmull-Clark path using an extended subdivision path. Setion 5 shows how to omputethe eigen struture of the subdivision matrix of the extended subdivision path. Setion 6shows the evaluation proess of the new parametri representation at an arbitrary pointof a Catmull-Clark path. Setion 7 gives some examples of analysis with our expliitrepresentation around an extra-ordinary vertex. Setion 8 shows appliation examples ofthe new sheme in texture mapping, speial feature generation, surfae trimming, adaptiverendering, mesh interpolation and boolean operations. The onluding remarks are given inSetion 9.2.1 IntrodutionSubdivision surfaes have beome popular reently in graphial modelling and animation be-ause of their apability in modeling/representing omplex shape of arbitrary topology [12℄,their relatively high visual quality, and their stability and eÆieny in numerial omputa-tion. Subdivision surfaes an model/represent omplex shape of arbitrary topology beausethere is no limit on the shape and topology of the ontrol mesh of a subdivision surfae.Subdivision methods for evaluating surfaes rely on performing repeated subdivisionsuntil the ontrol struture approximates the limit surfae within some tolerane. It is thenpossible to push the ontrol points to their limit positions and bilinearly interpolate valuesaross an inexat surfae path. But in some appliations, the exat evaluation is ritial.Hene a good parametrization for subdivision surfae is indispensable.However, powerful evaluation and analysis tehniques for subdivision surfaes have notbeen fully developed yet. Parametrization methods that have been developed so far are



suitable for evaluation purpose only, not for analysis purpose, beause these methods eitherdo not have an expliit expression, or are too ompliated for eah part to be expliit. Forinstane, in [22℄, eigen funtions are pre-omputed numerially and stored in a �le. Sothey an be used for evaluation purpose only. Note that exat evaluation at a point ofa subdivision surfae is possible only if there is an expliit parametrization of the surfae.Hene, an expliit parametrization is not only ritial for analysis purpose, but for evaluationand rendering purpose as well.In this hapter we will present an 
-partition based approah to solve several importantproblems of subdivision surfaes: (1) omputation of new ontrol verties at a spei�edsubdivision level, (2) expliit parametrization of an extra-ordinary path, and (3) surfaeevaluation at arbitrary parameter spae point with eigen funtions omputed on the y.The new approah is based on the observation that the subdivision proess on the ontrolverties an be broken into subdivision proesses on smaller, same frequeny groups after afew linear transformations. Using a di�erent ordering of the verties and the idea of enlargingthe subdivision matrix, the subdivision matrix an be transformed into a blok matrix witheah blok being irulant [5, 27℄. Hene it is natural to use the Fourier matries to transformthem into diagonal matrix. Eah suh subdivision proess on points of the same frequeny isindependent of the valene of the extra-ordinary vertex. The dimension of the orrespondingsubdivision matrix for eah frequeny group is 7� 7. Therefore, the proess of using a largesubdivision matrix to perform the subdivision proess on the ontrol verties an be replaedwith a set of 7�7 matries on the same frequeny groups. This not only makes omputationof the eigen strutures of the subdivision matries always possible, but also simpler and moreeÆient. Inverses of the eigenvetor matries an also be expliitly omputed.
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Figure 2.1: (a) Control verties that inuene an extra-ordinary path. (b) New ontrolverties (solid dots) generated after a Catmull-Clark subdivision.2.2 Previous Work2.2.1 Catmull-Clark Subdivision SurfaesGiven a ontrol mesh, a Catmull-Clark subdivision surfae (CCSS) is generated by iterativelyre�ning the ontrol mesh [1℄. The limit surfae is alled a subdivision surfae beause themesh re�ning proess is a generalization of the uniform B-spline surfae subdivision tehnique.The valene of a mesh vertex is the number of mesh edges adjaent to the vertex. A meshvertex is alled an extra-ordinary vertex if its valene is di�erent from four. Vertex V inFigure 3.1(a) is an extra-ordinary vertex of valene �ve. A mesh fae with an extra-ordinaryvertex is alled an extra-ordinary fae. The valane of an extra-ordinary fae is the valeneof its extra-ordinary vertex. In the following, for the sake of simpliity, a mesh fae and theorresponding surfae path will be treated the same and denoted by the same notation.Given an extra-ordinary fae S = S0;0. If the valene of its extra-ordinary vertex is n, thenthe surfae path orresponding to this extra-ordinary fae is inuened by 2n + 8 ontrolverties [1, 22℄. The ontrol verties shown in Figure 3.1(a) are the ones that inuene thepath marked with an \S = Sm�1;0". In general, if Sm�1;0 is the extra-ordinary subpathgenerated after m � 1 subdivision steps, then by performing a Catmull-Clark subdivisionstep on the ontrol verties of Sm�1;0, one gets 2n+17 new ontrol verties. See Figure 3.1(b)



for the new ontrol verties generated for the path Sm�1;0 shown in (a). These 2n+17 newontrol verties de�ne four subpathes: Sm;b, b = 0; 1; 2; 3 (Figure 3.1(b)). Sm;0 is again anextra-ordinary path but Sm;1, Sm;2, and Sm;3 are regular uniform biubi B-spline pathes.Iteratively repeat this proess, one gets a sequene of regular biubi B-spline pathes (Sm;b),m � 1, b = 1; 2; 3, a sequene of extra-ordinary pathes (Sm;0), m � 0, and a sequene ofextra-ordinary verties. The extra-ordinary pathes onverge to the limit point of the extra-ordinary verties [14℄. The regular biubi B-spline pathes (Sm;b), m � 1, b = 1; 2; 3, andthe limit point of the extra-ordinary verties form a partition of S.2.2.2 Previous Parametrization and Evaluation MethodsAn algorithm for the evaluation of a subdivision surfae at an arbitrary point was �rstproposed by J. Stam in 1998 for Catmull-Clark subdivision surfaes [22℄ and then in 1999for Loop subdivision surfaes [23℄. Stam's approah shows that an extra-ordinary surfaepath and its derivatives an be represented as a linear ombination of the ontrol pointswith weights de�ned by a set of 2n + 8 eigenbasis funtions where n is the valene of theextra-ordinary path. The representation satis�es simple saling relations and an be easilyevaluated in onstant time. However, even though analytial expressions for the eigenbasisfuntions have been derived, some of them are too ompliated to be reported in the paper[22℄. Besides, some of the eigenbasis funtions are redundant. We will show in this hapterthat only n + 6 eigenbasis funtions are atually needed and, onsequently, the evaluationproess an be made more eÆient. J. Stam's approah [22℄ is mainly developed for evalua-tion purpose. As we shall present, our parametrization results [63℄ an be used not only forevaluation, but for analysis purpose as well.Warrent and Weimer presented a method in [27℄ for omputing all eigenvalues and eigen-vetors of the subdivision matrix by writing the subdivision matrix for the 2-ring in blokirulant form. Ball and Storry [5℄ also used the similar approah to ompute the eigen



struture of the subdivision matrix. However, as far as we know, the inverse of the matrix ofthe eigenvetors has never been omputed expliitly, and the overall expliit eigen struturehas never been integrated into the parametrization formula. In this paper, based on theeigen analysis results of [5℄, an expliit and exat evaluation formula is derived.Zorin extended the work of J. Stam by onsidering subdivision rules for pieewise smoothsurfaes with parameter-ontrolled boundaries [25℄. The main ontribution of their work isthe usage of a di�erent set of basis vetors for the evaluation proess whih, unlike eigen-vetors, depend ontinuously on the oeÆients of the subdivision rules. The advantageof this algorithm is that it is possible to de�ne evaluation for parametri families of ruleswithout onsidering exessive number of speial ases, while improving numerial stabilityof alulation.In addition to Stam's approah, two di�erent parameterizations of Catmull-Clark subdi-vision surfaes have been proposed by Boier-Martin and Zorin [8℄. The motivation of theirwork is to provide parametrization tehniques that are di�erentiable everywhere. Althoughall the natural parameterizations of subdivision surfaes are not C1 around extraordinaryverties of valene higher than four[8℄, the resulting surfaes are still C2 almost everywhere.Moreover, despite of the fat that the partial derivatives diverge around an extraordinaryvertex, in this paper, we will show that an standardized normal vetor an be alulatedexpliitly everywhere. As we know, preisely alulated normal vetor is indispensable forsurfae shading purposes.Exat evaluation of pieewise smooth Catmull-Clark surfaes near sharp and semi-sharpfeatures is onsidered in [21℄. Constant-time performane is ahieved by employing Jordandeomposition of the subdivision matrix. In this paper we will show that speial features anbe generated using ordinary Catmull-Clark rules with onstant-time evaluation performaneas well.
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-partition of the unit square [22℄.2.3 Parametrization of a PathThe regular biubi B-spline pathes fSm;bg, m � 1, b = 1; 2; 3, indue a partition on theunit square [0; 1℄� [0; 1℄. The partition is de�ned by : f
m;bg, m � 1, b = 1; 2; 3, with
m;1 = [ 12m ; 12m�1 ℄� [0; 12m ℄;
m;2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m;3 = [0; 12m ℄� [ 12m ; 12m�1 ℄(see Figure 2.2 for an illustration of the partition [22℄). For any (u; v) 2 [0; 1℄ � [0; 1℄ but(u; v) 6= (0; 0), there is an 
m;b that ontains (u; v). To �nd the value of S at (u; v), �rstmap 
m;b to the unit square. If (u; v) is mapped to (�u; �v) by this mapping, then omputethe value of Sm;b at (�u; �v). The value of S at (0; 0) is the limit of the extra-ordinary verties.For onveniene of subsequent referene, the above partition will be alled an 
-partition ofthe unit square.In the above proess, m and b an be omputed as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) = 8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 :The mapping from 
m;b to the unit square is de�ned as:(u; v) ! (�u; �v) = (�(u); �(v));



where �(t) = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 : (2.1)Sine eah Sm;b is a standard B-spline surfae, it an be expressed asS(u; v) =W T (�u; �v)MGm;bwhere Gm;b is the ontrol point vetor of Sm;b, W (u; v) is a vetor ontaining the 16 powerbasis funtions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3; u3v; u2v2; uv3; u3v2; u2v3; u3v3℄;and M is the B-spline oeÆient matrix. An important observation is, W T (�u; �v) an beexpressed as the produt of W T (u; v) and two matries:W T (�u; �v) = W T (u; v)KmDb;where K is a diagonal matrixK = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64)and Db is an upper triangular matrix depending on b only. Db an be obtained by replaing�u; �v in W (�u; �v) with �(u); �(v) de�ned in Eq. (2.1). Therefore, we haveS(u; v) =W T (u; v)KmDbMGm;b:The omputation of the ontrol verties of Sm;b involves two matries, A and �A [22℄. �A isa (2n+17)� (2n+8) matrix, representing the subdivision proess shown in Figure 3.1(b). Ais a (2n+8)�(2n+8) submatrix of �A, representing the proess of mapping the 2n+8 ontrolverties of the given extra-ordinary path to the 2n+8 ontrol verties of its extra-ordinarysubpath. Let G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄



then G (See Fig. 3.1(a) for its labelling) is the olumn vetor representing the ontrol vertiesof S. By applying A to G (m � 1) times we get the 2n + 8 ontrol verties of the extra-ordinary subpath Sm�1;0. Now by applying �A to the ontrol verties of Sm�1;0 (representedas Gm�1), we get 2n + 17 new ontrol points whih inlude the 2n + 8 ontrol verties ofSm;0. Let �Gm be the olumn vetor representation of these 2n+ 17 verties, we have�Gm = �AGm�1 = �AAm�1G :Then by multiplying �Gm with an appropriate \piking" matrix Pb, we get the ontrol vertiesof the subpath Sm;b: Gm;b = Pb �Gm = Pb �AAm�1G :Hene we have S(u; v) = W T (u; v)KmDbMPb �AAm�1G: (2.2)This is a parametrization of an extra-ordinary path. However, this is a ostly proess touse beause it involves m � 1 multipliations of the (2n + 8) � (2n + 8) matrix A. In thenext setion, we will present an eÆient approah to alulate Gm;b for any b and m.2.4 Calulate Control Verties after m SubdivisionsThe goal here is to show that instead of using the diret path from G to Gm�1 to omputeGm�1 = Am�1G in the above equation, one should use the indiret, longer path (G! g !gm�1 ! Gm�1) in Figure 2.3 to do the job. The reason for doing so is: the orrespondingmatrix T is a blok diagonal matrix with eah diagonal blok of dimension 7 � 7 only.Therefore, the proess of omputing their eigen deompositions is not only always possible,but also muh simpler and more eÆient.Details of this new approah and de�nitions of related mappings are given below. Weonsider a general CCSS here. That is, the new vertex point V0 after one subdivision is
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ĝ

ĝ
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Figure 2.3: The extended subdivision diagram.omputed as de�ned in Eq. 1.1. New fae points and edge points are omputed the sameway as in [1℄.First, to prepare G for the major transformation, we extend G into a vetor of sevenequal-length omponents, alled Ĝ:Ĝ = (V T ; ET ; F T ; IT1 ; IT2 ; IT3 ; IT4 )T ;where V = (V;V; � � � ;V)T ;E = (E1;E2; � � � ;En)T ;F = (F1;F2; � � � ;Fn)T ;Ik = (Ik; Ik+4; 0; � � � ; 0)T ; k = 1; 2; 3I4 = (I4; 0; 0; � � � ; 0)Twith all of them having the same length of n. We an get Ĝ from G by a simple extensionmatrix H1, i.e., Ĝ = H1G. Note that the matrix induing Ĝi to Ĝi+1, i.e., H1AH�11 , is a7n�7n blok matrix with eah blok (n�n) being irulant [5, 27℄. Therefore, eah of thesebloks an be diagonalized exatly using the disrete Fourier transform. Let ĝ be the result



of applying the disrete Fourier transform L to the omponents of Ĝ:ĝ = (LV T ;LET ;LF T ;LIT1 ;LIT2 ;LIT3 ;LIT4 )T= (vT ; eT ; fT ; iT1 ; iT2 ; iT3 ; iT4 )T :Eah omponent of ĝ has the same length n, but is indexed from 0 to n � 1. We an get ĝfrom Ĝ by ombining all L's into a single matrix H2, i.e., ĝ = H2Ĝ. It is easy to see that H2is a blok diagonal matrix. If we re-arrange the elements of ĝ into a set of same frequenygroups: g = (hT0 ; hT1 ; � � � ; hTn�1)T ;where h! = (v!; e!; f!; i1!; i2!; i3!; i4!)T , with 0 � ! � n� 1. We an get g from ĝ througha 7n � 7n permutation matrix H3, i.e., g = H3ĝ. The above relationships hold for gj, Gj,ĝj and Ĝj, j � 1, as well (See Fig. 2.3). Sine H1, H2 and H3 are invertible, we an easilyalulate gj and Gj from eah other.For eah j � 1, the subdivision proess performed on Gj�1 to get Gj an be reetedon gj�1 and gj through H1, H2 and H3. The indued subdivision proess [5℄ on gj�1 an berepresented by a 7n� 7n matrix T as:gj = Tgj�1 = Tjg:T is a blok diagonal matrix with eah diagonal blok T! (! = 0; 1; 2; � � � ; n � 1), being a7� 7 matrix. The expression of eah T! an be found in [5℄. Therefore, for eah m � 1, wehave (See Fig. 2.3): Am�1 = H�11 H�12 H�13 Tm�1H3H2H1 :By ombining the above expression with (2.2), we haveS(u; v) = W TKmDbMPb �AH�11 H�12 H�13 Tm�1H3H2H1G (2.3)For a given (u; v), every matrix in (2.3) is known to us if valane n is known. Hene it anbe used to exatly and expliitly evaluate the position of S(u; v).



2.5 Eigen analysis of TEquation (2.3) provides a formal parametrization of an extra-ordinary path. This parametriza-tion, however, is still ostly to evaluate beause it involvesm�1 multipliations of the matrixT. The evaluation proess an be onsiderably simpli�ed if T is deomposed as T = X�1�X,where � is a diagonal matrix of eigenvalues of T and X is an invertible matrix whose olumnsare the orresponding eigenvetors. Therefore, the evaluation of Tm�1 beomes the evalua-tion of X�1�m�1X only.Note that T is a blok diagonal matrix. To �nd the eigen deomposition of T, we �rst�nd the eigen deomposition of eah diagonal blok T! of T:T! = X�1! �!X!; (! = 0; 1; � � � ; n� 1):Sine eah diagonal blok T! is of size 7 � 7, its eigen deomposition an be alulatedexpliitly. X, � and X�1 are then formed as blok diagonal matries with diagonal bloksbeing X!, �! and X�1! , respetively. Consequently, S(u; v) an be expressed as:S(u; v) = W TKmZb�m�1ZG (2.4)where Z = XH3H2H1 and Zb = DbMPb �AZ�1. For any given n, these matries are knownexpliitly.There are totally n + 6 di�erent eigenvalues in �. These di�erent eigenvalues of T are:�0 = (4�n � 1 +p16�2n � 8�n + 8�n � 3 )=8�1 = (4�n � 1�p16�2n � 8�n + 8�n � 3 )=8�2! = (! + 5 +p2! + 10! + 9 )=16�2!+1 = (! + 5�p2! + 10! + 9 )=16�n+1 = 1�n+2 = 1=8�n+3 = 1=16�n+4 = 1=32�n+5 = 1=64where 1 � ! � n=2, ! = os(2�!=n), and �n and �n are de�ned in (1.1). It is easy to hekthat �0 > �1 and �2 > �i for 3 � i � n.



2.6 Evaluation of a CCSS PathIn this setion we show how an Eq. (2.4) be used in the eÆient evaluation of a CCSSpath at a given (u; v). Eq. (2.4) an be used for both extra-ordinary and regular pathesbeause the derivation of Eq. (2.4) did not use the assumption that n 6= 4.First note that S(u; v) de�ned in Eq. (2.4) an be written as a linear ombination ofthese di�erent eigenvalues in � to the (m� 1)st power:S(u; v) = W TKm n+5Xj=0 �m�1j (Zb�jZ)G;where �j is a 7n� 7n matrix with all the entries being zero exept the ones orrespondingto �j in matrix �. Those entries of �j are 1. Let Mb;j = Zb�jZ. We getS(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G: (2.5)The exat expressions of Mb;j are shown in the end of this hapter. Eq. (2.5) is the mostimportant result of this report [60, 61, 62, 63, 64, 65, 66, 67, 69℄. This equation an be usedto evaluate a CCSS path at any point (inluding (0; 0)), and it an also be used to omputethe derivative of a CCSS path at any point (inluding (0; 0) as well). The path an beregular or extra-ordinary.Note that for any m � 0, we have W T (u; v)Km = W T (2mu; 2mv). De�ne�b;j(u; v) = W T (2mu; 2mv)�m�1j Mb;j;�b(u; v) = Pn+5j=0 �b;j(u; v):�b;j(u; v) are alled the jth eigen basis funtion of CCSSs. There are totally n+6 eigen basisfuntions and for any given (u; v), every eigen basis funtion an be exatly and expliitlyrepresented. It is esay to hek that all the eigen basis funtions satisfy the so alled salingrelation [22, 25℄: �b;j(u=2; v=2) = �j�b;j(u; v)



With the above de�nition, Eq. (2.5) an be represented asS(u; v) = �b(u; v) G;whih is used for fast rendering in our implementation.One an ompute the derivatives of S(u; v) to any order simply by di�erentiatingW (u; v)in Eq. (2.5) aordingly. For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2.6)2.7 Behavior Around an Extra-Ordinary Point2.7.1 Limit Point of an Extra-Ordinary VertexEq. (2.5) not only an be used for evaluation purpose, but analyti derivation as well. Forexample, one gets the limit point of an extra-ordinary vertex simply by setting u = v = 0and m!1 in Eq. (2.5): S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �G= 5V+(12�n+8n)�E+(2�n+8n)�F5+14�n+16n (2.7)where �E = (Pni=1Ei)=n and �F = (Pni=1Fi)=n. This result generalizes Eq. (13) of [14℄.2.7.2 Partial Derivatives Around an Extra-Ordinary VertexIt is known the �rst partial derivatives of S(u; v) at (0; 0) diverge in a natural parametrization[8℄. However, knowing the diretions of them is suÆient in many appliations. As pointedout by [5℄, when �0 � �2, a general Catmull-Clark subdivision surfae is not C1 ontinuous.Suppose �0 < �2, dividing both sides of Eq. (2.6) by 2m�m�12 , and by setting u = v = 0 andm!1, we get Du(0; 0) = [0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDv(0; 0) = [0; 0; 1; 0; � � � ; 0℄ �M2;2 �Gwhere Du and Dv are the diretion vetors of �S(0;0)�u and �S(0;0)�v , respetively. The normalvetor at (0; 0) is the ross produt of them. Similarly, when �0 < �2, it is easy to alulate



the seond partial derivatives at (0; 0). These derivatives are listed as follows.Duu(0; 0) = [0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �GDuv(0; 0) = [0; 0; 0; 0; 1; 0; � � � ; 0℄ �M2;2 �GDvv(0; 0) = [0; 0; 0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �Gwhere Duu, Duv and Dvv are the diretion vetors of �2S(0;0)�u2 , �2S(0;0)�u�v and �2S(0;0)�v2 , respetively.Sine M2;2 is expliitly and exatly known, all these vetors an be alulated one G is given.2.7.3 Proof of tangent plane ontinuityWith the expliit expressions of partial derivatives of S(u; v) at (0; 0), some properties ofCCSS at an extra-ordinary point an be proved easily. For instane, one an prove thatwhen �0 < �2, there exists a ommon tangent plane at an extra-ordinary point.The tangent plane ontinuity property has been proven by many people with di�erentapproahes [5, 14, 16, 17℄. Here a simple proof using our parametrization results is givenbelow.Expand Du and Dv, we haveDu =Pni=1 �ei �Ei +Pni=1 �fi � FiDv =Pni=1 êi �Ei +Pni=1 f̂i � Fiwhere �ei =P5t=1 xt1(i�t+2); êi =P5t=1 xt2(i�t+2)�fi =P5t=1 xt3(i�t+2); f̂i =P5t=1 xt4(i�t+2))where ! = os(2�!=n). All salars xij's in the above de�nitions depend on valane n onlyand an be derived from Mb;2 expliitly. To prove the existene of a ommon tangent planeat an extra-ordinary point, one needs to show that omputation of the normal vetor isindependent of k (the ID of a fae adjaent to an extra-ordinary point [5℄, whih determinesthe order of the ontrol points of a path):( nXi=1 �eiEi+k + nXi=1 �fiFi+k)� ( nXi=1 êiEi+k + nXi=1 f̂iFi+k):



To prove this, it is suÆient to show that P �eiEi+k �P êiEi+k is independent of k. Theother parts an be proved similarly. NotenXi=1 �ei�kEi � nXj=1 êj�kEj =Xi�j (�ei�kêj�k � �ej�kêi�k)Ei �EjTo prove the above expression is independent of k, we only need to prove (�ei�kêj�k��ej�kêi�k)is independent of k: �ei�kêj�k � �ej�kêi�k=P1�s;t�5 xs1xt2(i�k�s+2j�k�t+2 � j�k�s+2i�k�t+2)=P1�s;t�5 xs1xt2 (i�j�s+t � j�i�s+t)=2whih is independent of k. Hene all the pathes sharing a ommon extra-ordinary pointhave the same normal vetor at the extra-ordinary point. Therefore, there exists a ommontangent plane at an extra-ordinary point.When �0 � �2, it an be proved similarly that the resulting surfae does not have aommon tangent plae [5℄. In fat, Eq. (2.5) and Eq. (2.6) an be used for many otheranalyti purposes as well. For example, the urvature property at an extra-ordinary pointan be expliitly analyzed using these two formulas [6℄.Although most of these properties of CCSS around an extra-ordinary vertex are wellknown, an expliit parametrization of CCSS nevertheless makes the analyzing proess muhmore simpler and intuitive. Moreover, our results possibly an be used for studying other un-known properties of CCSS as well. For instane, it is possible to investigate the integrabilityof a CCSS using the parametrization tehnique presented in this hapter.2.8 Appliations2.8.1 Fast, Exat and Expliit RenderingEq. (2.5) not only gives us an expliit method to evaluate S(u; v), but also a faster andonvenient way to render S(u; v). Note that Mb;j depend on the valene of the extra-ordinaryvertex only. They an be expliitly and analytially omputed for every di�erent valene.



Figure 2.4: left: Control mesh of a horse model, right: exatly evaluated Catmull-Clarksubdivision surfae.For a given valene, we only need to perform suh alulation one, no matter how manypathes in the mesh are with suh a valene. One the step sizes for u and v are given, wean alulate all �b(ui; vk) beforehand and store them in a look-up table. Therefore, theevaluation of S(u; v) at eah point (ui; vk) basially is just a multipliation of �b(ui; vk) andG only. An algorithm of the fast rendering proess is shown below:CCSS-Rendering(Mesh, ustep, vstep,�n,n)1. For eah valane n involved in input Mesh2. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep3. Calulate �b(u; v)4. For eah path whose valane is n in input Mesh5. Find its 2n + 8 ontrol points G6. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep7. alulate eah S(u; v) and its normal using Eq. (2.5)8. Display all these S(u; v)'sAll the examples shown in this hapter are rendered using this algorithm. One an seethat it is essentially the same as the rendering proess of a regular path. An important



di�erene between this approah and the previous approah [22℄ is that nothing need to bepreomputed when our method is used, while the the Stam method [22℄ need to preomputea huge number of eigen basis funtions and stored them in a �le. In addition, the previousapproah [22℄ was developed for speial �n and �n only. Therefore, it annot handle generaleigen basis funtions while we an alulate all the eigen basis funtions expliitly with onlya small overhead. The horse shown in Fig. 2.4 (right) is rendered using this algorithm withall the positions and normals exatly omputed, not approximated. Hene, the quality ofthe image is better than those generated through the subdivision proess. Fig. 2.4 (left) isthe ontrol mesh of the shape shown in Fig. 2.4 (right).

(a) Mesh with tripled edges (b) Surfae with speial featuresFigure 2.5: Generating speial features using Catmull Clark subdivision surfaes



2.8.2 Generating Speial FeaturesEq. (2.5) an be used to render subdivision surfaes with speial features. As we know,speial features an be generated by properly arranging the ontrol mesh. For instane,tripling a line in the ontrol mesh generates a ridge or edge-like feature; tripling a ontrolpoint generates a dart-like feature. One an get subdivision surfaes with ompliated fea-tures and, onsequently, ompliated shape through this proess. However, no matter howompliated the topology of the ontrol mesh, as long as it is a two-manifold (to satisfy thede�nition of a CCSS), Eq. (2.5) will always generate the orret result. An example of aCCSS with sharp edges, orners and several genera is shown in Fig. 2.5. The ontrol meshof the surfae is shown in Fig. 2.5(a). Sine the features are generated from parametrizationof the ontrol mesh diretly, the result shown in Fig. 2.5(b) is better than those generatedby Boolean operations.2.8.3 Texture MappingPreise texture mapping on a CCSS is possible only if a proper parametri representation isavailable for eah extra-ordinary path.Without a proper parametrization,texture mapping on objet of any topology is almostimpossible. Now with Eq. (2.5), texture mapping is doable on any objet of any genus.However, to implement texture mapping on a CCSS, one needs to divide the interiorfaes of the ontrol mesh into regions suh that eah region is of a retangular struture �rst.Suh a division will be alled a regular division. The division is not unique.Figure 2.6 shows a division of the interior faes of a CCSS into seven retangular regions.One a regular division of the interior faes of the ontrol mesh is available, one simplyperforms texture mapping on eah of these regions using standard approah. Examples oftexture mapping on three subdivision surfae represented objets: a roker arm, a spaestation and a leopard are shown in Fig. 2.7(a), 2.7(b), and 2.7(), respetively. The regular



Figure 2.6: Regular division of the ontrol mesh of a CCSS.division usually is not unique. Di�erent divisions of the interior faes of the ontrol meshwould lead to di�erent texture outputs.2.8.4 Surfae TrimmingSurfae trimming is another important appliation used in omputer graphis and CAD/CAM.The trimming loops are de�ned in the parameter spae of the surfae and iso-parametri linesin the parameter spae are lipped against the trimming loops to have the trimmed regionsremoved. Hene, a global or loal parametrization is neessary for preise and eÆient ren-dering of a trimmed CCSS. In Fig. 2.8.4, trimmed CCSSs surfae are shown. In Fig. 2.8(a),the trimmed regions are de�ned by the logo of the 2006 International CAD Conferene, andin Fig. 2.8(b), the trimmed regions are de�ned by the boundaries of the word `SIGGRAPH'.The CCSS surfae has four extra-ordinary verties in the trimmed region, but partitioningof the ontrol mesh is not required here beause the surfae is rendered on the basis ofindividual pathes.



(a) Rok Arm (b) Leopard () Spae StationFigure 2.7: Texture mapping on Catmull-Clark subdivision surfaes

(a) (b)Figure 2.8: Surfae trimming on Catmull-Clark subdivision surfaes



2.8.5 Adaptive RenderingAdaptive rendering is a tehnique for fast rendering of ompliated objets. The renderingproess of a path depends on its atness. A at path will not be tessellated as densely asother pathes. Adaptive rendering is not a problem with (2.5) beause Eq. (2.5) is apableof generating any point of the surfae required in the tessellation proess. One thing we mustkeep in mind is that, in order to avoid rak, we must generate the same number of pointson the shared boundary of adjaent faes. But we an generate any number of points, evenzero, inside a path. An example of adaptive rendering is shown in Fig. 2.8.5. Fig. 2.9()is the given ventilation ontrol omponent model whih is represented by a single CCSS.Its ontrol mesh is shown in Fig. 2.9(a). The adaptive tessellation of the model is shownin Fig. 2.9(b). The atness of pathes is determined by the maximum norm of the seondorder forward di�erenes of its ontrol points. More details about the adaptive tessellationtehnique is presented in Chapter 6.

(a) Given Mesh (b) Adaptive Tessella-tion () Limit SurfaeFigure 2.9: Adaptive tessellation of Catmull-Clark subdivision surfaes



2.8.6 InterpolationPerforming exat interpolation on meshes with arbitrary topology has been done by manypeople [29, 30, 28, 14, 31℄. Given an ontrol mesh the goal is to produe a smooth andvisually pleasing surfae whose shape mathes the original data points or given normals inthe given mesh exatly. Usually many onstrains on the interpolatory surfae need to beonsidered when optimization is used. For example, in [14℄, some energy fairing onstrainsare taken into aount in building a global system. Beause there was not an available expliitparametrization, the fairing proess appeared to be very ompliated in [14℄. However, withour expliit parametrization and evaluation, all kinds of onstrains an be integrated intothe global system. For example, Fig. 2.10(b) is the interpolating result of the mesh givenin Fig. 2.10(a) using the �rst, seond and third derivatives as the onstrains. More detailsabout the interpolating meshes of arbitrary topology are presented in Chapter 3.

(a) Given Mesh (b) InterpolationFigure 2.10: Interpolation using Catmull-Clark subdivision surfaes



2.8.7 Boolean OperationsIn solid modelling, an objet is formed by performing Boolean operations on simpler objetsor primitives. A CSG tree is used in reording the onstrution history of the objet andis also used in the ray-asting proess of the objet. Surfae-surfae intersetion (inludingthe in-on-out test) and ray-surfae intersetion are the ore operations in performing theBoolean operations and the ray-asting proess. Eah operation requires a parametrizationof the surfae to do the work. This is espeially important for the in-on-out test. None ofthese is a problem with Eq. (2.5). Examples of performing Boolean operations on two andthree ows are presented in Figure 2.11(a) and 2.11(b), respetively. A di�erene operationis �rst performed to remove some portions from eah of these ows and a union operationis then performed to join them together. Performing Boolean operations on subdivision sur-faes has been studied by Biermann, Kristjansson, and Zorin [7℄. The emphasis of their workis di�erent though - they fous on onstrution of the approximating multiresolution sur-fae for the result, instead of preise omputation of the surfae-surfae intersetion urves.More details about performing Boolean operations on surfaes with arbitrary topology arepresented in Chapter 5.2.9 SummaryNew parametrization and evaluation tehniques for extra-ordinary pathes of CCSSs arepresented in this hapter. The parametrization is obtained by performing subdivision on agroup of same-frequeny point sets after a few linear transformations, not on the ontrol ver-ties themselves diretly. This results in a blok diagonal matrix with onstant size diagonalbloks (7� 7) for the orresponding subdivision proess. Consequently, eigen deompositionof the subdivision matrix is always possible and is simpler and more eÆient. Besides, thenew approah works for the general CCSSs, not just a speial ase. The evaluation proessusing this parametrization works for both extra-ordinary and regular CCSS pathes.



(a) (b)Figure 2.11: Performing Boolean operations on Catmull-Clark subdivision surfaesOne thing has to be pointed out here. The exponent m in (2.5) an not be anelledout. This is beause when �j is not a multiple of 1=2, m� 1 in Km�1 and �m�1j Mb;j does notanel out. Hene, when n 6= 4, there does not exist a matrix M suh that S(u; v) = W TMG.



Chapter 3Subdivision Depth Computation forCatmull-Clark Subdivision Surfaes
In this hapter, a new subdivision depth omputation tehnique for extra-ordinary Catmull-Clark subdivision surfae (CCSS) pathes is presented. The new tehnique improves a previ-ous tehnique by using a matrix representation of the seond order norm in the omputationproess. This enables us to get a more preise estimate of the rate of onvergene of theseond order norm of an extra-ordinary CCSS path and, onsequently, a more preise sub-division depth for a given error tolerane.3.1 IntrodutionGiven a Catmull-Clark subdivision surfae (CCSS) path, subdivision depth omputation isthe proess of determining how many times the ontrol mesh of the CCSS path should besubdivided so that the distane between the resulting ontrol mesh and the surfae pathis smaller than a given error tolerane. Good subdivision depth omputation tehniquesare important beause they allows us to meet preision requirement in appliations suh astrimming, �nite element mesh generation, boolean operations, and tessellation of a CCSSwithout exessively subdividing its ontrol mesh.A good subdivision depth omputation tehnique requires preise estimate of the distane51



between the ontrol mesh and the limit surfae. Optimum distane evaluation tehniquesfor regular CCSS pathes are available [10, 18℄. Distane evaluation for an extra-ordinaryCCSS path is more ompliated. A �rst attempt in that diretion is done in [10℄. Thedistane is evaluated by measuring norms of the �rst order forward di�erenes of the ontrolpoints. Sine �rst order forward di�erenes an not measure the urvature of a surfae butits dimension, the distane omputed by this approah is usually bigger than what it really isfor regions already at enough and, onsequently, leads to over-estimated subdivision depth.An improved distane evaluation tehnique for extra-ordinary CCSS pathes is presentedin [64℄. The distane is evaluated by measuring norms of the seond order forward di�erenes(alled seond order norms) of the ontrol points of the given extra-ordinary CCSS path.Sine seond order forward di�erenes an measure both height and width of a region, thedistane omputed by this approah reets urvature of the path and, hene, leads toreasonable subdivision depths for regions already at enough. However, it has been observedreently that, for extra-ordinary CCSS pathes, the onvergene rate of seond order normhanges with the subdivision proess, espeially between the �rst subdivision level and theseond subdivision level. Therefore, using a �xed onvergene rate in the distane evaluationproess for all subdivision levels would over-estimate the distane and, onsequently, over-estimate the subdivision depth as well.In this hapter we present an improved subdivision depth omputation method for extra-ordinary CCSS pathes. The new tehnique uses a matrix representation of the maximumseond order norm in the omputation proess to generate a reurrene formula. This reur-rene formula allows the smaller onvergene rate of the seond subdivision level to be usedas a bound in the evaluation of the maximum seond order norm and, onsequently, leadsto a more preise subdivision depth for the given error tolerane.The remaining part of the hapter is arranged as follows. A brief review of the bakgroundis given in Setion 2. A matrix based subdivision depth omputation tehnique for extra-



ordinary CCSS pathes is presented in setion 3. Examples showing the new tehniqueimproves the old one are presented in Setion 4. Conluding remarks are given in Setion 5.3.2 Problem Formulation and BakgroundGiven a ontrol mesh M =M0, let �S be its Catmull-Clark subdivision surfae (CCSS). Foreah interior fae F of M, there is a orresponding path S in the limit surfae �S. Theontrol mesh of S ontains F as the enter fae. If we perform a Catmull-Clark subdivisionstep on the ontrol mesh, we get four new mesh faes in the plae of F. This is the ase nomatter F is a regular fae or an extra-ordinary fae. See Figure 3.1(b) for the four new faesF00, F10, F01 and F11 in the plae of the extra-ordinary fae F shown in Figure 3.1(a). Sineeah of these new faes orresponds to a quarter subpath of S, we shall all these new faessubfaes of F even though they are not pyhsially subsets of F. Therefore, eah subdivisionstep generates four new subfaes for the enter fae F of the ontrol mesh. Beause theorrespondene between F and S is one-to-one, sometime, instead of saying performing asubdivision step on S, we simply say performing a subdivision step on F.
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Figure 3.1: (a) Control mesh of an extra-ordinary path; (b) new verties and edges generatedafter a Catmull-Clark subdivision.The distane between an interior mesh fae F and the orresponding path S is de�ned



as the maximum of kL(u; v)� S(u; v)k:DF = max (u;v)2
 kL(u; v)� S(u; v)k (3.1)where 
 is the unit square parameter spae of S and L(u; v) is the bilinear parametrizationof F on 
. DF is also alled the distane between S and its ontrol mesh. For a given� > 0, the subdivision depth of F with respet to � is a positive integer d suh that if F isreursively subdivided d times, the distane between eah of the resulting subfaes and theorresponding subpath is smaller than �. In the following, we review some of the previousresults needed in the new work.3.2.1 Distane Evaluation for a Regular Path
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Figure 3.2: De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform biubi B-spline surfae path de�ned on the unit square
 = [0; 1℄ � [0; 1℄ with ontrol points Vi;j, 0 � i; j � 3, and let L(u; v) be the bilinearparametrization of the enter mesh fae fV1;1;V2;1;V2;2;V1;2g (see Figure 3.2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:



Then the distane between S(u; v) and L(u; v) satis�es the following lemma [10℄.Lemma 1: The distane between L(u; v) and S(u; v) satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the seond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk ; k2Vi;j �Vi;j�1 �Vi;j+1k g (3.2)3.2.2 Subdivision Depth Computation for Extra-Ordinary PathesThe distane evaluation mehanism of the previous subdivision depth omputation tehniquefor extra-ordinary CCSS pathes utilizes seond order norm as a measurement sheme aswell [64℄, but the pattern of seond order forward di�erenes (SOFDs) used in the distaneevaluation proess is di�erent from (3.2).
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Figure 3.3: (a) Ordering of ontrol points of an extra-ordinary path. (b) Ordering of newontrol points (solid dots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n + 8, be the ontrol points of an extra-ordinary path S(u; v) =S00(u; v), with V1 being an extra-ordinary vertex of valene n. The ontrol points are or-dered following J. Stam's fashion [22℄ (Figure 3.3(a)). The ontrol mesh of S(u; v) is denoted� = �00. The seond order norm of S, denoted M = M0, is de�ned as the maximum norm



of the following SOFDs. There are 2n+ 10 of them.M = maxf f k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng [ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k; k 2V5 �V6 �V2n+6 k; k 2V2n+3 �V2n+2 �V2n+4 k;k 2V7 �V8 �V2n+5 k; k 2V6 �V1 �V2n+4 k; k 2V5 �V4 �V2n+3 k; k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+7 �V2n+6 �V2n+8 k; k 2V2n+4 �V2n+3 �V2n+5 k g g (3.3)By performing a subdividion step on �, one gets 2n+17 new verties V1i , i = 1; :::; 2n+17(see Figure 3.3(b)). These ontrol points form four ontrol point sets �10, �11, �12 and �13,representing ontrol meshes of the subpathes S10, S11, S12 and S13, respetively (see Figure3.3(b)) where �10 = fV1i j 1 � i � 2n + 8 g, and the other three ontrol point sets �11, �12and �13 are shown in Figure 3.4. S10 is an extra-ordinary path but S11, S12 and S13 are regularpathes. Therefore, seond order norm similar to the one de�ned in (3.2) an be de�ned forS11, S12 and S13, while a seond order norm similar to (3.3) an be de�ned for the ontrol mesh
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Figure 3.4: Control verties of subpathes S11, S12 and S13.of S10. We use M1 to denote the seond order norm of S10. This proess an be iterativelyrepeated on S10, S20, S30, ... et. We have the following lemma for a general Sk0 and its seondorder norm Mk [64℄.Lemma 2: For any k � 0, if Mk represents the seond order norm of the extra-ordinarysub-path Sk0 after k Catmull-Clark subdivision steps, then Mk satis�es the following in-equality Mk+1 � 8>><>>: 23Mk; n = 31825Mk; n = 5(34 + 8n�464n2 )Mk; n > 5 :Atually, the lemma works in a more general sense, i.e., ifMk stands for the seond ordernorm of the ontrol mesh Mk, instead of �k0, the lemma still works. The seond order norm



of Mk is de�ned as follows: for regions not involving the extra-ordinary point, use standardSOFDs; for the viinity of the extra-ordinary point, use SOFDs de�ned in (3.3). The proofis essentially the same.Distane EvaluationTo ompute the distane between the extra-ordinary path S(u; v) and the enter fae of itsontrol mesh, F = fV1;V6;V5;V4g, we need to parameterize the path S(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision on S(u; v) = S00, S10, S20, ... et, weget a sequene of regular pathes f Smb g, m � 1, b = 1; 2; 3, and a sequene of extra-ordinarypathes f Sm0 g, m � 1. The extra-ordinary pathes onverge to a limit point whih is thevalue of S at (0; 0) [14℄. This limit point and the regular pathes f Smb g, m � 1, b = 1; 2; 3,form a partition of S. If we use 
mb to represent the region of the parameter spae thatorresponds to Smb then f 
mb g, m � 1, b = 1; 2; 3, form a partition of the unit square
 = [0; 1℄� [0; 1℄ (see Figure 3.5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄; 
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄:(3.4)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6= (0; 0), �rst�nd the 
mb that ontains (u; v). m and b an be omputed as follows.m(u; v) = minfdlog 12ue; dlog 12veg; b(u; v) = 8<: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (3.5)Then map this 
mb to the unit square with the following mapping(u; v)! (um; vm)where tm = (2mt)%1 = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 (3.6)



The value of S(u; v) is equal to the value of Smb at (um; vm), i.e.,S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the enter fae of Smb 's ontrol mesh. SineSmb is a regular path, following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the seond order norm of the ontol mesh of Smb . The seond order norm ofSmb is smaller than the seond order norm of Mm, Mm. Hene, the above inequality an bewritten as kLmb (u; v)� Smb (u; v)k � 13Mm: (3.7)If we use L(u; v) to represent the bilinear parametrization of the enter fae of S(u; v)'sontrol mesh F = fV1;V6;V5;V4gL(u; v) = (1� v)[(1� u)V1 + uV6℄ + v[(1� u)V4 + uV5℄; 0 � u; v � 1then the maximum distane between S(u; v) and its ontrol mesh an be written ask L(u; v) � S(u; v) k � k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (3.8)where 0 � u; v � 1 and um and vm are de�ned in (3.6). The seond term on the right handside of the inequality an be evaluated using (3.7). Hene, one only needs to work with the�rst term on the right hand side of the inequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 orresponds to the subpath Sk0. This means that (2ku; 2kv) is within the parameterspae of Sk0 for 0 � k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk are de�ned in(3.6). Consequently, we an onsider Lk0(uk; vk) for 0 � k < m where Lk0 is the bilinearparametrization of the enter fae of the ontrol mesh of Sk0 (with the understanding thatL00 = L and (u0; v0) = (u; v)). Hene, the �rst term on the right hand side of (3.8) an bewritten askL(u; v)�Lmb (um; vm)k � m�2Xk=0 kLk0(uk; vk)�Lk+10 (uk+1; vk+1)k+kLm�10 (um�1; vm�1)�Lmb (um; vm)k:(3.9)The following two lemmas are needed in the evaluation of the right side of the above in-equality.



Lemma 3: If (u; v) 2 
mb where b and m are de�ned in (3.5) then for any 0 � k < m�1we have k Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the seond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�ned in (3.5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the seond order norm of Mm�1.By applying Lemmas 3 and 4 on (3.9) and then using (3.7) on (3.8), we have the followinglemma on the distane between an extra-ordinary CCSS path S(u; v) and its ontrol meshL(u; v) [64℄.Lemma 5: The maximum of k L(u; v)� S(u; v) k satis�es the following inequalityk L(u; v)� S(u; v) k � 8>>>>><>>>>>:
M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (3.10)where M =M0 is the seond order norm of the extra-ordinary path S(u; v).Subdivision Depth ComputationLemma 5 an be used to estimate the distane between a level-k ontrol mesh and the surfaepath for any k > 0. This is beause the distane between a level-k ontrol mesh and thesurfae path is dominated by the distane between the level-k extra-ordinary subpath andthe orresponding ontrol mesh whih, aoriding to Lemma 5, isk Lk(u; v)� S(u; v) k � 8>><>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the seond order norm of S(u; v)'s level-k ontrol mesh Mk. The previoussubdivision depth omputation tehnique for extra-ordinary surfae pathes is obtained byombining the above result with Lemma 2 [64℄.



Theorem 6: Given an extra-ordinary surfae path S(u; v) and an error tolerane �, ifk levels of subdivisions are iteratively performed on the ontrol mesh of S(u; v), wherek = �logwMz� �with M being the seond order norm of S(u; v) de�ned in (3.3),w = 8>><>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>><>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distane between S(u; v) and the level-k ontrol mesh is smaller than �.3.3 New Subdivision Depth Computation Tehniquefor Extra-Ordinary PathesThe SOFDs involved in the seond order norm of an extra-ordinary CCSS path (see eq.(3.3)) an be lassi�ed into two groups: group I and group II. Group I ontains those SOFDsthat involve verties in the viinity of the extra-ordinary vertex (see Figure 3.6(a)). Theseare the �rst 2n SOFDs in (3.3). Group II ontains the remaining SOFDs, i.e., SOFDs thatinvolve verties in the viinity of the other three verties of S (see Figure 3.6(b)). These arethe last 10 SOFDs in (3.3). It is easy to see that the onvergene rate of the SOFDs in groupII is the same as the regular ase, i.e., 1=4 [10℄. Therefore, to study properties of the seondorder normM , it is suÆient to study norms of the SOFDs in group I. The maximum of thesenorms will be alled the seond order norm of group I. We will use M = M0 to representgroup I's seond order norm as well beause norms of group I's SOFDs dominate norms ofgroup II's SOFDs. For onveniene of referene, in the subsequent disussion we shall simplyuse the term \seond order norm of an extra-ordinary CCSS path" to refer to the \seondorder norm of group I of an extra-ordinary CCSS path".3.3.1 Matrix based Rate of ConvergeneThe seond order norm of S = S00 an be put in matrix form as follows:M = kAPk1
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A =
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377777777777775and P is a ontrol point vetorP = [V1; V2; V3; : : : ; V2n+1℄T :A is alled the seond order norm matrix for extra-ordinary CCSS pathes. If i levels ofCatmull-Clark subdivision are performed on the ontrol mesh of S = S00 then, following thenotation of Setion 2, we have an extra-ordinary subpath Si0 whose seond order norm anbe expressed as: Mi = A�iP1where � is a subdivision matrix of dimension (2n + 1) � (2n + 1). The funtion of � is toperform a subdivision step on the 2n+ 1 ontrol verties around (and inluding) the extra-ordinary point (see Figure 3.6(a)). For example, when n = 3, � is of the following form:



� = 2666666664
5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4

3777777775 :We are interested in knowing the relationship between kAPk1 and kA�iPk1. We need twolemmas for this relationship. The �rst one shows the expliit form of A+A where A+ is thepseudo-inverse of A. The seond one shows that A+A an at as a right identity matrix forA�i.Lemma 7: The produt of the seond order norm matrix A and its pseudo-inverse ma-trix A+ an be expressed as follows:A+A = 8<: H; n = 2k + 1H + E; n = 4k + 2H + E +W+ Z; n = 4k (3.11)where k is a positive integer, and H, E, W and Z are (2n + 1) � (2n + 1) matries of the



following form with H being a irulant matrix:
H � 12n+1 2666664 2n �1 � � � �1 �1�1 2n � � � �1 �1... ...�1 �1 � � � 2n �1�1 �1 � � � �1 2n

3777775 ; E = 1n
26666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

37777777777777775 ;

W = 23n
266666666666666666664
0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0

377777777777777777775
; Z = 23n

266666666666666666664
0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2

377777777777777777775
:

Proof We prove that if n = 2k + 1 for some positive integer k then A+A = H where His de�ned above.From properties of pseudo-inverse matries [9℄, we know thatA+A = ALAwhere AL is a left weak generalized inverse matrix of A, i.e., AL is a matrix satisfying thefollowing onditions AALA = AALAAL = AL(ALA)T = ALA (3.12)Thus, to prove A+A = H, we just need to show that there exists a left weak generalizedmatrix AL of A suh that ALA = H. We �rst prove that there exists a (2n+1)� (2n) matrixC suh that C A = H: (3.13)



(3.13) is equivalant toATCT = AT [C1 C2 � � � C2n+1℄ = HT = H = [H1 H2 � � � H2n+1℄where CTi are row vetors of C and Hi are olumn vetors of H. This is a system of 2n + 1linear equations: ATCi = Hi, i = 1; 2; :::; 2n + 1. Eah of these systems has a solution Cibeause rank(AT ) = rank(ATi ) < 2n + 1where ATi = �AT Hi�. Hene, there is at least one solution for C in (3.13) when n = 2k + 1.It an be proved that there is no solution for CA = H when n = 4k + 2 beause forsome Ci we would have rank(AT ) < rank(ATi ). However, there is at least one solution forCA = H+ E. Same for CA = H+ E +W+ Z when n = 4k.It is easy to verify that, when n = 2k + 1, the matrix C satis�es onditions 1 and 3 in(3.12), i.e., ACA = AH = A and (CA)T = CA:As far as the seond ondition is onerned, there are two possibilities for CAC:Case 1: CAC = CIn this ase, C is a left weak generalized inverse of matrix A. Hene, we have A+A =CA = H.Case 2: CAC = C +D, where D 6= 0.We laim, in this ase, C + D is a left weak generalized matrix of A and C + D is also asolution of (3.13). We �rst show that C + D is also a solution of (3.13). Note that H2 = H.Hene, we have: (C + D)A = CACA = H2 = H = CA:This also shows that DA = 0. To prove that C + D is a left weak generalized matrix of A,note that A(C + D)A = ACA +ADA = ACA = A; and(C + D)A(C + D) = CA(C + D) + DA(C + D) = CA(C + D)= CAC + CAD = CAC = C +DThe seond equation is true beauseCAC = CACAC = CA(C + D) = CAC + CAD:Therefore, the �rst and seond onditions of (3.12) are satis�ed. We also have ((C+D)A)T =(C + D)A beause (C + D)A = H and H is a symmetri matrix. Hene, C + D is indeed aleft weak generalized matrix of A. Consequently, we have A+A = (C + D)A = H.



The other two ases n = 4k + 2 and n = 4k an be proved similarly. 2Lemma 8: A+A is a right identity matrix of A�i, i.e., A�iA+A = A�i, for any i.ProofWe prove the ase n = 2k+1 �rst. Let F be a (2n+1)�(2n+1) Fourier transformmatrix F = 1p2n+ 1 2666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2
3777775where ! = e2�i=(2n+1). It is easy to see thatF�HF = I� 26664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 37775where I is a (2n+ 1) � (2n+ 1) identity matrix. Hene, when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF� = A�iF(I� 26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775)F�= A�i � A�iF26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775F� = A�i � A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 :Note that A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 = 0beause the row sum of A is 0 and row sum of � is 1. Hene, we have A�i = A�iA+A whenn = 2k + 1.We next prove the lemma for n = 4k + 2. Note that in this ase �E = 14E and AE = 0.With these results we have A�iE = 14iAE = 0:



Hene, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to the previous ase, we an prove that�W = 12W, AW = 0 and �Z = 12Z1, AZ = 0. Therefore, we have A�iW = 12iAW = 0 andA�iZ = 12iAZ = 0. Hene, A�iA+A = A�i(H + E +W+ Z) = A�i. 2With this lemma, we havekA�iPk1kAPk1 = kA�iA+APk1kAPk1 � kA�iA+k1 kAPk1kAPk1 = A�iA+1Use ri to represent kA�iA+k1. Then, for any 0 < j < i, we have the following reurreneformula for riri � A�iA+1 = A�i�jA+A�jA+1 � A�i�jA+1 A�jA+1 = ri�j rj (3.14)where r0 = 1. Hene, we have the following lemma on the onvergene rate of seond ordernorm of an extra-ordinary CCSS path.Lemma 9: The seond order norm of an extra-ordinary CCSS path satis�es the follow-ing inquality: Mi � ri M0 (3.15)where ri = kA�iA+k1 and ri satis�es the reurrene formula (3.14).The reurrene formula (3.14) shows that ri in (3.15) an be replaed with ri1. However,experiment data show that, while the onvergene rate hanges by a onstant ratio in mostof the ases, there is a signi�ant di�erene between r2 and r1. The value of r2 is smallerthan r21 by a signi�ant gap. Hene, if we use ri1 for ri in (3.15), we would end up with abigger subdivision depth for a given error tolerane. A better hoie is to use r2 to boundri, as follows. ri � 8<: rj2; i = 2jr1rj2; i = 2j + 1 (3.16)3.3.2 Distane EvaluationFollowing (3.8) and (3.9), the distane between the extra-ordinary CCSS path S(u; v) andthe enter fae of its ontrol mesh L(u; v) an be expressed askL(u; v)� S(u; v)k �Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (3.17)



where m and b are de�ned in (3.5) and (ui; vi) are de�ned in (3.6). By applying Lemma 3,Lemma 4 and (3.7) on the �rst, seond and third terms of the right hand side of the aboveinequality, respetively, we getkL(u; v)� S(u; v)k � m�2Xk=0 Mk + 14Mm�1 + 13Mm �M0(m�2Xk=0 rk + 14rm�1 + 13rm)where  = 1=minfn; 8g. The last part of the above inequality follows from Lemma 8.Consequently, through a simple algebra, we havekL(u; v)� S(u; v)k � 8><>: M0[(1�rj21�r2 + 1�rj�121�r2 r1) + r1rj�124 + rj23 ℄; if m = 2jM0[(1�rj21�r2 + 1�rj21�r2 r1) + rj24 + r1rj23 ℄; if m = 2j + 1It an be easily proved that the maximum ours at m =1. Hene, we have the followinglemma.Lemma 10: The maximum of kL(u; v)� S(u; v)k satis�es the following inequalitykL(u; v)� S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the seond order norm of the extra-ordinary pathS(u; v).3.3.3 Subdivision Depth ComputationLemma 9 an also be used to evaluate the distane between a level-i ontrol mesh and theextra-ordinary path S(u; v) for any i > 0. This is beause the distane between a level-iontrol mesh and the surfae path S(u; v) is dominated by the distane between the level-iextra-ordinary subpath and the orresponding ontrol mesh whih, aoriding to Lemma 9,is kLi(u; v)� S(u; v)k � Miminfn; 8g 1 + r11� r2where Mi is the seond order norm of S(u; v)'s level-i ontrol mesh, Mi. Hene, if the rightside of the above inequality is smaller than a given error tolerane �, then the distane be-tween S(u; v) and the level-i ontrol mesh is smaller than �. Consequently, we have thefollowing subdivision depth omputation theorem for extra-ordinary CCSS pathes.Theorem 11: Given an extra-ordinary surfae path S(u; v) and an error tolerane �, ifi � minf2l; 2k + 1g



levels of subdivision are iteratively performed on the ontrol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn; 8g 1 + r11� r2M0� )e ; k = dlog 1r2 ( r1minfn; 8g 1 + r11� r2 M0� )ewith ri = kA�iA+k1 and M0 being the seond order norm of S(u; v), then the distanebetween S(u; v) and the level-i ontrol mesh is smaller than �.3.4 ExamplesThe new subdivision depth tehnique has been inplemented in C++ on the Windows platformto ompare its performane with the previous approah. MatLab is used for both numerialand symboli omputation of ri in the implementation. Table 1 shows the omparisonresults of the previous tehnique, Theorem 6, with the new tehnique, Theorem 10. Twoerror toleranes 0:01 and 0:001 are onsidered and the seond order norm M0 is assumedto be 2. For eah error tolerane, we onsider �ve di�erent valenes: 3, 5, 6, 7 and 8 forthe extra-ordinary vertex. As an be seen from the table, the new tehnique has a 30%improvement over the previous tehnique in most of the ases. Hene, the new tehniqueindeed improves the previous tehnique signi�antly.To show that the rates of onvergene are indeed di�erene between r1 and r2, theirvalues from several typial extra-ordinary CCSS pathes are inluded in Table 2. Note thatwhen we ompare r1 and r2, the value of r1 should be squared �rst.Table 1. Comparison between the old tehnique and the new tehnique� = 0:01 � = 0:001N Old New Old NewTehnique Tehnique Tehnique Tehnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for some extra-ordinary pathes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.5691



3.5 SummaryA new subdivision depth omputation tehnique for extra-ordinary CCSS pathes is pre-sented in this hapter. Like the previous tehnique, the subdivision depth is omputedbased on norms of the seond order forward di�erenes of the ontrol points. However, theomputation proess is performed on matrix representation of the seond order norm, whihgives us a better bound of the onvergene rate and, onsequently, a tighter subdivisiondepth for a given error tolerane. Test results show that the new tehnique improves theprevious tehnique by about 30% in most of the ases. This is a signi�ant result beauseof the exponential nature of the subdivision proess. We are not sure if the new tehniquean be further improved though.



Chapter 4Interpolation based Shape DesignTehniques for Catmull-ClarkSubdivision SurfaesAs we disussed before, there are two possible approahes to build a one-piee representedontrol mesh for a given model. One is to use the subdivision surfae interpolation teh-nique to approximate the surfae of the given model. Another approah is to onstrut amesh struture through Boolean operations and multiresolution analysis. Both approahesan ahieve a one piee represented ontrol mesh whose Catmull-Clark subdivision surfaeresults in the given model. In this hapter we disuss the interpolation based one-pieerepresentation method [60℄, i.e., to onstrut a one piee represented ontrol mesh, whoseCatmull-Clark subdivision surfae (CCSS) interpolates the verties of a given mesh of arbi-trary topology. The Boolean operation based one-piee representation method [69℄ will bedisussed in Chapter 5.Our new interpolation method [60℄ handles both open and losed meshes. Normals orderivatives spei�ed at any verties of the mesh (whih an atually be anywhere) an alsobe interpolated. The onstrution proess is based on the assumption that, in addition tointerpolating the verties of the given mesh, the interpolating surfae is also similar to thelimit surfae of the given mesh. Therefore, onstrution of the interpolating surfae an useinformation from the given mesh as well as its limit surfae. This approah, alled similaritybased interpolation, gives us more ontrol on the smoothness of the interpolating surfae and,onsequently, avoids the need of shape fairing in the onstrution of the interpolating surfae.The omputation of the interpolating surfae's ontrol mesh follows a new approah, whihdoes not require the resulting global linear system to be solvable. An approximate solutionprovided by any fast iterative linear system solver is suÆient. Nevertheless, interpolationof the given mesh is guaranteed. This is an important improvement over previous methods[14℄ beause with these features, the new method an handle meshes with large numberof verties eÆiently. Although the new method is presented for CCSSs, the onept ofsimilarity based interpolation an be used for other subdivision surfaes as well [60℄.70



This remaining part of this hapter is organized as follows: The Setion 1 gives a briefintrodution to related and previous interpolation methods. Also a overview of our ourinterpolation method is given in this setion. In Setion 2, the similarity based interpolationtehnique for losed meshes is disussed detailedly. A tehnique that works for open meshesis presented in Setion 3. Implementation issues and test results are presented in Setion 4.A summary is given in Setion 5.4.1 IntrodutionGiven a 3D mesh, there exist in�nitely many smooth surfaes that interpolate the meshverties. Any of them an be used as a solution to the interpolation problem. But, to ashape designer, usually only one of them is the surfae he really wants. That surfae, alledthe designer's onept surfae, is a piee of important information for the interpolationproess. If that information is available to the interpolation system, then by onstruting aninterpolating surfae whose shape is most `similar' to the designer's onept surfae, we getthe best result one an get for the interpolation proess. We all an interpolation proesssimilarity based interpolation if the interpolation also depends on establishing `similarity'with a referene surfae. In the above ase, the referene surfae is the designer's oneptsurfae.The result of a similarity based interpolation depends on the quality of the referenesurfae. The loser the shape of the referene surfae to the designer's onept surfae, thebetter the result. The designer's onept surfae usually is not available to the interpolationsystem. But it is reasonable to assume that the given mesh arries a shape similar to thedesigner's onept surfae. After all, these are the verties the user extrated from his oneptsurfae. Consequently, limit surfae of the given mesh, when viewed as the ontrol mesh ofa Catmull-Clark subdivision surfae [1℄, would be similar to the designer's onept surfae.Therefore, using the limit surfae as the referene surfae in the interpolation proess, i.e.,onstruting an interpolating surfae of a given mesh that is also similar to the limit surfaeof the given mesh, we should get an interpolating surfae that is relatively lose to thedesigner's onept surfae. This interpolation onept has not been studied with subdivisionsurfaes before, although interpolation using subdivision surfaes has already been studiedfor a while [28, 30, 31, 47, 53℄.4.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given mesh with a subdivision surfae: interpo-lating subdivision [28, 29, 30, 50, 53℄ or global optimization [31, 47, 60℄. In the �rst ase, asubdivision sheme that interpolates the ontrol verties, suh as the Buttery sheme[30℄,Zorin et al's improved version [29℄ or Kobbelt's sheme [28℄, is used to generate the inter-polating surfae. New verties are de�ned as loal aÆne ombinations of nearby verties.This approah is simple and easy to implement. It an handle meshes with large numberof verties. However, sine no vertex is ever moved one it is omputed, any distortion in



the early stage of the subdivision will persist. This makes interpolating subdivision verysensitive to the irregularity in the given mesh. In addition, it is diÆult for this approah tointerpolate normals or derivatives.The seond approah, global optimization, usually needs to build a global linear systemwith some onstraints [52℄. The solution to the global linear system is an interpolatingmesh whose limit surfae interpolates the ontrol verties in the given mesh. This approahusually requires some fairness onstraints in the interpolation proess, suh as the energyfuntions presented in [47℄, to avoid undesired undulations. Although this approah seemsmore ompliated, it results in a traditional subdivision surfae. For example, the method in[47℄ results in a Catmull-Clark subdivision surfae (CCSS), whih is C2 ontinuous almosteverywhere and whose properties are well studied and understood. The problem with thisapproah is that a global linear system needs to be built and solved. Hene it is diÆult tohandle meshes with large number of ontrol verties.There are also subdivision tehniques that produe surfaes to interpolate given urves orsurfaes that near- (or quasi-)interpolate given meshes [51℄. But those tehniques are eitherof di�erent natures or of di�erent onerns and, hene, will not be disussed here.4.1.2 OverviewIn this hapter, we address the one-piee representation problem by using similarity basedinterpolation tehnique developed for CCSSs. Given a 3D mesh P with arbitrary topology,our new method [60℄ alulates a ontrol mesh Q whose CCSS interpolates the verties ofP . The CCSS of Q is onstruted with the additional assumption that its shape is similarto a referene surfae, the limit surfae of P . A shape fairing proess is not required inthe onstrution proess of the interpolating surfae. The omputation of the ontrol meshQ follows a new approah whih does not require the resulting global linear system to besolvable. An approximate solution provided by any fast iterative linear system solver is suÆ-ient. Hene, handling meshes with large number of verties is not a problem. Nevertheless,interpolation of the given mesh is guaranteed. The new method an handle both losed andopen meshes. The interpolating surfae an interpolate not only verties of a given mesh,but also derivatives and normals anywhere in the parameter spae of the surfae.4.2 Similarity based Interpolation4.2.1 Mathematial SetupGiven a 3D mesh with n verties: P = fP1;P2; � � � ;Png, the goal here is to onstrut aontrol mesh Q whose CCSS interpolates P (the verties of P , for now). The onstrutionof Q follows the following path. First, we perform one or more levels of Catmull-Clarksubdivision on P to get a �ner ontrol mesh G. G satis�es the following property: eah faeof G is a quadrilateral and eah fae of G has at most one extra-ordinary vertex. The vertiesof G are divided into two groups. A vertex of G is alled a Type I vertex if it orresponds to



a vertex of P . Otherwise it is alled a Type II vertex. Q is then de�ned as a ontrol meshwith the same number of verties and the same topology as G. We assume Q has m vertiesQ = fQ1;Q2; � � � ;Qmg, m > n, and the �rst n verties orrespond to the n Type I vertiesof G (and, onsequently, the n verties of P ). These n verties of Q will also be alled TypeI verties and the remaining m� n verties Type II verties. This way of setting up Q is toensure the parametri form developed for a CCSS path [22, 63℄ an be used for the limitsurfae of Q, denoted S(Q), and we have enough degree of freedom in our subsequent work.Note that m is usually muh bigger than n. The remaining job then is to determine theposition of eah vertex of Q.In previous methods [31, 47℄ the n Type I verties of Q are set as independent variables,the m � n Type II verties are represented as linear ombinations of the Type I verties.Sine m � n is bigger than n, this setting leads to an over-determined system. Withoutany freedom in adjusting the solution of the system, one has no ontrol on the shape ofthe resulting interpolating surfae S(Q) even if it arries undesirable undulations. In ourapproah [60℄, instead, the m � n Type II verties are set as independent variables andthe n Type I verties are represented as linear ombinations of the Type II verties. Thisapproah provides us with enough degrees of freedom to adjust the solution of the resultinglinear system and, onsequently, more ontrol on the shape of the interpolating surfae S(Q).4.2.2 Interpolation RequirementsReall that Type I verties of Q are those verties that orrespond to verties of P . Hene,eah vertex of P is the limit point of a Type I vertex of Q. We assume the limit point of Qiis Pi, 1 � i � n. Then for eah Type I vertex Qi (1 � i � n), we haveQi = Ci � eQ+ Pi (4.1)where eQ = fQn+1;Qn+2; � � � ;Qmg is the vetor of Type II verties. Vetor Ci and onstant depend on the topology of P and the degree of vertex Pi. Ci and  an be easily obtainedusing the formula for alulating the limit point of a CCSS [22, 47, 63℄. The onditions ineq. (4.1) are alled interpolation requirements, beause they have to be exatly satis�ed.Note that the interpolation requirements in eq. (4.1) form a system of linear equations.By solving this system of linear equations, we solve the interpolation problem [31℄. But inthis ase one tends to get undesired undulations on the resulting interpolating surfae [47℄.4.2.3 Similarity ConstraintsTwo CCSSs are said to be similar if their ontrol meshes have the same topology and theyhave similar ith derivatives (1 � i <1) everywhere. The �rst ondition of this de�nition isa suÆient ondition for the seond ondition to be true, beause it ensures the onsideredCCSSs have the same parameter spae. The CCSSs onsidered here, S(Q) and S(G), satisfythe �rst ondition. Hene, we have the suÆient ondition to make the assumption that



S(Q) and S(G) are similar. In the following, we assume S(Q) and S(G) are similar in thesense of the above de�nition.With expliit parametrization of a CCSS available [22℄, it is possible for us to onsiderderivatives of S(Q) and S(G) at any point of their parameter spae. However, to avoidostly integration of derivative expressions, we will only onsider derivatives sampled at thefollowing parameter points [58℄:f(k1=2i; k2=2j) j 0 � i; j � 1 ; 0 � k1 � 2i; 0 � k2 � 2jg (4.2)for eah path of S(Q) and S(G). In the above similarity de�nition, two derivatives aresaid to be similar if they have the same diretion. In the following, we use the similarityondition to set up onstraints in the onstrution proess of S(Q).Given two surfaes, let Du and Dv be the u and v derivatives of the �rst surfae and D̂uand D̂v the u and v derivatives of the seond surfae. These derivatives are similar if thefollowing ondition holds: Du � D̂u = 0 and Dv � D̂v = 0 (4.3)A di�erent ondition, shown below, is used in [31, 47℄.Du � (D̂u � D̂v) = 0 and Dv � (D̂u � D̂v) = 0 (4.4)These two onditions are not neessarily equivalent. Our test ases show that eq. (4.3)gives better interpolating surfaes. This is beause eq. (4.4) only requires the orrespond-ing derivatives to lie in the same tangent plane, no restritions on their diretions. As aresult, using eq. (4.4) ould result in unneessary undulations. Note that eq. (4.3) requiresdiretions of Du and Dv to be the same as that of D̂u and D̂v, respetively.Conditions of the type shown in eq. (4.3) are alled similarity onstraints. These on-straints do not have to be satis�ed exatly, only to the extent possible. The interpolationmethod used in [31℄ onsiders interpolation requirements only. The method in [47℄ alsoinludes fairness onstraints to avoid undesired undulations and artifats.4.2.4 Global Linear SystemIf the derivatives of S(Q) and S(G) are sampled at a point in eq. (4.2) then, aording toeq. (4.3) and the derivative of the parametri form of a CCSS path [22, 58℄, we would have(V T �Q)� (V T �G) = 0 (4.5)where V is a onstant vetor of salars whose values depend on the type of the derivative andthe point where the sampling is performed. This expression atually ontains 3 equations,one for eah omponent. Replae the Type I verties Q1;Q2; � � � ;Qn in the above expressionwith eq. (4.1) and ombine all the similarity onstraints, we get a system of linear equationswhih an be represented in matrix form as follows:D �X = C



where X is a vetor of length 3(m�n), whose entries are the x, y and z omponents of eQ. Dusually is not a square matrix. Hene we need to �nd an X suh that (D�X�C)T �(D�X�C)is minimized. This is a quadrati programming problem and an be solved using a linearleast squares method. It is basially a proess of �nding a solution of the following linearsystem: A �X = B (4.6)where A = DTD and B = DTC. A is a symmetri matrix. Hene only half of its ele-ments need to be alulated and stored. One X is known, i.e., eQ is known, we an �ndQ1;Q2; � � � ;Qn using eq. (4.1).The matrix D ould be very big if many sample points or onstrains are used. Fortunately,we do not have to alulate and store the matrix D and the vetor C. Note that A and Ban be written as A =XDi(Di)T and B =XDiiwhere (Di)T is the ith row of D and i is the ith entry of C. Note that the number ofrows (onstrains) of D an be as large as possible, but the number of its olumns is �xed,3(m � n). Suppose the ith onstraint (See eq. (4.5)), with Q1;Q2; � � � ;Qn replaed, iswritten in vetor form as UT �X = u. Then UT is the ith row of matrix D and u is the ithentry of C. Hene rows of matrix D and entries of C an be alulated independently fromeq. (4.5) for eah onstraint of eah sample point. Therefore, A and B an be aumulativelyalulated, onstraint by onstraint. No matter how many sample points are used, and nomatter how many onstraints are onsidered for every sample point, only a �xed amountmemory is required for the entire proess and the size of matrix A is always the same,3(m� n)� 3(m� n).Note that the solution of eq. (4.6) only determines the positions of Type II verties ofQ. Type I verties of Q are represented as linear ombinations of Type II verties in theinterpolation requirements de�ned in eq. (4.1). Sine interpolation of the verties of P isdetermined by the interpolation requirements (See eq. (4.1)) only, this means as long aswe an �nd a solution for eq. (4.6), the task of onstruting an interpolating surfae thatinterpolates the verties of P an always be ful�lled, even if the solution is not preise.Hene, an exat solution to the linear system eq. (4.6) is not a must for our method. Anapproximate solution provided by a fast iterative linear system solver is suÆient. As aresult, the new method an handle meshes with large number of verties eÆiently. This isan important improvement over previous methods.With the similarity assumption, the surfae interpolation problem is basially a proessof using an iterative method to �nd an approximate solution for the global linear system eq.(4.6). An initial guess for the iterative proess an be obtained diretly from G by salingG properly, suh that dimension of the saled limit surfae is the same as the interpolatingsurfae. The required saling fators sx, sy and sz for suh a task an be determined by theondition that the bounding box of the saled limit surfae is the same as the bounding boxof the interpolating surfae. This an easily be done by omparing the maxima and minimaof the verties of the given mesh in all three diretions with the maxima and minima of



their orresponding limit points. The saled mesh alled Ĝ, is a good initial guess for theiterative proess beause Ĝ is atually very lose to the ontrol mesh of the interpolatingsurfae we want to obtain. In our implementation, the Gauss-Seidel method is used for theiterative proess. The iterative proess would onverge to a good approximate solution veryrapidly with this initial guess. However, it should be pointed out that there is no need toarry out the iterative proess to a very preise level. Aording to our test ases, a residualtolerane of the size � = 10�6 does not produe muh notieable improvement on the qualityof the interpolating surfae than a residual tolerane of the size � = 10�3, while the formertakes muh more time than the latter. Therefore a relatively large residual tolerane anbe supplied to the iterative linear system solver to prevent it from running too long on theiterative proess, while not improving the quality of the interpolating surfae muh. This isespeially important for proessing meshes with large number of verties.4.2.5 Additional Interpolation RequirementsIn addition to the interpolation requirements onsidered in eq. (4.1), other interpolationrequirements an be inluded in the global linear system as well. One an also modify orremove some of the interpolation requirements in eq. (4.1). For example, if we wants the�rst u�derivative of the interpolating surfae at Pi to be Du, we need to set up a onditionsimilar to eq. (4.5) as follows: (V T �Q)�Du = 0where V is a onstant vetor. The di�erene here is, this is not a similarity onstraint, butan interpolation requirement. However, if we want a partiular normal to be interpolated, weshould set up interpolation requirements for the u derivative and the v derivative whose rossprodut equals this normal, instead of setting up an interpolation requirement for the normaldiretly, to avoid the involvement of non-linear equations in the system. Then by ombiningall the new interpolation requirements with the original interpolation requirements in eq.(4.1), we get all the expressions for verties that are not onsidered independent variablesin the linear system in eq. (4.6). Note that inluding a new interpolation requirement inthe interpolation requirement pool requires us to hange a variable vertex in eq. (4.6) toa non-variable vertex. Atually, interpolation requirements an be spei�ed for any pointsof the interpolating surfae, not just for verties of P . This is possible beause we have aparametri representation for eah path of a CCSS [22℄. For example, if we want the positionof a path at parameter (1=2; 3=4) to be T, we an set up an interpolation requirement of theform: V T �Q = T where V is a onstant vetor whose values depend on (1=2; 3=4). Thereforethe interpolating surfae an interpolate positions, derivatives and normals anywhere in theparameter spae.4.2.6 Interpolation of Normal VetorsThe diretion of normal vetors an be interpolated exatly by using additional interpola-tion requirements. The key idea is to hange some similarity onstrains to interpolation



requirements, whih means move some equations in eq. (4.5) into the linear system in eq.(4.1). Atually the diretion of partial derivatives an also be interpolated by using suhadditional interpolation requirements. Additional interpolation requirements are onditionslike eq. (4.1) that are guaranteed to be satis�ed and hene, are not involved in the solvingof the global linear system in eq. (4.6).However eq. (4.5) is only good for exatly interpolating partial derivatives. For exatlyinterpolating normal vetors, we need to interpolate the derivatives in u- and v-diretionsrespetively to avoid the involvement of non-linear systems. For example, for a given normalvetor V, whose diretion is required to be interpolated at point P in the interpolatingsurfae. Assume the derivatives at point P in the resulting interpolating surfae in u- andv-diretions are D1 and D2, respetively. Then we need to integrate the following twoequations into linear system eq. (4.1):� D1 � V = 0D2 � V = 0 (4.7)Note that here D1 and D2 an be linearly represented using only the ontrol points of theorresponding surfae path [22℄ and these ontrol points are unknowns in eq. (4.1) and eq.(4.6). Beause the above two equations in eq. (4.7) now are in linear system eq. (4.1), whihis required to be satis�ed exatly, the exat interpolation of the diretion of normal vetorV is guaranteed. For example, Fig. 4.1(f) is interpolated not only at vertex positions, butnormal vetors at boundary verties as well.4.3 Handling Open MeshesThe interpolation proess developed in the previous setion an not be used for open meshes,suh as the one shown in Fig. 4.1(a), diretly. This is beause boundary verties of an openmesh have no orresponding limit points, nor derivatives, therefore, one an not set upinterpolation requirements for these verties, as required by the new interpolation proess.One way to overome this problem is to add an additional ring of verties along the urrentboundary and onnet the verties of this ring with orresponding verties of the urrentboundary to form an additional ring of faes, suh as the example shown in Figure 4.1(). Thenewly added verties are alled dummy verties. We then apply the interpolation methodto the extended open mesh as to a losed mesh exept that there are no interpolationrequirements for the dummy verties. This tehnique of extending the boundary of a givenmesh is similar to a tehnique proposed for uniform B-spline surfae representation in [46℄.Note that in this ase, the interpolation proess does not use the limit surfae of the givenmesh, but rather the limit surfae of the extended mesh as a referene surfae. Therefore,the shape of the interpolating surfae depends on loations of the dummy verties as well.Determining the loation of a dummy vertex, however, is a triky issue, and the user shouldnot be burdened with suh a triky task. In our system, this is done by using loations of theurrent boundary verties of the given mesh as the initial loations of the dummy vertiesand then solving the global linear system in eq. (4.6) to determine their �nal loations.



(a) (b) () (d) (e) (f)Figure 4.1: Interpolating an open mesh: (a) given mesh; (b) limit surfae of (a); () extendedversion of (a); (d) limit surfae of (); (e) interpolating surfae of (a) that uses (d) as areferene surfae; (f) interpolating surfae of (a) with additional requirements.This approah of generating dummy verties works �ne beause dummy verties only a�etsimilarity onstraints. Figure 4.1(e) is a surfae that interpolates the mesh given in Fig.4.1(a) and uses 4.1(d) as a referene surfae.The above setting of the dummy verties usually is not enough to reate an interpo-lating surfae with the desired boundary shape. Additional requirements (not onstraints)are needed in the interpolation proess. As explained in Setion 4.2.5, a platform that al-lows us to de�ne additional requirements an be reated by treating the dummy verties asnon-variables in eq. (4.6). We an then speify new derivative onditions or normal on-ditions to be satis�ed at the original boundary verties. With the additional interpolationrequirements, a designer has more ontrol on the shape of the interpolating surfae in areasalong the boundary and, onsequently, an generate an interpolating surfae with the desiredboundary shape. For example, Figure 4.1(f) is an interpolating surfae of the mesh given inFigure 4.1(a), but generated with additional interpolation requirements. The interpolatingsurfae obviously looks more like a real glass now.4.4 Test ResultsThe proposed approah has been implemented in C++ using OpenGL as the supportinggraphis system on the Windows platform. Quite a few examples have been tested with themethod desribed here. All the examples have extra-ordinary verties. Some of the testedresults are shown in Figures 4.1 and 4.2. Due to limited spae, limit surfae of the meshshown in Figure 4.2(d) whih is very simple are not shown here. For all other ases, the limitsurfaes of the given meshes and the interpolating surfaes are both shown so that one an



(a) Given (b) Limit () Interpo-lating (d) Given Mesh (e) Interpolating

(f) Given Mesh (g) Limit Surfae (h) Interpolating Surfae

(i) Given Mesh (j) Limit Surfae (k) Interpolating

(l) Given Mesh (m) Limit Surfae (n) InterpolatingFigure 4.2: Interpolating meshes with arbitrary topology.



tell if these surfaes are indeed similar to eah other in the least squares sense.In our implementation, only one subdivision is performed on the given mesh for eahexample and the �rst, seond and third derivatives in u and v diretions are used to onstrutinterpolation onstraints and build the global linear system. These derivatives are sampledat points with parameters (k12i ; k22j ), i; j = 0; 1 or 1, and 0 � k1 � 2i, 0 � k2 � 2j, foreah path. That is, 9 points are sampled for eah path, whih is good enough for mostases. For bigger pathes one an use more sample points beause pathes do not have tobe sampled uniformly.The mesh shown in Figure 4.2(f) is an example of an open mesh with disonnetedboundaries. Figure 4.2(h) is the interpolating surfae without using additional interpolationrequirements in the onstrution proess.As an be seen from Figure 4.2, all the resulting interpolating surfae are very smoothand visually pleasing, exept the interpolating surfae shown in Figure 4.2(n). The surfaehas some undulations around the nek, but we do not think they are aused ompletely byour method. We believe this is more of a problem with the general interpolation onept.Note that the input mesh, Figure 4.2(l), has some abrupt hanges of vertex positions andtwists in the nek area. This is also reeted by some visible undulations in the nek areaof the limit surfae, Figure 4.2(m), even though they are not as lear as in the interpolatingsurfae. An approximation urve/surfae, like a spline urve, an be regarded as a lowpass �lter [29℄, whih makes the given ontrol polygon or mesh smoother. An interpolationurve/surfae, on the other hand, an be regarded as a high pass �lter, whih magni�esundulations or twists in the input mesh. Sine a limit surfae is an approximation surfae, itredues the impat of abrupt vertex loation hanges and twists in the input mesh while theinterpolating surfae enhanes it. This is why the undulations are more obvious in Figure4.2(n) than in Figure 4.2(m).The new interpolation method an handle meshes with large number of verties in a mat-ter of seonds on an ordinary PC (3.2GHz CPU, 512MB of RAM). For example, the meshesshown in Figures 4.2(l), 4.2(a) and 1.6(b) have 1022, 354 and 272 verties, respetively. Ittakes 51, 14 and 3 seonds, respetively, to interpolate these meshes. For smaller meshes, likeFigures 4.1(a), 4.2(i), 4.2(d) and 4.2(f), the interpolation proess is done almost in real time.Hene our interpolation method is suitable for interative shape design, where simple shapeswith small or medium-sized ontrol vertex sets are onstruted using design or interpolationmethods, and then ombined using CSG trees to form omplex objets.4.5 SummaryA new interpolation method for meshes with arbitrary topology using general CCSSs ispresented. This interpolation tehnique gives us a one-piee represented ontrol mesh, whoselimit surfae approximates the target model. The development of the interpolation method isbased on the assumption that the interpolating surfae should be similar to the limit surfaeof the given mesh. Our test results show that this approah leads to good interpolationresults even for ompliated data sets.



The new method has several speial properties. First, by using information from theverties of the given mesh as well as its limit surfae, one has more ontrol on the smoothnessof the interpolating surfae. Hene, a surfae fairing proess is not needed in the new method.Seond, there is no system solvability problem for the new method. The global linear systemthat the new method has to solve does not require an exat solution, an approximate solutionis suÆient. The approximate solution an be provided by any fast iterative linear solver.Consequently the new method an proess meshes with large number of verties eÆiently.Third, the new method an handle both open and losed meshes. It an interpolate not onlyverties, but normals and derivatives as well. These normals and derivative an be anywhere,not just at the verties of the given mesh. Therefore, the new interpolation method is general.



Chapter 5Voxelization of Free-form SolidsRepresented by Catmull-ClarkSubdivision SurfaesA voxelization tehnique [62℄ and its appliations for objets with arbitrary topology arepresented in this hapter. The voxelization tehnique will be used for performing aurateBoolean operations disussed in next hapter. By performing CSG or Boolean operations[69℄, we an obtain one-piee representations for objets of arbitrary topology.With parametrization tehniques for subdivision surfaes beoming available [22, 63℄, it ispossible now to model and represent any ontinuous but topologially omplex objet withan analytial representation. In this hapter we present a method to onvert a free-formobjet from its ontinuous geometri representation into a set of voxels that best approx-imates the geometry of the objet. Unlike traditional 3D san-onversion based methods[79, 80, 81, 96, 82℄, our voxelization method is performed by reursively subdividing the 2Dparameter spae and sampling 3D points from seleted 2D parameter spae points. Beausewe an alulate every 3D point position expliitly and aurately, uniform sampling onsurfaes with arbitrary topology is not a problem any more. Moreover, our disretization of3D losed objets is guaranteed to be leak-free when a 3D ooding operation is performed.This is ensured by proving that our voxelization results satisfy the properties of separability,auray and minimality. In addition, a 3D volume ooding algorithm using dynami pro-gramming tehniques is presented whih signi�antly speeds up the volume ooding proess.Hene our method is suitable for visualization of omplex senes, measuring objet volume,mass, surfae area, determining intersetion urves of multiple surfaes and performing au-rate Boolean/CSG operations. These apabilities are demonstrated by test examples shownin this hapter.The struture of this hapter is as follows: A brief introdution is given in Setion 1.Some bakground about 3D disrete spae is introdued in Setion 2. In Setion 3, somerelated work is disussed. The voxelization method is presented in Setion 4. The proof ofthe orretness of our voxelization method is given in Setion 5. In Setion 6, a dynami82



programming method based volume ooding algorithm is presented. Some appliations ofthe voxelization tehnique are disussed and some test examples are shown in Setion 7. Wedraw some onlusions in Setion 8.5.1 IntrodutionVolume graphis [74℄ represents a set of tehniques aimed at modeling, manipulation andrendering of geometri objets, whih have proven to be, in many aspets, superior to tra-ditional omputer graphis approahes. The main advantages of volume graphis are: (1)deoupling of voxelization from rendering, (2) uniformity of representation, and (3) sup-port of Boolean, blok and CSG operations. Two drawbaks of volume graphis tehniquesare their high memory and proessing time demands. However, with the progress in bothomputers and speialized volume rendering hardware, these drawbaks are gradually losingtheir signi�ane.To be represented by the voxel raster, a geometri objet has to go through a proessalled voxelization. This proess is onerned with onverting geometri objets from theirontinuous geometri representation into a set of voxels that best approximates the ontinu-ous objet. Traditional voxelization methods (also referred to as 3D san-onversion) mimithe 2D san-onversion proess that pixelizes (rasterizes) 2D geometri objets. Hene tradi-tional voxelization methods only work well for polygon based 3D objets. For surfaes witharbitrary topology, voxelization using 3D san-onversion is not eÆient, nor aurate.Subdivision surfaes have beome popular reently in graphial modeling, visualizationand animation beause of their apability in modeling/representing omplex shape of ar-bitrary topology [1℄, their relatively high visual quality, and their stability and eÆienyin numerial omputation. Subdivision surfaes an model/represent omplex shape of ar-bitrary topology beause there is no limit on the shape and topology of the ontrol meshof a subdivision surfae. With parametrization tehniques for subdivision surfaes beom-ing available [22, 63℄ and with the fat that non-uniform B-spline and NURBS surfaes arespeial ases of subdivision surfaes beoming known [20℄, we now know that subdivisionsurfaes over both parametri forms and disrete forms. Parametri forms are good fordesign and representation, disrete forms are good for mahining and tessellation (inludingFE mesh generation). Hene, we have a representation sheme that is good for all graphisand CAD/CAM appliations.In this paper we propose a voxelization method for free-form solids represented byCatmull-Clark subdivision surfaes. Instead of diret sampling of 3D points, the new methodis based on reursive sampling of 2D parameter spae points of a surfae path. Hene thenew method is more eÆient and less sensitive to numerial error.Note that a voxelization proess does not render the voxels but merely generates adatabase of the disrete digitization of the ontinuous objet [95℄. Some previous voxeliza-tion methods use quad-trees to store the voxelization result. This approah an save memoryspae but might sari�e in time when used for appliations suh as Boolean operations orintersetion urves determination. Nevertheless, with heap and giga-byte memory hips



beoming available, storage requirement is no longer a major issue in the design of an algo-rithm. People are more about the eÆieny of the algorithm. The new method stores thevoxelization result diretly in a Cubi Frame Bu�er for fast operation purpose.5.2 Bakground: 3D Disrete Spae

(a) 6-adjaent (b) 18-adjaent () 26-adjaentFigure 5.1: N -adjaent, N 2 f6; 18; 26g.A 3D disrete spae is a set of integral grid points in 3D Eulidean spae de�ned bytheir Cartesian oordinates (x; y; z), with x; y; z 2 Z. A voxel is a unit ube entered atthe integral grid point. Usually a voxel is assigned a value of 0 or 1. The voxels assignedan `1', alled the `blak' voxels, represent opaque objets. Those assigned a `0', alled the`white' voxels, represent the transparent bakground. Outside the sope of this paper is anon-binary approah where the voxel values are mapped onto the interval [0,1℄ representingeither partial overage, variable densities, or graded opaities. Due to its larger dynamirange of values, this approah an support higher quality rendering.Two voxels are said to be 26-adjaent (See Fig. 5.1()) if they share a vertex, an edge, ora fae. Every given voxel has 26 suh adjaent voxels: eight share a vertex (orner) with thegiven voxel, twelve share an edge, and six share a fae. Aordingly, fae-sharing voxels aresaid to be 6-adjaent (See Fig. 5.1(a)), and edge-sharing and fae-sharing voxels are said tobe 18-adjaent (See Fig. 5.1(b)).The pre�x N is used to de�ne the adjaeny relation, with N= 6, 18, or 26. A sequeneof voxels having the same value (e.g., `blak') is alled an N -path if all onseutive pairs areN -adjaent. A set of voxels are said to be N -onneted if there is an N -path between everypair of its voxels. It is easy to see that N -onnetedness is an equivalent relation. Giventhree disjoint sets of voxels A, B and C, A is said to N -separate B and C if any N -pathfrom a voxel of B to a voxel of C intersets A.



5.3 Previous Voxelization TehniquesVoxelization tehniques an be lassi�ed into two major ategories. The �rst ategory on-sists of methods that extend the standard 2D san-line algorithm and employ numerialonsiderations to guarantee that no gaps appear in the resulting disretization. As we knowpolygons are fundamental primitives in 3D surfae graphis in that they approximate arbi-trary surfaes as a mesh of polygonal pathes. Hene, early work on voxelization fousedon voxelizing 3D polygon meshes [79, 80, 81, 96, 82℄ by using 3D san-onversion algorithm.Although this type of methods an be extended to voxelize parametri urves, surfaes andvolumes [83℄, it is diÆult to deal with free-from surfaes of arbitrary topology.The other widely used approah for voxelizing free-form solids is to use spatial enumer-ation algorithms whih employ point or ell lassi�ation methods in either an exhaustivefashion or by reursive subdivision [89, 90, 91, 92℄. However, 3D spae subdivision teh-niques for models deomposed into ubi subspaes are omputationally expensive and thusinappropriate for medium or high resolution grids. The voxelization tehnique that we willbe presenting uses reursive subdivision. The di�erene is the new method performs reur-sive subdivision on 2D parameter spae, not on the 3D objet. Hene expensive distaneomputation between 3D points is avoided.Like 2D pixelization, voxelization is a powerful tehnique for representing and modelingomplex 3D objets. This is proved by many suessful appliations of volume graphistehniques in reently reported researh work. For example, voxelization an be used forvisualization of omplex objets or sene [90℄. It an also be used for measuring integralproperties of solids, suh as mass, volume and surfae area [92℄. Most importantly, it anbe used for intersetion urve alulation and performing aurate Boolean operations. Forexample, in [91, 93℄, a series of Boolean operations are performed on objets represented bya CSG tree. Voxelization is suh an important tehnique that several hardware implemen-tations of this tehnique have been reported reently [85, 86℄.5.4 Voxelization based on Reursive 2D Parameter SpaeSubdivision5.4.1 Basi IdeaGiven a free-form objet represented by a CCSS and a ubi frame bu�er of resolutionM1�M2�M3, the goal is to onvert the CCSS represented free-form objet (i.e. ontinuousgeometri representation) into a set of voxels that best approximates the geometry of theobjet. We assume eah fae of the ontrol mesh is a quadrilateral and eah fae has at mostone extra-ordinary vertex (a vertex with a valene di�erent from 4). If this is not the ase,simply perform Catmull-Clark subdivision on the ontrol mesh of the CCSS twie.With parametrization tehniques for subdivision surfaes beoming available, it is pos-sible now to model and represent any ontinuous but topologially omplex objet with an
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(b)(a)Figure 5.2: Basi idea of parameter spae based reursive voxelization.analytial representation [22, 23, 25, 63℄. Consequently, any point in the surfae an be ex-pliitly alulated. On the other hand, for any given parameter spae point (u; v), a surfaepoint S(u; v) orresponding to this parameter spae point an be exatly omputed as well.Therefore, voxelization does not have to be performed in the 3D objet spae, as the previ-ous reursive voxelization methods did, one an do voxelization in 2D spae by performingreursive subdivision and testing on the 2D parameter spae.We �rst onsider the voxelization proess of a subpath, whih is a small portion of apath. Given a subpath of S(u; v) de�ned on [u1; u2℄ � [v1; v2℄, we voxelize it by assumingthis given subpath is small enough (hene, at enough) so that all the voxels generatedfrom it are the same as the voxels generated using its four orners:V1 = S(u1; v1); V2 = S(u2; v1); V3 = S(u2; v2); V4 = S(u1; v2): (5.1)Usually this assumption does not hold. Hene a test must be performed before the pathor subpath is voxelized. It is easy to see that if the voxels generated using its four ornersare not N -adjaent (N 2 f6; 18; 26g) to eah other, then there exist holes between them. Inthis ase, the path or subpath is still not small enough. To make it smaller, we perform amidpoint subdivision on the orresponding parameter spae by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpathes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄);S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing proess on eah of the subpathes. The proess is reursively repeateduntil all the subpathes are small enough and an be voxelized using only their four orners.The verties of the resulting subpathes after the reursive parameter spae subdivisionare then used as verties for voxelization that approximates the limit surfae. For example,



if the four retangles in Figure 5.2(a) are the parameter spaes of four adjaent subpathesof S(u; v), and if the retangles shown in Figure 5.2(b) are the parameter spaes of theresulting subpathes when the above reursive testing proess stops, then 3D points will beevaluated at the 2D parameter spae points marked with small solid irles to form voxelsthat approximate the limit surfae.To make things simple, we �rst normalize the input mesh to be of dimension [0;M1�1℄�[0;M2 � 1℄� [0;M3 � 1℄. Then for any 2D parameter spae point (u; v) generated from thereursive testing proess (See Fig. 5.2), diret and exat evaluation is performed to get its3D surfae position and normal vetor at S(u; v). To get the voxelized oordinates (i; j; k)from S(u; v), simply seti = bS(u; v):x+ 0:5; j = bS(u; v):y + 0:5; k = bS(u; v):z + 0:5: (5.2)One every single point marked in the reursive testing proess is voxelized, the proess forvoxelizing the given path is �nished. The proof of the orretness of our voxelization resultswill be disussed in the next setion.Sine the above proess guarantees that shared boundary or vertex of pathes or sub-pathes will be voxelized to the same voxel, we an perform voxelization of free-form objetsrepresented by a CCSS path by path. One thing that should be pointed out is, to avoidstak overow, only small subpathes should be fed to the reursive subdivision and test-ing proess. This is espeially true when a high resolution ubi frame bu�er is given orsome polygons are very big in the given ontrol mesh. Generating small subpathes is not aproblem for a CCSS one the parametrization tehniques are available. For example, in ourimplementation, the size of subpathes (in the parameter spae) fed to reursive testing is18 � 18 , i.e. eah path is divided into 8 � 8 subpathes before the voxelization proess. Inaddition, feeding small size subpathes to the reursive testing proess ensures the assump-tion of our voxelization proess to be satis�ed, beause the smaller the parameter size of asubpath, the atter the subpath.5.4.2 Voxelization AlgorithmsThe above voxelization method, based on reursive subdivision of the parameter spae, issummarized into the following algorithms: Voxelization and VoxelizeSubPath. The parame-ters to these algorithms are explained as follows. S: ontrol mesh of a CCSS whih representsthe given objet; N : an integer that spei�es the N -adjaent relationship between adjaentvoxels; M1, M2, and M3: resolution of the Cubi Frame Bu�er; k: an integer that spei�esthe number of subpathes (k � k) that should be generated before fed to the reursive vox-elization proess.Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)1. Normalize S so that S is bounded [0;M1 � 1℄� [0;M2 � 1℄� [0;M3 � 1℄2. for eah path pid in S3. for u = 1k : 1; step size 1k



4. for v = 1k : 1; step size 1k5. VoxelizeSubPath(N , pid, u� 1k , u, v � 1k , v);VoxelizeSubPath(int N , int pid, oat u1, oat u2, oat v1, oat v2)1. (i1; j1; k1) = Voxelize(S(pid; u1; v1));2. (i2; j2; k2) = Voxelize(S(pid; u2; v1));3. (i3; j3; k3) = Voxelize(S(pid; u2; v2));4. (i4; j4; k4) = Voxelize(S(pid; u1; v2));5. if(ju2 � u1j < 1=maxfM1;M2;M3g) return;6. �i = maxfjia � ibjg, with a and b 2 f1; 2; 3; 4g;7. �j = maxfjja � jbjg, with a and b 2 f1; 2; 3; 4g;8. �k = maxfjka � kbjg, with a and b 2 f1; 2; 3; 4g;9. if(N = 6 & �i +�j +�k � 1) return;10. if(N = 18 & �i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) return;11. if(N = 26 & �i � 1 & �j � 1 & �k � 1) return;12. u12 = (u1 + u2)=2; v12 = (v1 + v2)=2;13. VoxelizeSubPath(N; pid; u1; u12; v1; v12);14. VoxelizeSubPath(N; pid; u12; u2; v1; v12);15. VoxelizeSubPath(N; pid; u12; u2; v12; v2);16. VoxelizeSubPath(N; pid; u1; u12; v12; v2);In algorithm `VoxelizeSubPath', orresponding surfae points for the four orners areevaluated using eq. (2.5), where pid tells us whih path we are urrently working on. Theroutine `Voxelize' voxelizes points by using eq. (5.2). Lines 9, 10 and 11 are used to testif voxelizing the four orners of a subpath is enough to generate a 6-, 18- and 26-adjaentvoxelization, respetively. While Line 5 prevents the reursive proess from non-stop deadloop in ase Lines 9, 10 and 11 are always not satis�ed.5.5 Separability, Auray and MinimalityLet S be a C1 ontinuous surfae in R3. We denote by �S the disrete representation of S.�S is a set of blak voxels generated by some digitalization method. There are three majorrequirements that �S should meet in the voxelization proess. First, separability [95, 96℄, whihrequires to preserve the analogy between ontinuous and disrete spae and to guarantee that�S is not penetrable sine S is C1 ontinuous. Seond, auray. This requirement ensuresthat �S is the most aurate disrete representation of S aording to some appropriate errormetri. Third, minimality [95, 96℄, whih requires the voxelization should not ontain voxelsthat, if removed, make no di�erene in terms of separability and auray. The mathematialde�nitions for these requirements an be found in [96℄, whih are based on [95℄.First we an see that voxelization results generated using our reursive subdivisionmethod satisfy the requirement of minimality. The reason is that voxels are sampled di-retly from the objet surfae. The termination ondition of our reursive sampling proess



(i.e., Line 8, 9, 10 in algorithm `VoxelizeSubPath') and the oordinates transformation in eq.(5.2) guarantee that every point in the surfae has one and only one image in the resultingvoxelization. In other words,8 P 2 S; 9 Q 2 �S; suh that P 2 Q: (5.3)Note that here P is a 3D point and Q is a voxel, whih is a unit ube. On the other hand,beause all voxels are mapped diretly from the objet surfae using eq. (5.2), we have8 Q 2 �S; 9 P 2 S; suh that P 2 Q: (5.4)Hene no voxel an be removed from the resulting voxelization, i.e., the property of mini-mality is satis�ed. In addition, from eq. (5.3) and eq. (5.4) we an also onlude that theresulting binary voxelization is the most aurate one with respet to the given resolution.Hene the property of auray is satis�ed as well.To prove that our voxelization results satisfy the separability property, we only needto show that there is no holes in the resulting voxelization. For simpliity, here we onlyonsider 6-separability, i.e., there does not exist a ray from a voxel inside the free-formsolid objet to the outside of the free-form solid objet in x, y or z diretion that anpenetrate our resulting voxelization without interseting any of the blak voxels. We provethe separability property by ontradition. As we know violating separability means thereexists at least a hole (voxel) Q in the resulting voxelization that is not inluded int �S butis interseted by S and, there must also exist two 6-adjaent neighbors of Q that are notinluded in �S either and are on opposite sides of S. Beause S intersets with Q, thereexist at least one point P on the surfae that intersets with Q. But the image of P aftervoxelization is not Q beause Q is a hole. However, the image of P after voxelization mustexist beause of the termination ondition of our reursive sampling proess (i.e., Line 8, 9,10 in algorithm `VoxelizeSubPath'). Moreover, aording to our voxelization method, P anonly be voxelized into voxel Q beause of eq. (5.2). Hene Q annot be a hole, ontraditingour assumption. Therefore, we onlude that �S is 6-separating.5.6 Volume Flooding with Dynami Programming5.6.1 Seed SeletionA seed must be designated before a ooding algorithm an be applied. In 2D ooding, a seedis usually given by the user interatively. However, in 3D ooding, for a losed 3D objet,it is impossible for a user to designate a voxel as a seed by mouse-liking beause voxelsinside a losed 3D objet are invisible. Hene an automati method is needed to selet aninside voxel as a seed for volume ooding. One we an orretly hoose an inside voxel, theby applying a ooding operation, all inside voxels an be obtained. To selet a voxel as aseed for volume ooding, we need to tell if a voxel is inside or outside the 3D objet. Thisis not a trivial problem. In the past In-Out test for voxels is not eÆient and not aurate[92℄, espeially for topologially ompliated 3D objets.



With the availability of parametrization tehniques for subdivision surfaes, we now analulate derivatives and normals exatly and expliitly for eah point loated on the 3Dobjet surfae. Hene the normal for eah voxel an also be exatly alulated in the vox-elization proess. Beause the diretion of a normal is perpendiular to the surfae andpoints towards the outside of the surfae, the losest voxel in its opposite diretion must beloated either inside or on the surfae (Assume the voxelization resolution is high enough).For a given voxel (alled start voxel), to hoose the losest voxel in its normal's oppositediretion, we just need to alulate the dot produt of its normal and one of the axis vetors.These vetors are: f1; 0; 0g, f�1; 0; 0g, f0; 1; 0g, f0;�1; 0g, f0; 0; 1g, f0; 0;�1g orrespond-ing to x, �x, y, �y, z and �z diretion, respetively. The diretion with biggest dot produtis hosen for �nding an inside voxel. If the losest voxel in this hosen diretion is also ablak voxel (i.e., loated on the 3D objet surfae), another start voxel has to be seletedand the above proess is repeated until an inside voxel is found. The found inside voxel anbe designated as a seed for inside volume ooding. Similarly, an outside voxel an also befound for outside volume ooding. In this ase, the seed voxel should not be hosen fromthe normal's opposite diretion, but along the normal's diretion.
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BFigure 5.3: A voxel with multiple piees of objet surfae in it.However, if the voxelization resolution is not high enough, the losest voxel in the normal'sopposite diretion might be an outside voxel. For example, in Figure 5.3, ABCD denotesa voxel and part of the objet surfae passes through this voxel. Di�erently, there are twopiees of surfae that are not onneted but are all inside this voxel. If we hoose P1 as thestart point in Figure 5.3 to �nd an inside voxel using the above seed seletion method, anoutside voxel will be wrongly hosen. Hene the above method is no longer appliable in thisase. To resolve the problem in this situation, higher voxelization resolution ould be used.However, no matter how high the voxelization resolution is, we still annot guarantee aseslike the one shown in Figure 5.3 will not our. Hene other approah is needed.Fortunately, voxels that have multiple piees of surfae passing through, like the oneshown in Figure 5.3, an be easily identi�ed in the voxelization proess. To identify thesevoxels, we need to alulate normals for eah voxel. For example, in Figure 5.3, if surfaepoint P1 is mapped to voxel ABCD, then the normal at P1 whih is N1, is also memorizedas the normal of this voxel. Next time if another surfae point, say P2, is also mapped to



voxel ABCD, then the normal at P2 whih is N2, will be �rst ompared with the memorizednormal of voxel ABCD by alulating their dot produt. If N1 �N2 > 0, then nothing needto be done. Otherwise, say surfae point P3, whih is mapped to the same voxel and itsnormal is N3, if N1 � N3 � 0, then this voxel is marked as a voxel that has multiple pieepassing through. One every voxel that has multiple piees of surfae passing through ismarked, we an easily solve the problem simply by not hoosing these marked voxels as thestart voxels.5.6.2 3D Flooding using Dynami ProgrammingHere we only present ooding algorithms using 6-separability, but the idea an be applied toN -separability with N = 18 or 26, Although 6-separability is used in the ooding proess,the voxelization itself an be N -adjaent with N = 6; 18 or 26, One a seed is hosen, 3Dooding algorithms an be performed in order to �ll all the voxels that are 6-onnetedwith this seed voxel. The simplest ooding algorithm is reursive ooding, whih reursivelysearh adjaent voxels in 6 diretions for 6-onneted voxels. This method sounds ideallyreasonable but does not work in real world beause even for a very low resolution, it wouldstill ause stak overow.Another method that an be used for ooding is alled linear ooding, whih searhesadjaent voxels that are 6-onneted with the given the seed voxel, linearly from the �rstvoxel to the last voxel in the ubi frame bu�er, and marks all the found voxels with gray.The searh proess is repeated until no more white (`0') voxels is found that are 6-onnetedwith one of the gray voxels. Linear ooding is simple and does not require extra memory inthe ooding proess. However, it is very slow, espeially when a high resolution is used inthe voxelization proess.In many appliations, 3D ooding operations are required to be fast with low extramemory onsumption. To make a 3D ooding algorithm appliable and eÆient, we anombine the reursive ooding and the linear ooding methods using the so alled dynamiprogramming tehnique.Dynami programming usually breaks a problem into subproblems, and these subprob-lems are solved and the solutions are memorized, in ase they need to be solved again.This is the essentiality of dynami programming. To use dynami programming in our 3Dooding algorithm, we use a sub-routine FloodingXYZ whih marks inside voxels having thesame x, y or z oordinates as the given seed voxel, and all marked voxels are memorized bypushing them into a stak alled GRAYSTACK. Note here the stak has a limited spae,whose length is spei�ed by the user. When the stak reahes its maximal apaity, no grayvoxels an be pushed into it. Hene it guarantees limited memory onsumption. The 3Dooding algorithm with dynami programming an improve the ooding speed signi�antly.For ordinary resolution, say, 512 � 512 � 512, a ooding operation an be done almost inreal time. The pseudo ode for the 3D volume ooding algorithm is given as follows and theparameters (si, sj, sk) are the oordinates of the given seed voxel.



VolumeFlooding(int si, int sj, int sk)1. FloodingXYZ(si, sj, sk);2. loop = 1;3. while(loop)4. while (GRAYSTACK is not empty)5. (i; j; k) = GRAYSTACK.Pop();6. FloodingXYZ(i; j; k)7. loop = 0;8. for(i = 0; i < M1; i++)9. for(j = 0; j < M2; j++)10. for(k = 0; k < M3; k++)11. if ( Voxel (i; j; k) is white and is 6-adjaent with a gray voxel)12. FloodingXYZ(i; j; k);13. loop = 1;5.7 Appliations5.7.1 Visualization of Complex SenesRay traing is a ommonly used method in the �eld of visualization of volume graphis.This is due to its ability to enhane spatial pereption of the sene using tehniques suhas transpareny, mirroring and shadow asting. However, there is a main disadvantagefor ray traing approah: large omputational demands. Hene rending using this methodis very slow. Reently, surfae splatting tehnique for point based rendering has beomepopular [68, 94℄. Surfae splatting requires the position and normal of every point to beknown, but not their onnetivity. With expliit position and exat normal informationfor eah voxel in our voxelization results, now it is muh easier for us to render disretevoxels using surfae splatting tehniques. The rendering is fast and high quality results anbe obtained. For example, Fig. 5.4(f) is the given mesh, Fig. 5.4(g) is the orrespondinglimit surfae. After the voxelization proess, Fig. 5.4(h) is generated only using basi pointbased rendering tehniques with expliitly known normals to eah voxel. While Fig. 5.4(i)is rendered using splatting based tehniques. The size of ubi frame bu�er used for Fig.5.4(h) is 512� 512� 512. The voxelization resolution used for Fig. 5.4(i) is 256� 256� 256.Although the resolution is muh lower, we an tell from Fig. 5.4, that the one using splattingtehniques is smoother and loser to the orresponding objet surfae given in Fig. 5.4(g).5.7.2 Integral Properties MeasurementAnother appliation of voxelization is that it an be used to measure integral properties ofsolid objets suh as mass, volume and surfae area. Without disretization, these integralproperties are very diÆult to measure, espeially for free-form solids with arbitrary topology.



(a) Intersetion Curve (b) Intersetion Curve

() Di�erene (d) Di�erene (e) CSG

(f) Mesh (g) Surfae (h) Point (i) Splat (j) Di�er-ene

(k) Union (l) Di�ereneFigure 5.4: Appliations of Voxelization



Volume an be measured simply by ounting all the voxels inside or on the surfaeboundary beause eah voxel is a unit ube. With eÆient ooding algorithm, voxels insideor on the boundary an be preisely ounted. But the resulting measurement may not beaurate beause boundary voxels do not oupy all the orresponding unit ubes. Henefor higher auray, higher voxelization resolution is needed. One the volume is known, itis easy to measure the mass simply by multiplying the volume with density. Surfae areaan be measured similarly. But using this approah would lead to big error beause we donot know how surfaes pass through their orresponding voxels. Fortunately, surfae areaan be measured muh more preisely in the voxelization proess. As we know, during thereursive voxelization proess, if the reursive proess stops, all the marked parameter pointsof a path or subpath (See Fig. 5.2) are points used for �nal voxelization. Hene all thesequadrilaterals orresponding to these marked parameter points an be used for measuringsurfae area after these marked parameter spae points are mapped to 3D spae. The atnessof these quadrilaterals is required to be tested if high auray is needed. The de�nition ofpath atness and the atness testing method an be found in [64℄.5.7.3 Performing Boolean and CSG OperationsThe most important appliation of voxelization is to perform Boolean and CSG operations onfree-form objets. In solid modeling, an objet is formed by performing Boolean operationson simpler objets or primitives. A CSG tree is used in reording the onstrution historyof the objet and is also used in the ray-asting proess of the objet. Surfae-surfaeintersetion (inluding the in-on-out test) and ray-surfae intersetion are the ore operationsin performing the Boolean and CSG operations. With voxelization, all of these problemsbeome muh easier set operations. For instane, Fig. 5.4(d) is generated by subtratinga ylinder from the Venus model. While Fig. 5.4(k) and Fig. 5.4(l) are the union anddi�erene results of the ow model and the roker arm model shown in Fig. 5.4(g). Note thatall these union and di�erene pairs are positioned the same way when Boolean operations areperformed. Fig. 5.4(j) is generated by subtrating the the heart model shown in Fig. 5.4(),from rok arm model shown in Fig. 5.4(g). And Fig. 5.4() is generated by subtratingthe rok arm model shown in Fig. 5.4(g) from the heart model. A mehanial part is alsogenerated in Fig. 5.4(e) using CSG operations. Intersetion urves an be similarly generatedby searhing for ommon voxels of objets. The blak urve shown in Fig. 5.4(b) and Fig.5.4(a) is the intersetion urve generated from two di�erent objets.5.8 SummaryA method to onvert a free-form objet from its ontinuous geometri representation toa set of voxels that best approximates the geometry of the objet is presented. The newvoxelization method an be used furthermore in next hapter for our subdivision surfaebased one-piee representation system when Boolean operation is used to onstrut one-piee represented mesh struture. Unlike traditional 3D san-onversion based methods, the



new method does the voxelization proess by reursively subdividing the 2D parameter spaeand sampling 3D surfae points only at seleted 2D parameter spae positions. Beause of theapability to alulate every 3D point position expliitly and aurately, uniform samplingon surfaes with arbitrary topology is not a problem for the approah at all. Moreover,the new method guarantees that disretization of 3D losed objets is leak-free when a 3Dooding operation is performed. This is ensured by proving that voxelization results of thenew method satisfy the properties of separability, auray and minimality. In addition, a3D volume ooding algorithm using dynami programming tehniques is presented whihsigni�antly speeds up the volume ooding proess. Hene the new method is suitable forvisualization of omplex senes, measuring objet volume, mass, surfae area, determiningintersetion urve of multiple surfaes and performing aurate Boolean/CSG operations.



Chapter 6Trimming Tehniques for Free-FormSolids Represented by Catmull-ClarkSubdivision SurfaesIn this hapter a method for performing robust and error ontrollable Boolean operations onfree-form solids represented by Catmull-Clark subdivision surfaes (CCSSs) is presented [69℄.The given objets are voxelized [62℄ using the voxelization method presented in hapter 4 tomake Boolean operations more eÆient. However, di�erent from previous voxelization basedapproahes, the �nal results of the Boolean operations in our method are represented witha ontinuous geometri representation, that is, our results after Boolean operations are one-piee representations of solid objets. They are represented with topologially orret meshstruture [69℄. This is ahieved by doing the Boolean operations in the parameter spaes ofthe solids, instead of the objet spae. The 2D parameter spae is reursively subdivideduntil a keep-or-disard deision an be made for eah resulting subpath using results of thevoxelization proess. This approah allows us to easily ompute a parametri approximationof the intersetion urve and, onsequently, build a ontinuous geometri representationfor the Boolean operation result. To make the Boolean operation result more aurate,a seondary loal voxelization an be performed for interseting subpathes. Beause thevoxelization proess itself is very fast and robust, the overall proess is fast and robust too.Most importantly, error of Boolean operation result an be estimated, hene error ontrolis possible. In addition, our method an handle any ases of Boolean operations as long asthe given solids are represented by CCSSs. Therefore there are no speial or degeneratedases to take are of. Although the new method is presented for CCSSs, the onept atuallyworks for any subdivision sheme whose limit surfaes an be parameterized.The remaining part of the hapter is arranged as follows. In setion 1, a brief introdutionis given. Some bakground and previous works related to this one are given in Setion 2. Adesription of our voxelization tehnique is given in Setion 3. The proess of performingBoolean operations on solids represented by CCSSs is disussed in Setion 4. Loal voxeliza-tion tehnique is presented in Setion 5. Error ontrol is given in Setion 6. Implementation96



issues and test ases are shown in Setion 7. Conluding remarks are given in Setion 8.6.1 IntrodutionBoolean operations are a nature way of onstruting omplex solid objets from simplerprimitives. For example, the Construtive Solid Geometry (CSG) representation sheme al-lows users to de�ne omplex 3D solid objets by hierarhially ombining simple geometriprimitives using Boolean operations and aÆne transformations. However, for many appli-ations CSG is not the most eÆient approah. Another major representation sheme usedin solid modeling is boundary representation (B-rep). But for ompliated objets, beausehigher order B-reps are needed, it is usually very diÆult to �nd the interseting urve ana-lytially. In addition, ares always to be taken to handle speial ases and degenerated ases[99℄. Hene, aurate Boolean operations are usually not fast, nor robust, although exellentresults have been ahieved by some ommerial solid modeling engines.Voxelization of 3D objets has been studied and used for 3D objet modeling and ren-dering for a while. With voxelization, it is atually very simple to get all the resulting voxelsafter Boolean operations beause now Boolean operations beome simple set operations. ThediÆult part is how to represent the resulting objet properly and aurately when voxeliza-tion is used in the Boolean operation proess. Traditionally results of Boolean operationsare represented as sets of voxels [109, 110℄ and speial volumetri rendering algorithms aredeveloped for visualizing Boolean operation results [94, 112℄. The main disadvantage of thisapproah is that there is no ontinuous geometri representation for the resulting objets.Consequently, the results of Boolean operations annot be saled seamlessly or smoothlybeause of the nature of disretization.In this paper, we present a method for performing robust and error ontrollable Booleanoperations on free-form solids represented by Catmull-Clark subdivision surfaes (CCSSs).The given solids are voxelized so that Boolean operations an be performed more eÆientlyand robustly. However, the �nal results of Boolean operations in our method are still repre-sented with a ontinuous geometri representation. This is ahieve by performing Booleanoperations subpath by subpath in 2D parameter spae. Eah subpath is small enough toensure the resulting voxels are either adjaent or overlapping. Consequently, onnetivityof adjaent voxels an be easily onstruted and the intersetion urve an be easily iden-ti�ed. Beause Boolean operations are performed subpath by subpath in 2D parameterspae, our method an handle solids with arbitrary topology. There are no speial ases ordegenerated ases to take are of. Therefore our method is robust. Most importantly, errorontrol is possible in our method. To make the Boolean results more aurate, aording toour error estimation formula, a seondary loal voxelization an be performed for eah pairof interseting subpathes.



6.2 Bakground & Related Work6.2.1 Subdivision SurfaesGiven a ontrol mesh, a subdivision surfae is generated by iteratively re�ning (subdividing)the ontrol mesh to form new and �ner ontrol meshes. The re�ned ontrol meshes onvergeto a limit surfae alled a subdivision surfae. So a subdivision surfae is determined by thegiven ontrol mesh and the mesh re�ning (subdivision) proess. Popular subdivision surfaesinlude Catmull-Clark subdivision surfaes (CCSSs) [1℄, Doo-Sabin subdivision surfaes [13℄and Loop subdivision surfaes [3℄. All these subdivision shemes an be onsidered as analgorithmi generalization of lassial spline tehniques enabling ontrol meshes with arbi-trary topology [1, 3, 13℄. They provide easy aess to globally smooth surfaes of arbitraryshape by iteratively applying simple re�nement rules to the given ontrol mesh. A sequeneof meshes generated by this proess quikly onverges to a smooth limit surfae. For mostpratial appliations, the re�ned meshes are already suÆiently lose to the smooth limitafter only a few re�nement steps.Subdivision surfaes by far are the most general surfae representation sheme. Theyinlude non-uniform B-spline and NURBS surfaes as speial ases [20℄. In this hapterwe only onsider performing Boolean operations on free-form solids represented by CCSSs.However, our approah an be used for any subdivision sheme whose parametrization isavailable.6.2.2 VoxelizationLike 2D pixelization, voxelization of surfaes [95, 96℄ is a powerful tehnique for representingand modeling omplex 3D objets. This is proved by many suessful appliations of volumegraphis tehniques in researh work reported reently. For example, voxelization an be usedfor visualization of omplex objets or senes [62, 94, 112℄. It an also be used for measuringintegral properties of solids, suh as mass, volume and surfae area. Most importantly, it anbe used for intersetion urve alulation and, onsequently, Boolean operations [62, 110℄.For example, in [110℄, a series of Boolean operations are performed on objets representedby a CSG tree.A good voxelization should meet three requirements in the voxelization proess: separa-bility, auray, and minimality [95, 96℄. The �rst requirement demands analogy betweenthe ontinuous spae and the disrete spae to be preserved and the resulting voxelization tobe not penetratable sine the given solid is losed and ontinuous. The seond requirementensures that the resulting voxelization is the most aurate disrete representation of thegiven solid aording to some appropriate error metri. The third requirement requires thevoxelization does not ontain voxels that, if removed, make no di�erene in terms of sepa-rability and auray. The mathematial de�nitions of these requirements an be found in[95, 96℄.Note that a voxelization proess does not render the voxels but merely generates adatabase of the disrete digitization of the ontinuous objet [95℄. Some previous voxeliza-



tion methods use quad-trees to store the voxelization result [111℄. This approah an savememory spae but might sari�e in time when used for appliations suh as Boolean opera-tions or intersetion urves determination. Nevertheless, with heap and giga-byte memoryhips beoming available, storage requirement is no longer a major issue in the design of avoxelization algorithm. People are more about the eÆieny of the algorithm. Our newmethod stores the voxelization result diretly in a Cubi Frame Bu�er [95℄ for fast operationpurpose.6.2.3 Boolean Operations on Free-Form SolidsPerforming Boolean operations is a lassi problem in geometri modeling. Many approaheshave been reported in the literature, suh as [7, 69, 97, 103, 107, 109, 110, 111℄, to namea few. Currently most solid modelers an support Boolean operations on solids omposedof polyhedral models or quadri surfaes (like spheres, ylinders et.). Over the last fewyears, modeling using free-form surfaes has beome indispensable throughout the ommer-ial CAD/CAM industry. However, the major bottlenek is in performing robust, eÆientand aurate Boolean operations on free-form objets. The topology of a surfae path be-ome quite ompliated when a number of Boolean operations are performed and �ndinga onvenient representation for these topologies has been a major hallenge. As a result,some solid modelers [97℄ use polyhedral approximation to these surfaes and apply Booleanoperations on these approximate polyhedral objets. Although this approahes seem simple,there are always some speial ases or degenerated ases [99℄ that are diÆult to take are of.Some modelers use point (or surfel) based approahes [111℄ to perform Boolean operationsand quite good results are obtained. However, error ontrol is diÆult in suh approahes.Zorin et. proposed a method [7℄ to perform approximate Boolean operations on free-formsolids represented by subdivision surfaes. The main ontribution of their method is the al-gorithms that are able to generate a ontrol mesh for a multiresolution surfae approximatingthe Boolean results.Most of the reent work in the literature on Boolean operations of urved models arefoused on omputing the surfae intersetion [98, 100, 102, 104, 106, 108℄. However, thealgebrai degree of the resulting urve an typially be very high (up to 324 for a pairof biubi B�ezier surfaes) [97℄ and the genus is also non-zero. Hene it is very diÆult torepresent the intersetion urve analytially and the urrent methods are aimed at omputingapproximations to the intersetion urve.6.3 Performing Boolean Operations on Free-Form SolidsBeause we perform Boolean Operations on Free-Form Solids by voxelizing these solids,Boolean operations performed on three or more objets an be regarded as a series of Booleanoperations performed on two objets. Therefore, here we only need to onsider Booleanoperations performed on two free-form solids A and B. As a result, only two ubi framebu�ers are needed in the whole proess, one for eah objet. The results of Boolean operations



an share a ubi frame bu�er with any of them. One voxelization is done (See hapter4), a volume ooding (see hapter 4) must be performed to mark the voxels loated insidea given solid. After all these steps, there are three types of voxels in eah ubi frame bu�er:(1) inside voxels, (2) boundary voxels and (3) outside voxels.Several possible Boolean operations may be spei�ed by the users. However, the essentialproess is almost the same. Here we illustrate the proess by assuming the given Booleanoperation is to �nd the intersetion of two solid objets.With voxelization, it is atually quite simple to get the resulting voxels for a Booleanoperation. For example, the voxels left after an intersetion operation are those loated insideor on the boundary of both objets. The diÆult part is how to represent the resulting partproperly and aurately. Traditionally the results of Boolean operations are representedjust with voxels. The main disadvantage of this method is the results annot be saledseamlessly beause of the nature of disretization. In the following, we present an approahthat represents the �nal result with a ontinuous geometri representation.6.3.1 Boolean Operations based on Reursive Parameter SpaeSubdivision and VoxelizationFor a subpath of S(u; v) of solid A de�ned on [u1; u2℄� [v1; v2℄, we voxelize it one more timeusing the method disussed in Chapter 4. However, this time we do not write the voxelsinto A's ubi frame bu�er, but look up the voxel values in both solid A and solid B's ubiframe bu�ers. Reall that we are performing an intersetion operation of A and B. If all thevoxel values of the whole subpath in both ubi frame bu�er are not outside, then this is asubpath to keep. Subpathes of this type are alled K-subpathes (subpathes to be kept).If the voxel values of this subpath are all outside in both A and B's ubi frame bu�er, thenthis is a subpath to disard. Subpathes of this type are alled D-subpathes (subpathesto be disarded). Otherwise, i.e., if some of the voxel values are inside, boundary and someof the voxel values are outside, then this is a path with some part to keep and some partto disard. Subpathes whose voxel values ontain all of inside, boundary and outside arealled I-subpathes (interseting subpathes). For example, the retangles shown in Fig. 6.1(a) are the parameter spaes of the resulting subpathes when the reursive voxelizationproess stops and the dashed polyline is part of the intersetion urve of the two given solidsin this path's 2D parameter spae. We an see that subpath A1A2A4A3 in Fig. 6.1 (a)is an I-subpath. Note here all the marked (dark irles) adjaent points, when evaluatedand voxelized, will be mapped to either the same voxel or adjaent voxels (see Chapter4). For example, there does not exist any voxel between voxels orresponding to parameterpoints A1 and A3. Therefore, even though the intersetion urve does not pass throughA1 or A3, the voxel orresponding to the intersetion point I1 will fall into the losest voxelorresponding to parameter pointA1 or A3. In this ase, it falls into the voxel orrespondingto A1An interseting voxel is a voxel whose voxel value is boundary in both ubi frame bu�ers.Hene it is very easy to �nd all the interseting voxels, whih ompose the intersetion urve
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(b)Figure 6.1: Performing Boolean operations on 2D parameter spae.(but at this moment we do not know how to onnet these interseting voxels yet and will beexplained shortly). For example, in Fig. 6.1(a), parameter points A1 and B7 are intersetingvoxels. One all the interseting voxels are identi�ed, a ontinuous geometri representationfor the Boolean operation result an be generated as follows.K-subpathes and D-subpathes are easy to handle. They are either kept (for K-subpathes)or disarded (for D-subpathes) totally. For example, in Fig. 6.1(b), A4A5A7A6 is a K-subpath, hene A4A5A7A6 will be output wholly in the tessellation or rendering proess.For an I-subpath, one an determine whih part of the subpath to keep by traversing allthe marked points attahed to this subpath. For example, for the subpath B0B1B2B3B7in Fig. 6.1(a), after a traverse of the marked verties, it is easy to see that the part to keep isthe triangle B2B3B7. Hene B2B3B7 will be used in the tessellation and rendering proessand other region of the subpath B0B1B2B3B7 in Fig. 6.1(a) will be disarded. Note herethe intersetion point I2, after voxelization, maps to the voxel B7. In Fig. 6.1(b) the shadedpart is the result after performing the Boolean operation in the 2D parameter spae. Onewe have the result of the Boolean operation in 2D parameter spae, the 3D result an beeasily obtained by diretly evaluating and tessellating these shaded polygons. Note here weobtain not only the polygons, but also their onnetivity. Hene a mesh struture an beahieved in the above proess. It is the mesh struture that we an onsider as a one-pieerepresentation of the results of Boolean operations. In this stage, we have a ontinuousgeometri representation (the mesh) as well as a disrete voxel based representation (theubi frame bu�er) for our resulting shape of Boolean operations. Beause now we haveboth representations, a onneted intersetion urve an be easily onstruted as well bypiking boundary voxels (from the disrete voxel based representation) and traversing themesh struture (information of the ontinuous geometri representation). For example, inFigure 6.1, the intersetion urve (inside this path) is A1A4A6B2B7B8.The above voxelization proess and Boolean operations guarantee that shared boundaryor vertex of pathes or subpathes will be hopped, kept or disarded in exatly the sameway no matter on whih path the operation is performed. Therefore, in our approah,



Boolean operations of free-form objets represented by CCSSs an be performed on thebasis of individual pathes.6.3.2 Crak PreventionDue to the fat that adjaent pathes might be tessellated by quadrilaterals orresponding tosubpathes from di�erent levels of the midpoint subdivision proess mentioned in the abovesetion, raks ould our between adjaent pathes or subpathes. For instane, in Figure7.3, the left path A1A2A5A6 is approximated by one quadrilateral but the right path isapproximated by 7 quadrilaterals. Consider the boundary shared by the left path and theright path. On the left side, that boundary is a line segment de�ned by two verties : A2and A5. But on the right side, the boundary is a polyline de�ned by four verties : A2, C4,B4, and A5. They would not oinide unless C4 and B4 lie on the line segment de�ned byA2 and A5. But that usually is not the ase. Hene, raks would appear between the leftpath and the right path.Fortunately Craks an be eliminated simply by replaing eah boundary of a path orsubpath with the one that ontains all the evaluated points for that boundary. For exam-ple, in Figure 7.3, all the dotted lines should be replaed with the orresponding polylines.In partiular, boundary A2A5 of path A1A2A5A6 should be replaed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is replaed with polygon A1A2C4B4A5A6in the tessellation proess. For rendering purpose this is �ne beause graphis systems likeOpenGL an handle polygons with non-o-planar verties and polygons with any number ofsides. However, it should be pointed out that through a simple zigzag tehnique, triangu-lation of those polygons is atually a simple and very fast proess. More details about therak prevention problem are presented in Chapter 6.Craks ould also our if solids A and B are not onneted properly in the intersetingarea. For example in Fig. 6.1 (a), intersetion point I1 after evaluation and voxelization fallsto voxel orresponding to 2D parameter pointA1 of solid A. If I1 falls to voxel orrespondingto 2D parameter point �A1 of solid B, then after evaluation, SA(A1) might not equal SB( �A1)exatly. Hene rak ours. To eliminate this kind of raks, we annot use the exat 3Dpositions evaluated from 2D parameter points for intersetion point. Instead we use theenter of the orresponding voxel as the intersetion point. In this way, solids A and Bwill have exatly the same intersetion positions and intersetion urve as well. As a result,solids A and B an be onneted seamlessly. Note that for K-subpathes, their vertieswill be evaluated diretly from parameter points. Only intersetion points of partially keptI-subpathes are approximated by the enters of their orresponding voxels.6.4 Loal VoxelizationThe voxelization proess presented in the above setion is alled a global voxelization, beauseit is performed for the entire objet spae. After all the Boolean operations are performed,a �ne sale voxelization, alled a loal voxelization, will also be performed. The goal of the



loal voxelization is to improve the auray of the I-subpathes. For example, in Fig. 6.1(a),A1A2A4 is used to approximate the area of the I-subpath A1A2A4A3 that should be kept.The auray of this approximation depends on the resolution of the global ubi framebu�er, whih is always not high enough beause of limited memory resoure. However,we an do a seondary voxelization, whih has lower resolution, but is only applied to avery small portion of the objet spae. As a result high auray still an be ahieved atinterseting area.The proess and the approah used for a loal voxelization are the same as a globalvoxelization. The only di�erene is that they are applied to di�erent size of the objetspae. In order to perform loal voxelization, information about whih subpathes of solidA interseting with whih subpathes of solid B must be known �rst. This information isvery diÆult to obtain in previous voxelization based methods. Fortunately, in our method,it an be readily obtained when performing the Boolean operations, as mentioned in Setion6.3.1. If we mark these interseting subpathes of solids A and B during the keep-or-disardtest proess, we would know exatly whih subpathes of solid A interset whih subpathesof solid B. One all interseting subpathes are known, loal voxelization an be diretlyperformed for eah pair of interseting subpathes. For example, suppose subpath p1 ofobjet A intersets subpathes q1 and q2 of objet B, then a loal voxelization is performedon these 3 subpathes only. Their intersetion urve is used to replae the intersetion urveobtained using the global voxelization proess. The loal voxelization proess is appliedto every pair of interseting subpathes of solids A and B. Consequently, more aurateintersetion urve ould be omputed. For instane, in Fig. 6.1(a), the intersetion urveA4A1 will be replaed with V1V2 � � �Vk, k = 10, if Vi, i = 1 � � � 10 are the new intersetingvoxels in the orresponding loal ubi frame bu�ers and polygon A1A2A4V1V2 � � �Vk willbe used in the tessellation and rendering proess. Similar to global voxelization, only twoloal ubi frame bu�ers are needed for loal voxelization. The loal ubi frame bu�ers anbe reused for eah new pair of interseting subpathes. Hene loal voxelization does notrequire a lot of memory.6.5 Error ControlGiven an �, the purpose of error ontrol is to make sure the error of the resulting solid afterperforming Boolean operations using our method is less than � to the one hundred perentaurate result. There are two kinds of error that might our when our method is appliedto perform Boolean operations among losed free-form solids represented by Catmull-Clarksubdivision surfaes. They are disussed as follows.The �rst one possible inauray possibly ourring using our method is the approxi-mation of resulting solids with polygonal meshes. Beause all obtained resulting solids areapproximated with polygonal meshes, even although the approximating meshes are denseand are very lose to the true surfae, error inevitably ours. However, the error ausedby approximation of polygonal meshes an be aurately measured [61, 69℄. Hene errorontrol for this type of error is possible. The measurement of this kind of error is disussed



in Chapter 6.Another soure that ould introdue error in the result of the Boolean operations is thevoxelization proess. Both the global and the loal voxelization an ause inauray. Thekind of error aused by voxelization is easy to estimate if the resolutions of ubi framebu�ers are known. For example, if the ubi frame bu�er resolution is R1�R2�R3 and theobjet spae is of size X1�X2�X3, then we an see that eah voxel is of size X1R1 � X2R2 � X2R3 .It is easy to see the maximal error of voxelization is half the size of a voxel. If we performloal voxelization for every pair of interseting subpathes, then global voxelization will notause any error. Here we an also see why loal voxelization an improve the auraydramatially. In loal voxelization, beause the size of the subpathes being voxelized arevery small, even with a low resolution, the voxel size is still very small.Therefore the overall error aused by polygonalization and voxelization is the sum of theerrors aused by eah of them. To make error of the �nal Boolean operation results less thanthe given � everywhere, the test ondition in eq. (7.5) has to be hanged to the followingform: � pd ( �u; �v) +pd ( û; v̂) � �=2size of eah voxel � � (6.1)where (û; v̂) and (�u; �v) is de�ned the same way as in eq. (7.5). The �rst equation in eq.(6.1) ensures the path (or subpath) and its approximating polygon are both loated insidetwo quadrilaterals that are �=2 away. The seond equation in eq. (6.1) ensures the erroraused by voxelization is not bigger than �=2. Hene the total error in the whole proess isguaranteed to be less than �.6.6 Test ResultsThe proposed approah has been implemented in C++ using OpenGL as the supportinggraphis system on the Windows platform. Quite a few examples have been tested with themethod desribed here. All the examples have extra-ordinary verties. Some of the testedresults are shown in Figures 6.2. The resolution of global voxelization is 512� 512� 512 forall the test examples, and the error for all of them is set to 10�3. The size of eah example isnormalized to [0; 1℄ before voxelization and Boolean operations are performed. Resolutionsof the loal voxelization proess depend on error tolerane and the given meshes. Heneresolution of loal voxelization is di�erent for eah of the examples shown in Figures 6.2.For example, resolution of loal voxelization used for Figures 6.2(k) and 6.2(l) is 8� 8� 8,while for Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) the resolution used for loal voxelization is32�32�32. Although resolutions used for loal voxelization are di�erent, the overall error isthe same in the �nal results. From eq. (6.1) we an see this di�erene is beause intersetingsubpathes in Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) have bigger size than Figures 6.2(k)and 6.2(l).In Figure 6.2, all the Di�erene and Intersetion operations are performed on solidspositioned exatly the same as in the Union operation so that we an easily tell if results ofthe Boolean operations are orret within the given error tolerane. For example, Figures



(a) Union (b) Di�erene () Union (d) Di�er-ene

(e) Union (f) Di�erene (g) Union

(h) Union (i) Intersetion (j) Di�erene

(k) Union (l) Di�ereneFigure 6.2: Boolean Operations Performed on Solids Represented by CCSSs.



6.2(j) and 6.2(g) are results of Di�erene operation and Union operation, respetively, onsolids plaed in the same positions. Similarly, Figures 6.2(i) orresponds to 6.2(h), 6.2(b)orresponds to 6.2(a), 6.2(d) orresponds to 6.2(), 6.2(f) orresponds to 6.2(e) and 6.2(l)orresponds to 6.2(k).6.7 SummaryA new method for performing robust and error ontrollable Boolean operations on free-formsolids represented with CCSSs is presented. The resulting solids after Boolean operationsare represented with a ontinuous geometri representation, that is, our results after Booleanoperations are one-piee representations of solid objets. They are represented with topo-logially orret mesh struture. Test results show that this approah leads to good resultseven for ompliated solids with arbitrary topology.The new method has several speial properties: First, Boolean operations an be per-formed on 2D parameter spaes on the basis of individual pathes. There is no need totake are of speial ases or degenerated ases. Hene the method is robust. Seond, al-though voxelization is performed to failitate Boolean operations, the result of a Booleanoperation in our method are still represented with a ontinuous geometri representation.Hene our Boolean operation results an be saled seamlessly and smoothly. Third, errorof Boolean operation results an be preisely estimated. Aording to the error estimationformula, a seondary loal voxelization an be performed for interseting subpathes only.Hene higher auray an be ahieved. Finally, although the new method is presented forCCSSs, the onept atually works for any subdivision sheme whose limit surfaes an beparameterized.



Chapter 7Adaptive Tessellation Tehniques forCatmull-Clark Subdivision SurfaesCatmull-Clark subdivision sheme provides a powerful method for building smooth and om-plex surfaes. But the number of faes in the uniformly re�ned meshes inreases exponentiallywith respet to subdivision depth. Adaptive tessellation redues the number of faes neededto yield a smooth approximation to the limit surfae and, onsequently, makes the renderingproess more eÆient.In this hapter, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfaes. The new adaptive tessellation method an be used to preiselymeasure error aused by polygonal approximation. For example the error ontrol in ourBoolean operation proess presented in Chapter 5 employs this method. The new adaptivetessellation method also an be used for signi�antly reduing fae number of dense mesheswith aurate error estimation. As a result our one-piee representation obtained from eitherinterpolation (See Chapter 2) or performing Boolean operations (See Chapter 5), an besubstantially simpli�ed using the new adaptive tessellation method.Di�erent from previous ontrol mesh re�nement based approahes, whih generate ap-proximate meshes that usually do not interpolate the limit surfae, the new method is basedon diret evaluation of the limit surfae to generate an insribed polyhedron of the limitsurfae. With expliit evaluation of general Catmull-Clark subdivision surfaes beomingavailable, the new adaptive tessellation method an preisely measure error for every pointof the limit surfae. Hene, it has omplete ontrol of the auray of the tessellation result.Craks are avoided by using a reursive olor marking proess to ensure that adjaent pathesor subpathes use the same limit surfae points in the onstrution of the shared boundary.The new method performs limit surfae evaluation only at points that are needed for the�nal rendering proess. Therefore it is very fast and memory eÆient. The new methodis presented for the general Catmull-Clark subdivision sheme. But it an be used for anysubdivision sheme that has an expliit evaluation method for its limit surfae.The struture of this hapter is arranged as follows: We give a brief introdution in theSetion 1. Some previous works related to this one is given in Setion 2. A desription of107



the basi idea of our adaptive tessellation tehnique is given in Setion 3. The issue of rakelimination is disussed in Setion 4. Two settings of path atness are disussed in Setion5. Algorithms of our tehnique are presented in Setion 6. Test results are shown in Setion7. The onluding remarks are given in Setion 8.7.1 IntrodutionSubdivision based evaluation proess of a subdivision surfae relies on performing repeatedsubdivision of the ontrol mesh until the re�ned mesh is lose enough to the limit surfae(within some given tolerane). It is then possible to push the ontrol points (mesh verties)to their limit positions. But the number of faes in the uniformly re�ned meshes inreasesexponentially with the reursive steps of subdivision. See Figure 1.9(b) for an example wherethe ontrol mesh of a Gargoyle is uniformly subdivided only twie and yet the resultingmesh is already quite dense. Hene, a good method for reduing the number of faes in there�ned mesh while keeping the preision of the approximation is neessary. For instane, inFigure 1.9(), 1.9(d), and 1.9(e), the same model is adaptively subdivided 4, 3 and 2 times,respetively. The resulting meshes have a higher or similar preision while the number offaets in the resulting meshes is muh less than the uniform ase. Suh a method is importantfor both rendering and �nite-element mesh generation. The riterion for rendering, however,is di�erent from the riterion for �nite-element mesh generation. In the �rst ase, the numberof sides of the mesh faes ould be di�erent while, in the seond ase, the mesh faes areeither all triangles or all quadrilaterals. Figure 1.9(f) shows a triangulated result of Figure1.9(e).Researh work for reduing the number of faes in a mesh has been done in severaldiretions. Mesh simpli�ation [34℄ is the most popular one over the past deade. It aims atremoving some of the overly sampled verties in a mesh and produes approximate mesheswith various levels of detail. Another main method for reduing the number of faes in amesh, alled adaptive tessellation, is to apply adaptive or loal re�nement shemes to areasspei�ed by a user or determined by an appliation. The resulting mesh should be rak-freeand have the same limit surfae as the uniformly re�ned mesh.There are two possible approahes for adaptive tessellation of subdivision surfaes. Oneis a mesh re�nement based approah. It approximates the limit surfae by adaptively re�ningthe ontrol mesh of the surfae. The resulting mesh usually does not interpolate points ofthe limit surfae. The other one is a surfae evaluation based approah. This approahapproximates the limit surfae by generating an insribed polyhedron of the limit surfae,with verties of the polyhedron taken (evaluated) adaptively from the limit surfae. Themesh re�nement based approah needs a subdivision sheme, suh as the Catmull-Clarkmethod or the Doo-Sabin method, to re�ne the input mesh. Most methods proposed inthe literature for adaptive tessellation of subdivision surfaes belong to this ategory. Theseond approah needs a parametrization/evaluation method for the limit surfae. With theavailability of diret evaluation methods of subdivision surfaes reently [22, 23, 25, 63℄, theseond approah ould be more appealing for adaptive tessellation of subdivision surfae



beause of its simpliity in nature. Currently there is only one paper published in thisategory [125℄. This paper works for parametrization that reprodues linear funtions [44℄.For more general parameterizations [22, 23, 25, 63℄, it does not work well.In this hapter we will present a surfae evaluation based approah for adaptive tessel-lation of subdivision surfaes. Our method is di�erent from [125℄ in that our method workswith any parametrization method and has a preise error estimate. The new approah is pre-sented for the general Catmull-Clark subdivision surfaes [1℄, but it an be easily extendedto work for any subdivision surfae that has an exat evaluation method for its limit surfae.7.2 Previous WorkA number of adaptive tessellation methods for subdivision surfaes have been proposed[45, 35, 36, 125, 40, 41℄. Most of them are mesh re�nement based, i.e., approximating thelimit surfae by adaptively re�ning the ontrol mesh. This approah requires the assignmentof a subdivision depth to eah region of the surfae �rst. In [45℄, a subdivision depthis alulated for eah path of the given Catmull-Clark surfae with respet to a givenerror tolerane �. In [35℄, a subdivision depth is estimated for eah vertex of the givenCatmull-Clark surfae by onsidering fators suh as urvature, visibility, membership to thesilhouette, and projeted size of the path. The approah used in [45℄ is error ontrollable.An error ontrollable approah for Loop surfae is proposed in [125℄, whih alulates asubdivision depth for eah path of a Loop surfae by estimating the distane between twobounding linear funtions for eah omponent of the 3D representation.Several other adaptive tessellation shemes have been presented as well [41, 40, 36℄. In[36℄, two methods of adaptive tessellation for triangular meshes are proposed. The adaptivetessellation proess for eah path is based on angles between its normal and normals ofadjaent faes. A set of new error metris tailored to the partiular needs of surfaes withsharp reases is introdued in [40℄.In addition to various adaptive tessellation shemes, there are also appliations of thesetehniques. D. Rose et al. used adaptive tessellation method to render terrain [43℄ andK. M�uller et al. ombined ray traing with adaptive subdivision surfaes to generate somerealisti senes [39℄. Adaptive tessellation is suh an important tehnique that an API hasbeen designed for its general usage [42℄. Atually hardware implementation of this tehniquehas been reported reently as well [38℄.A problem with the mesh-re�nement-based, adaptive tessellation tehniques is the soalled gap-prevention requirement. Beause the number of new verties generated on eahboundary of the ontrol mesh depends on the subdivision depth, gaps (or, raks) ouldour between the ontrol meshes of adjaent pathes if these pathes are assigned di�erentsubdivision depths. Hene, eah mesh-re�nement-based adaptive tessellation method needssome speial mehanism to eliminate gaps. This is usually done by performing additionalsubdivision or splitting steps on the path with lower subdivision depth. As a result, manyunneessary polygons are generated in the tessellation proess. In this paper, we will adap-tively tessellate a subdivision surfae by taking points from the limit surfae to form an



insribed polyhedron of the limit surfae, instead of re�ning the ontrol mesh. Our methodsimpli�es the proess of gap deteting and elimination. It does not need to perform extra orunneessary evaluations either.7.3 Basi Idea

(a) Cirumsribed (b) InsribedFigure 7.1: Insribed and Cirumsribed Approximation.
7.3.1 Insribed ApproximationOne way to approximate a urve (surfae) is to use its ontrol polygon (mesh) as the ap-proximating polyline (polyhedron). For instane, in Figure 7.1(a), at the top are a ubiB�ezier urve and its ontrol polygon. For a better approximation, we an re�ne the ontrolpolygon using midpoint subdivision. The solid polyline at the bottom of Fig. 7.1(a) is theapproximating ontrol polygon after one re�nement. This method relies on performing it-erative re�nement of the ontrol polygon or ontrol mesh to approximate the limit urve orsurfae. Beause this method approximates the limit shape from ontrol polygon or ontrolmesh \outside" the limit shape, we all this method irumsribed approximation.Another possible method is insribed approximation. Instead of approximating the limiturve (surfae) by performing subdivision on its ontrol polygon (mesh), one an approximatethe limit urve (surfae) by insribed polygons (polyhedra) whose verties are taken from thelimit urve (surfae) diretly. The easiest approah to get verties of the insribed polygons(polyhedra) is to perform uniform midpoint subdivision on the parameter spae and usethe evaluated verties of the resulting subsegments (subpathes) as verties of the insribedpolylines (polyhedra). For instane, in Figure 7.1(b), at the top are a ubi B�ezier urveand its approximating polygon with verties evaluated at parameter points 0, 1/2 and 1.Similarly, the solid polygon at the bottom of Figure 7.1(b) is an approximating polygonwith verties evaluated at �ve parameter points.



Beause insribed approximation uses points diretly loated on the limit urve or surfae,in most ases, it has faster onvergent rate than the irumsribed approximation. As onean see learly from Fig. 7.1 that the insribed polygon at the bottom of Fig. 7.1(b) is loserto the limit urve than the irumsribed polygon shown at the bottom of Fig. 7.1(a) eventhough the insribed polygon atually has less segments than the irumsribed polygon.Insribed approximation requires expliit evaluation of a CCSS Path. Several approahes[22, 23, 25, 63℄ have been presented for exat evaluation of an extraordinary path at anyparameter point (u; v). In our implementation, we follow the parametrization tehnique pre-sented in [63℄, beause this method is numerially stable, employs less eigen basis funtions,and an be used for the evaluation of 3D position and normal vetor of any point in the limitsurfae exatly and expliitly. Some most related results of [63℄ are presented in Chapter2. However, the problem with both Insribed or irumsribed approximation approahesis that, with uniform subdivision, no matter it is performed on the ontrol mesh or theparameter spae, one would get unneessarily small and dense polygons for surfae pathesthat are already at enough and, onsequently, slow down the rendering proess. To speedup the rendering proess, a at surfae path should not be tessellated as densely as asurfae path with big urvature. The adaptive tessellation proess of a surfae path shouldbe performed based on the atness of the path. This leads to our adaptive insribedapproximation.7.3.2 Adaptive Insribed ApproximationFor a path of S(u; v) de�ned on u1 � u � u2 and v1 � v � v2, we try to approximateit with the quadrilateral formed by its four verties V1 = S(u1; v1), V2 = S(u2; v1), V3 =S(u2; v2) and V4 = S(u1; v2). If the distane (to be de�ned below) between the path andits orresponding quadrilateral is small enough (to be de�ned below), then the path isonsidered at enough and will be (for now) replaed with the orresponding quadrilateralin the tessellation proess. Otherwise, we perform a midpoint subdivision on the parameterspae by setting u12 = u1 + u22 and v12 = v1 + v22to get four subpathes: [u1; u12℄ � [v1; v12℄, [u12; u2℄� [v1; v12℄, [u12; u2℄ � [v12; v2℄, [u1; u12℄ �[v12; v2℄, and repeat the atness testing proess on eah of the subpathes. The proess isreursively repeated until the distane between all the subpathes and their orrespondingquadrilaterals are small enough. The verties of the resulting subpathes are then used asverties of the insribed polyhedron of the limit surfae. For instane, if the four retanglesin Figure 7.2(a) are the parameter spaes of four adjaent pathes of S(u; v), and if theretangles shown in Figure 7.2(b) are the parameter spaes of the resulting subpathes whenthe above atness testing proess stops, then the limit surfae will be evaluated at thepoints marked with small solid irles to form verties of the insribed polyhedron of thelimit surfae.
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(b)(a)Figure 7.2: Basi idea of the onstrution of an insribed polyhedron.In the above atness testing proess, to measure the di�erene between a path (orsubpath) and its orresponding quadrilateral, we need to parameterize the quadrilateral aswell. The quadrilateral an be parameterized as follows:Q(u; v) = v2 � vv2 � v1 ( u2 � uu2 � u1V1 + u� u1u2 � u1V2) + v � v1v2 � v1 ( u2 � uu2 � u1V4 + u� u1u2 � u1V3) (7.1)where u1 � u � u2, v1 � v � v2. The di�erene between the path (or subpath) and theorresponding quadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2 = (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T (7.2)where k � k is the seond norm andAT is the transpose ofA. The distane between the path(or subpath) and the orresponding quadrilateral is the maximum of all the di�erenes:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄ g:To measure the distane between a path (or subpath) and the orresponding quadrilateral,we only need to measure the norms of all loal minima and maxima of d(u; v). Note thatQ(u; v) and S(u; v) are both C1-ontinuous, and d(V1), d(V2), d(V3) and d(V4) are equal to0. Therefore, by Mean Value Theorem, the loal minima and maxima must lie either inside[u1; u2℄� [v1; v2℄ or on the four boundary urves. In other words, they must satisfy at leastone of the following three onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u2 8<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v2 8<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2) (7.3)For a path (or subpath) that is not adjaent to an extraordinary point (i.e., (u1; v1) 6=(0; 0)), m is �xed and known (m(u; v) = minfdlog 12ue; dlog 12 veg). Hene Eq. (7.3) anbe solved expliitly. With the valid solutions, we an �nd the di�erene for eah of them



using Eq. (7.2). Suppose the one with the biggest di�erene is (û; v̂). Then (û; v̂) is alsothe point with the biggest distane between the path (or subpath) and its orrespondingquadrilateral. We onsider the path (or subpath) to be at enough ifD =pd ( û; v̂) � � (7.4)where � is a given error tolerane. In suh a ase, the path (or subpath) is replaed withthe orresponding quadrilateral in the tessellation proess. If a path (or subpath) is notat enough yet, i.e., if Eq. (7.4) does not hold, we perform a midpoint subdivision on thepath (or subpath) to get four new subpathes and repeat the atness testing proess foreah of the new subpathes. This proess is reursively repeated until all the subpathessatisfy Eq. (7.4).For a path (or subpath) that is adjaent to an extraordinary point (i.e. (u1; v1) = (0; 0)in Eq. (7.3)), m is not �xed and m tends to 1 (see Figure 2.2). As a result, Eq. (7.3)an not be solved expliitly. One way to resolve this problem is to use nonlinear numerialmethod to solve these equations. But numerial approah annot guarantee the error is lessthan � everywhere. For preise error ontrol, a better hoie is needed. In the following, analternative method is given for that purpose.Eq. (2.7) shows that S(u; v) and Q(u; v) both onverge to S(0; 0) when (u; v) ! (0; 0).Hene, for any given error tolerane �, there exists an integerm� suh that ifm � m�, then thedistane between S(u; v) and S(0; 0) is smaller than �=2 for any (u; v) 2 [0; 1=2m℄� [0; 1=2m℄,and so is the distane between Q(u; v) and S(0; 0). Consequently, when (u; v) 2 [0; 1=2m℄�[0; 1=2m℄, the distane between S(u; v) and Q(u; v) is smaller than �. The value of m�, inmost of the ases, is a relatively small number and an be expliitly alulated. In nextsubsetion, we will show how to alulate m�.For other regions of the unit square with dlog 12 u2e � m < m� (see Figure 2.2), eq.(7.3) an be used diretly to �nd the di�erene between S(u; v) and Q(u; v) for any �xedm 2 (dlog 12 u2e; m�). Therefore, by ombining all these di�erenes, we have the distanebetween the given extra-ordinary path (or subpath) and the orresponding quadrilateral.If this distane is smaller than �, we onsider the given extra-ordinary path (or subpath) tobe at, and use the distane quadrilateral to replae the extra-ordinary path (or subpath)in the tessellation proess. Otherwise, repeatedly subdivide the path (or subpath) andperform atness testing on the resulting subpathes until all the subpathes satisfy Eq.(7.4).7.3.3 Calulating m�For a given � > 0, an integer k� will �rst be omputed so that if k is bigger than k�, thenthe subpath of S(u; v) with 0 � u; v � 1=2k is ontained in a sphere with enter S(0; 0) anddiameter � (alled an �-sphere). A subpath is ontained in an �-sphere if all points of thesubpath are �=2 away from S(0; 0).To �nd suh k�, we need a few properties from [63℄. Reall that an extra-ordinary path



S(u; v) an be expressed as S(u; v) = n+5Xj=0 �b;j(u; v) �Gwhere �b;j are eigen basis funtions de�ned in [63℄ and G is the vetor of ontrol points ofS. The eigen basis funtions satisfy the saling relation [22, 63℄, i.e.,�b;j(u=2k; v=2k) = �kj�b;j(u; v)for any positive integer k, where �j are eigen values of the Catmull-Clark subdivision matrix[63℄. The eigen values are indexed so that1 = �n+1 > �2 � �i > 0where 0 � i � n + 5 and i 6= n + 1. Also reall that �b;j(0; 0) = 0 when j 6= n + 1, and�b;n+1(u; v) is a onstant vetor, its value is independent of (u; v) [63℄. Hene,(�b;n+1(u; v)� �b;n+1(u0; v0)) �Gr = 0for any (u; v) and (u0; v0) where r 2 fx; y; zg and Gr is the x-, y- or z-omponent of G.Hene for any 1=2 � u � 1 or 1=2 � v � 1, and for any k we havejSr(u=2k; v=2k)� Sr(0; 0)j = jPn+5j=0 (�kj�b;j(u; v)� �b;j(0; 0)) �Grj�Pj 6=n+1 �kj j(�b;j(u; v) �Grj < �k2Pj 6=n+1 j(�b;j(u; v) �GrjSimilarly, the three onditions in Eq. (7.3) an be used to �nd the maxima of j(�b;j(u; v) �Grjfor any j. Note that beause here (u; v) =2 [0; 1=2℄� [0; 1=2℄, the orresponding m is equal to1 (See �gure 2.2). Hene we an easily �nd the maximum in its domain f(u; v)j1=2 � u �1 or 1=2 � v � 1g. Let the maximum of j(�b;j(u; v) �Grj be Frj and Fr =Pj 6=n+1 Frj. Then,for any k > 0 we have jSr(u=2k; v=2k)� Sr(0; 0)j � �k2Fr:Therefore if (�k2Fx)2 + (�k2Fy)2 + (�k2Fz)2 � (�=2)2, we havek S(u=2k; v=2k)� S(0; 0) k� �=2:If we de�ne k� as follows k� = dlog�2 �2pF 2x + F 2y + F 2z ethen it is easy to see that when k � k�, the subpath S(u; v) with (u; v) 2 [0; 1=2k℄� [0; 1=2k℄is inside an �-sphere whose enter is S(0; 0).In addition, S(0; 0) is a �xed point and has an expliit expression for any path (see eq.2.7), and Q(u; v) also has an expliit parametrization (See eq. (7.1)). Hene, similarly, byusing the method of Eq. (7.3), it is easy to �nd an integer ek�, suh that for any given � > 0,



when k � ek�, we have k Q(u; v)� S(0; 0) k� �=2, where (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄. Onewe have k� and ek�, simply set m� as the maximum of k� and ek�.m� = maxfk�;ek�gWith this m�, it is easy to see that when m � m�, we have k S(u; v)�Q(u; v) k� �, where(u; v) 2 [0; 1=2m℄� [0; 1=2m℄.7.4 Crak Elimination
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Figure 7.3: Crak elimination.Due to the fat that adjaent pathes might be approximated by quadrilaterals orre-sponding to subpathes from di�erent levels of the midpoint subdivision proess, raks ouldour between adjaent pathes. For instane, in Figure 7.3, the left path A1A2A5A6 isapproximated by one quadrilateral but the right path is approximated by 7 quadrilaterals.Consider the boundary shared by the left path and the right path. On the left side, thatboundary is a line segment de�ned by two verties : A2 and A5. But on the right side,the boundary is a polyline de�ned by four verties : A2, C4, B4, and A5. They would notoinide unless C4 and B4 lie on the line segment de�ned by A2 and A5. But that usuallyis not the ase. Hene, raks would appear between the left path and the right path.Fortunately Craks an be eliminated simply by replaing eah boundary of a path orsubpath with the one that ontains all the evaluated points for that boundary. For exam-ple, in Figure 7.3, all the dashed lines should be replaed with the orresponding polylines.In partiular, boundary A2A5 of path A1A2A5A6 should be replaed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is replaed with polygon A1A2C4B4A5A6in the tessellation proess. For rendering purpose this is �ne beause graphis systems likeOpenGL an handle polygons with non-o-planar verties and polygons with any number ofsides. However, it should be pointed out that through a simple zigzag tehnique, triangula-tion of those polygons is atually a simple and very fast proess.



A potential problem with this proess is the new polygons generated by the rak elimina-tion algorithm might not satisfy the atness requirement. To ensure the atness requirementis satis�ed everywhere when the above rak elimination method is used, we need to hangethe test ondition in Eq. (7.4) to the following one:pd ( �u; �v) +pd ( û; v̂) � � (7.5)where (û; v̂) and (�u; �v) are solutions of Eq. (7.3) and they satisfy the following onditions:� Among all the solutions of Eq. (7.3) that are loated on one side of Q(u; v), i.e.solutions that satisfy (Q� S) � ((V1 �V3)� (V2 �V4)) � 0, d(û; v̂) is the biggest. Ifthere does not exist any solution suh that this ondition holds, then d(û; v̂) is set to0;� Among all the solutions of Eq. (7.3) that are loated on the other side of Q(u; v), i.e.solutions that satisfy (Q� S) � ((V1 �V3)� (V2 �V4)) < 0, d(�u; �v) is the biggest. Ifthere does not exist any solution suh this ondtion holds, then d(�u; �v) is set to 0.From the de�nition of (û; v̂) and (�u; �v), we an see that satisfying Eq. (7.5) means that thepath being tested is loated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limit surfae. Hene, for instane, in Fig. 7.3,points A2;C4;B4 and A5 of path A2A3A4A5 are also points of path A1A2A5A6. Withthe new test ondition in Eq. (7.5), we know that a path or subpath is at enough if it isloated between two quadrilaterals that are � away. Beause boundary pointsA2;C4;B4 andA5 are on the limit surfae, they must be loated between two quadrilaterals that are � away.So is the polygon A1A2C4B4A5A6. Now the path (or subpath) and its approximatingpolygon are both loated inside two quadrilaterals that are � away. Hene the overall errorbetween the path (or subpath) and its approximating polygon is guaranteed to be smallerthan �.In previous methods for adaptive tessellation of subdivision surfaes [45, 35, 36, 40℄, themost diÆult part is rak prevention. Yet in our method, this part beomes the simplestpart to handle and implement. The resulting surfae is error ontrollable and guaranteed tobe rak free.7.5 Degree of FlatnessJust like numerial errors have two di�erent settings, the atness of a path, whih an beviewed as a numerial error from the approximation point of view, has two di�erent aspetsas well, depending on if the atness is onsidered in the absolute sense or relative sense.The atness of a path is alled the absolute atness (AF) if the path is not transformed inany way. In that ase, the value of � in Eq. (7.4) and (7.5) is set to whatever preision theatness of the path is supposed to meet. AF should be onsidered for operations that workon physial size of an objet suh as mahining or prototyping.



For operations that do not work on the physial size of an objet, suh as the renderingproess, we need a atness that does not depends on the physial size of a path. Suh aatness must be AÆne transformation invariant to be a onstant for any transformed versionof the path. Suh a atness is alled the relative atness of the path. More spei�ally, ifQ is the orresponding quadrilateral of path S, the relative atness (RF) of S with respetto Q is de�ned as follows: RF = dmaxfD1; D2gwhere d is the maximal distane from S to Q, and D1; D2 are lengths of the diagonal linesof Q. It is easy to see that RF de�ned this way is AÆne transformation invariant. Note thatwhen D1 and D2 are �xed, smaller RE means smaller d. Hene, RE indeed measures theatness of a path. The di�erene between RF and AF is that RF measures the atness of apath in a global sense while AF measures atness of a path in a loal sense. Therefore, RFis more suitable for operations that have data sets of various sizes but with a onstant sizedisplay area suh as the rendering proess. Using RF is also good for adaptive tessellationproess beause it has the advantage of keeping the number of polygons low in the tessellationproess.7.6 Algorithms of Adaptive TessellationIn this setion, we disuss the important steps of the adaptive tessellation proess and presentthe orresponding algorithms.7.6.1 Global Index IDCurrently, all the subdivision surfae parametrization and evaluation tehniques are pathbased [22, 25, 63℄. Hene, no matter whih method is used in the adaptive tessellation proess,a path annot see verties evaluated by other pathes from its own (loal) struture eventhough the verties are on its own boundary. For example, in Figure 7.3, verties C4 and B4are on the shared boundary of pathes A1A2A5A6 and A2A3A4A5. But path A1A2A5A6an not see these verties from its own struture beause these verties are not evaluated bythis path. To make adjaent pathes visible to eah other and to make subsequent rakelimination work easier, one should assign a global index ID to eah evaluated vertex so that� all the evaluated verties with the same 3D position have the same index ID;� the index ID's are sorted in v and then in u, i.e., if (ui; vi) � (uj; vj), then IDi � IDj,unless IDi or IDj has been used in previous path evaluation.With a global index ID, it is easy to do rak prevention even with a path based approah.Atually, subsequent proessing an all be done with a path based approah and still per-formed eÆiently. For example, in Figure 7.3, path A1A2A5A6 an see both C4 and B4even though they are not evaluated by this path. In the subsequent rendering proess, the



path simply output all the marked verties (to be de�ned below) on its boundary that itan see to form a polygon for the rendering purpose, i.e., A1A2C4B4A5A6.7.6.2 Adaptive MarkingThe purpose of adaptive marking is to mark those points in uv spae where the limit surfaeshould be evaluated. With the help of the global index ID, this step an be done on anindividual path basis. Initially, all (u; v) points are marked white. If surfae evaluationshould be performed at a point and the resulting vertex is needed in the tessellation proess,then that point is marked in blak. This proess an be easily implemented as a reursivefuntion. A pseudo ode for this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBlak(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the parameter spae of path P. Funtion`Evaluate' evaluates limit surfae at the four orners of path or subpath P de�ned on[u1; u2℄� [v1; v2℄. Funtion `FlatEnough' uses the method given in setion 7.3 and Eq. (7.4)to tell if a path or subpath is at enough. Funtion `MarkBlak' marks the four orners ofpath or subpath P de�ned on [u1; u2℄� [v1; v2℄ in blak. All the marked orner points willbe used in the tessellation proess.7.6.3 Adaptive Rendering a Single PathThe purpose of this step is to render the limit surfae with as few polygons as possible,while preventing the ourrene of any raks. Note that the limit surfae will be evaluatedonly at the points marked in blak, and the resulting verties are the only verties that willbe used in the rendering proess. To avoid raks, eah marked points must be renderedproperly. Hene speial are must be taken on adjaent pathes or subpathes. With thehelp of adaptive marking, this proess an easily be implemented as a reursive funtion aswell. A pseudo ode for this step is given below.



(a) Uniform (b) Adaptive () Adaptive

(d) Adaptive (e) Triangulated (f) Uniform

(g) Adaptive (h) Adaptive (i) Adaptive (j) AdaptiveFigure 7.4: Adaptive rendering on surfaes with arbitrary topology.



(a) Uniform (b) Adaptive () Adaptive (d) Adaptive

(e) Adaptive (f) Triangulated (g) Uniform (h) Adaptive

(i) Adaptive (j) Adaptive (k) AdaptiveFigure 7.5: Adaptive rendering on surfaes with arbitrary topology (Continued).



AdaptiveRendering(P, u1, u2, v1, v2)1. if (NoMarkedPointInside(P, u1, u2, v1, v2))2. RenderPolygon(P, u1, u2, v1, v2)3. else4. u12 = (u1 + u2)=25. v12 = (v1 + v2)=26. AdaptiveRendering(P, u1, u12, v1, v12)7. AdaptiveRendering(P, u12, u2, v1, v12)8. AdaptiveRendering(P, u12, u2, v12, v2)9. AdaptiveRendering(P, u1, u12, v12, v2)This routine adaptively renders marked points in path or subpath P. Funtion `No-MarkedPointInside' tests if none of the points inside [u1; u2℄�[v1; v2℄, exluding the boundarypoints, are marked. If all the interior points are in white (i.e. not marked), it returns TRUE.Funtion `RenderPolygon' is de�ned as follows.RenderPolygon(P, u1, u2, v1, v2)1. glBegin(RenderModel)2. Output all the marked points between3. (u1; v1)! (u2; v1)4. (u2; v1)! (u2; v2)5. (u2; v2)! (u1; v2)6. (u1; v2)! (u1; v1)7. glEnd()7.6.4 Adaptive Rendering a CCSSThe overall algorithm for rendering a general CCSS is given below. The algorithm takes theontrol mesh of the surfae as input.CCSSAdaptiveRendering(Mesh M)1. for eah fae P in M2. AdaptiveMarking(P,0,1,0,1)3. for eah fae P in M4. AdaptiveRendering(P,0,1,0,1)7.7 Implementation and Test ResultsThe proposed approah has been implemented in C++ using OpenGL as the supportinggraphis system on the Windows platform. Quite a few examples have been tested with the



method desribed here. Some of the tested results are shown in Figures 1.9, 7.4 and 7.5. Wealso summarize those tested results in Table 7.1. The olumn underneath AjUjT in Table7.1 indiates the type of tessellation tehnique (Adaptive, Uniform or Triangulated afteradaptive tessellation) used in the rendering proess. For instane, Fig. 1.9(b) is generatedusing uniform subdivision, while Figs. 1.9(), 1.9(d), 1.9(e) are tessellated with the adaptivetehnique presented in this paper, and Fig. 1.9(f) is the triangulated result of Fig. 1.9(e).Also Fig. 7.4(e) and Fig. 7.5(f) are the triangulated results of Fig. 7.4(d) and Fig. 7.5(e),respetively. The term A/U ratio means the ratio of number of polygons in an adaptivelytessellated CCSS to its ounter part in a uniformly tessellated CCSS with the same auray.The term Depth means the number of iterative uniform subdivisions that have to be per-formed on the ontrol mesh of a CCSS to satisfy the error requirement. From Table 7.1 wean see that all the adaptively tessellated CCSS's have relatively low A/U ratios. This showsthe proposed method an indeed signi�antly redue the number of faes in the resultingmesh while satisfying the given error requirement.The `Error' olumn in Table 7.1 represents absolute error. We an easily see that, forthe same model, the smaller the error, the lower the A/U ratio. For example, Fig. 7.4(b)has lower A/U ratio than Fig. 7.4() and Fig. 7.4(d) beause the former has smallererror tolerane than the last two. However, for the same model, if the di�erene of twoerror toleranes is not big enough, the resulting adaptive tessellation would have the samesubdivision depth (see information on Figs. 7.4(g) and 7.4(h) or Figs. 7.5(b) and 7.5() inTable 7.1). As a result, the one with smaller error tolerane would have higher A/U ratio,beause the orresponding uniformly subdivided meshes are the same. Another interestingfat is that Fig. 7.5(a) uses muh more polygons than Fig. 7.5(b) does, while the formeris less aurate than the latter. This shows the presented adaptive tessellation method isapable of providing a higher auray with less polygons.From Table 7.1 we an easily see that for di�erent models the absolute errors di�ervery muh. Therefore, for di�erent models, omparing their absolute errors might not makeany pratial sense beause absolute error is not aÆne transformation invariant. In themean while, from Table 7.1, we an see that RF is a muh better and more understandablemeasurement for users to speify the error requirement in the adaptive tessellation proess.From Table 7.1, we an also see that triangulated tessellations usually have higher A/Uratio, beause triangulation inreases the number of polygons by at lease 2 times. Henetriangulation will slow down the rendering proess while it does not improve auray. Fromthe view point of rendering, triangulation is not really neessary. But for some speialappliations, suh as Finite Element Analysis, triangulation is indispensable. As mentionedabove, performing triangulation on the resulting mesh of our adaptive tessellation proess isstraightforward and fast.The proposed adaptive tessellation method is good for models that have large at ornearly at regions in its limit surfae and would save signi�ant amount of time in the �nalrendering proess, but may not have low A/U ratios when it is applied to surfaes withextraordinary urvature distribution or surfaes with very dense ontrol meshes. One maindisadvantage of all the urrent adaptive tessellation methods (inluding the method proposed



here) is that they only eliminate polygons inside a path. They do not take the whole surfaeinto onsideration. For instane, all the at sides of the roker arm model in Fig. 7.5 arealready at enough, yet a lot of polygons are still generated there.7.8 SummaryA surfae-evaluation-based adaptive tessellation method for general Catmull-Clark subdivi-sion surfaes is presented. The new method only evaluates those limit surfae points thatare needed in the �nal rendering proess. On the other hand, while previous methods usea signi�ant amount of e�ort to prevent the ourrene of raks between adjaent pathes,it takes almost no e�ort for the new method to eliminate raks in the resulting insribedpolyhedron of the limit surfae. Hene the new method is both omputation eÆient andmemory eÆient.The new insribed approximation based adaptive tessellation method an be used tomeasure error aused by polygonal approximation. It also an be used for substantiallyreduing fae number of dense meshes with preise error estimation.



Table 7.1: Experiment data of Figs. 1.9, 7.4 and 7.5Figure Objet AjUjT polygons A/U Ratio Depth Error RFFig. 1.9(b) Gargoyle U 16384 100.00% 2 0.0055 12%Fig. 1.9() Gargoyle A 14311 5.46% 4 0.0030 6%Fig. 1.9(d) Gargoyle A 5224 7.97% 3 0.0045 9%Fig. 1.9(e) Gargoyle A 2500 15.26% 2 0.0055 12%Fig. 1.9(f) Gargoyle T 6139 37.47% 2 0.0055 12%Fig. 7.4(a) Bunny U 65536 100.00% 3 0.0008 3%Fig. 7.4(b) Bunny A 32894 12.55% 4 0.0001 1%Fig. 7.4() Bunny A 9181 14.01% 3 0.0008 3%Fig. 7.4(d) Bunny A 3412 20.82% 2 0.0010 5%Fig. 7.4(e) Bunny T 7697 46.98% 2 0.0010 5%Fig. 7.4(f) Venus U 65536 100.00% 2 0.00095 8%Fig. 7.4(g) Venus A 29830 2.84% 4 0.00015 3%Fig. 7.4(h) Venus A 21841 2.08% 4 0.00035 4%Fig. 7.4(i) Venus A 9763 3.72% 3 0.00060 6%Fig. 7.4(j) Venus A 6178 9.43% 2 0.00095 8%Fig. 7.5(a) Rokerarm U 90624 100.00% 4 1.2 3%Fig. 7.5(b) Rokerarm A 36045 9.94% 5 0.85 1%Fig. 7.5() Rokerarm A 10950 3.02% 5 1.0 2%Fig. 7.5(d) Rokerarm A 5787 6.39% 4 1.2 3%Fig. 7.5(e) Rokerarm A 2901 12.80% 3 1.5 5%Fig. 7.5(f) Rokerarm T 6917 30.53% 3 1.5 5%Fig. 7.5(g) Beethoven U 65536 100.00% 2 0.041 10%Fig. 7.5(h) Beethoven A 20893 1.99% 4 0.006 4%Fig. 7.5(i) Beethoven A 15622 1.48% 4 0.026 6%Fig. 7.5(j) Beethoven A 7741 2.95% 3 0.035 8%Fig. 7.5(k) Beethoven A 5230 7.99% 2 0.041 10%
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