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Report SummaryWe 
onsider this grant, up to this point, a big su

ess. We not only have rea
hed most of ourresear
h goals, i.e., developing the ne
essary mathemati
al theories and geometri
 algorithmsto support Catmull-Clark subdivision surfa
e (CCSS) based modeling (with the ex
eptionof one item: fairing), but also produ
ed a PhD (Dr. Shuhua Lai, graduated in August, 2006,
urrently an Assistant Professor at the Virginia State University), an MS (Mr. Gang Chen,graduated in De
ember 2006, 
urrently working in L.A., California), and 11 journal papersand 1 
onferen
e paper. We anti
ipate another MS (Mr. Conglin Huang) to be produ
ed atthe end of this year and another PhD (Mr. Fengtao Fan) to be produ
ed at the end of nextyear.Subdivision surfa
es are 
apable of representing any geometri
 shape with only one sur-fa
e, no matter how 
ompli
ated the topology. However, modeling te
hniques for CCSSshave not been well developed yet. A main reason is we don't know how to pre
isely estimatethe error of the subdivision pro
ess yet. Consequently, to ensure the modeling result wouldsatisfy the pre
ision requirement, we usually over-subdivide the 
ontrol meshes of the CCSSsinvolved. This 
ertainly is not preferred be
ause not only the subdivision pro
ess itself ismore 
ostly then, the resulting meshes are also more 
ostly to use.In this proje
t, we address this problem �rst. We need to know how to 
ompute subdi-vision depth for CCSSs for given error toleran
e. We also need to know how to eÆ
ientlyevaluate the value of a subdivision surfa
e at a given point, the so-
alled parametrizationproblem. This is be
ause tessellation, trimming, fairing and shape design all need this 
apa-bility of a subdivision surfa
e. Hen
e, this problem has to be addresses before other issuesas well. On
e these problems are addressed, four approa
hes for CCSS based modeling willthen be developed.The �rst approa
h is interpolation. By sampling some representative points from a given



obje
t model, a 
ontrol mesh 
an be 
onstru
ted and its subdivision surfa
e interpolatesall the sampled representative points and meanwhile is very 
lose to the given data model.Interpolation is a simple way to build models, but the fairness of the interpolating surfa
e isa big 
on
ern in previous methods. By using similarity based interpolation, we 
an obtainbetter modeling result with less undesired artifa
ts and undulations.The se
ond approa
h is to performed trimming operation on CCSSs and use this operationas a 
ore pro
ess in performing Boolean operations on obje
ts represented by CCSSs. Booleanoperations are a natural way of 
onstru
ting 
omplex solid obje
ts out of simpler primitives.Up to this point, a

urate Boolean operations over subdivision surfa
es are not rea
hed yetin the literature. We have developed a robust and error 
ontrollable trimming operationmethod whi
h is based on voxelization of subdivision surfa
es. Di�erent from previousvoxelization based Boolean operation methods, our method results in a 
ontinuous geometri
representation, i.e., a polygonal mesh of the resulting trimming operation. Be
ause theresulting polygonal mesh is very dense, error 
ontrollable simpli�
ation of the 
ontrol meshesis needed. A method is presented for this purpose: adaptive tessellation. This method (to bedis
ussed below) 
an signi�
antly redu
e the 
omplexity of a polygonal mesh and meanwhilehave a

urate error estimation.The third approa
h is adaptive tessellation of CCSSs. Catmull-Clark subdivision s
hemeprovides a powerful method for building smooth and 
omplex surfa
es. But the numberof fa
es in the uniformly re�ned meshes in
reases exponentially with respe
t to subdivisiondepth. Adaptive tessellation redu
es the number of fa
es needed to yield a smooth approx-imation to the limit surfa
e and, 
onsequently, makes the rendering pro
ess more eÆ
ient.Di�erent from previous 
ontrol mesh re�nement based approa
hes, whi
h generate approx-imate meshes that usually do not interpolate the limit surfa
e, the new method is basedon dire
t evaluation of the limit surfa
e to generate an ins
ribed polyhedron of the limitsurfa
e. Our method has 
omplete 
ontrol of the a

ura
y of the tessellation result. Cra
ks



are avoided by using a re
ursive 
olor marking pro
ess to ensure that adja
ent pat
hes orsubpat
hes use the same limit surfa
e points in the 
onstru
tion of the shared boundary.The new method performs limit surfa
e evaluation only at points that are needed for the�nal rendering pro
ess.A system that performs subdivision surfa
e based modeling is implemented and quitea few examples have been tested. All the examples show that our approa
hes 
an obtainvery good subdivision based representation results. Details of the new methods and relatedmaterials 
an be found in the atta
hed pdf �le of the 'Annual Report'. The fourth approa
h:fairing, is not in
luded in this report be
ause we are still working on it now.The remaining part of the report is arranged as follows. In Chapter one, we des
ribeour goal and present the stru
ture of a subdivision surfa
e based modeling system. Ourparametrization te
hnique for a CCSS is presented in Chapter 2. A subdivision depth 
om-putation te
hnique for CCSSs is presented in Chapter 3. An interpolation based shape designte
hnique for CCSSs is shown in Chapter 4. A trimming te
hnique with its appli
ations inBoolean operations for obje
ts represented by CCSSs is shown in Chapter 6. A voxelizationte
hnique required in the trimming pro
ess is dis
ussed in Chapter 5 �rst. The last 
hap-ter, Chapter 7, shows the simpli�
ation te
hniques: adaptive tessellation, developed by thisproje
t to redu
e the 
omplexity of a polygon mesh.
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Chapter 1Introdu
tion
1.1 MotivationSubdivision surfa
es [1, 2, 3, 4, 7, 12, 14, 15, 22, 27℄ have be
ome popular re
ently in graphi
almodeling and animation be
ause of their 
apability in modeling and representing 
omplexshape of arbitrary topology , their relatively high visual quality, and their stability andeÆ
ien
y in numeri
al 
omputation. Subdivision surfa
es 
an model and represent 
omplexshape of arbitrary topology be
ause there is no limit on the shape and topology of the
ontrol mesh of a subdivision surfa
e [1, 2, 3℄. A
tually, subdivision surfa
es have alreadybeen used as primitives in several 
ommer
ial systems su
h as AliasjWavefronts's Maya,Pixar's Renderman, Ni
himen's Mirai, and Newtek's Lightwave 3D.Basi
ally, subdivision is a method for generating smooth surfa
es, whi
h �rst appearedas an extension of splines to arbitrary topology 
ontrol meshes [1, 2, 3℄. Subdivision s
hemes
an be 
onsidered as an algorithmi
 generalization of 
lassi
al spline te
hniques enabling
ontrol meshes with arbitrary topology. They provide easy a

ess to globally smooth sur-fa
es of arbitrary shape by iteratively applying simple re�nement rules to the given 
ontrolmesh. A sequen
e of meshes generated by this pro
ess qui
kly 
onverges to a smooth limitsurfa
e. For most pra
ti
al appli
ations, the re�ned meshes are already suÆ
iently 
lose tothe smooth limit after only a few re�nement steps. Complex smooth surfa
es 
an be derived1



in a reasonably predi
table way from relatively simple meshes. There are many subdivisions
hemes that have been proposed in past thirty years [1, 2, 3, 4, 16, 20, 28, 29, 30, 53℄. TheCatmull-Clark subdivision s
heme [1℄, the Doo-Sabin subdivision s
heme [2℄ and the Loopsubdivision s
heme [3℄ are the most well-known, and are used in many high-end modelingand animation pa
kages. There are quite a few other s
hemes. The Butter
y s
heme [30℄and a 
losely related s
heme known as Modi�ed Butter
y [29℄ also use triangle meshes. Oth-ers in
lude the Kobbelt's Interpolation Quadrilateral s
heme [28℄, the Lo
al Surfa
e Fittings
heme [53℄, and many variations on the themes of the above. The rules given for the aboves
hemes are usually only suitable for 
losed surfa
es. Surfa
es with boundaries need spe
ial
ase rules to handle the boundary without unpleasant artifa
ts.With the parametrization te
hnique for subdivision surfa
es be
oming available [8, 22,23, 63℄ and with the fa
t that non-uniform B-spline and NURBS surfa
es are spe
ial 
asesof subdivision surfa
es be
oming known [20℄, we now know that subdivision surfa
es 
overboth parametri
 forms and dis
rete forms. Parametri
 forms are good for design and repre-sentation, dis
rete forms are good for ma
hining and tessellation (in
luding Finite Elementmesh generation). Hen
e, we have a representation s
heme that is good for all graphi
s andCAD/CAM appli
ations.Resear
h work for subdivision surfa
es has been done in several important areas, su
has surfa
e texture mapping [65, 121℄, surfa
e interpolation [14, 28, 29, 30, 31, 60℄, exa
tsurfa
e evaluation [8, 21, 22, 23, 25℄, surfa
e trimming [15℄, Boolean operations [7, 69, 97℄,deformation [122℄, mesh editing [26, 115, 116℄, 
omputer animation [12, 24℄ et
.Although subdivision surfa
es are 
apable of modeling and representing 
omplex shapeof arbitrary topology and are well studied in many appli
ations, methods on how to buildthe 
ontrol mesh of a 
omplex surfa
e are not studied mu
h. Currently, most meshes of
ompli
ated obje
ts 
ome from triangulation and simpli�
ation of raster s
anned data points,like the Stanford 3D S
anning Repository. This approa
h is 
ostly and leads to very dense



meshes.The obje
tive of this resear
h work is to develop ne
essary mathemati
al theories andgeometri
 algorithms to support subdivision surfa
e based modeling. Subdivision surfa
ebased modeling means to represent the �nal obje
t in a design pro
ess with only a subdivisionsurfa
e (i.e. a sparse 
ontrol mesh), no matter how 
ompli
ated the obje
t's topology orshape. No de
omposition of the obje
t into simpler 
omponents is ne
essary. Hen
e thenumber of parts in the �nal representation is always the minimum: one. Another goalof this work is to build a system that 
an represent any 
ompli
ated 3D obje
t and theirBoolean operation results with only one sparse mesh stru
ture. On
e every given obje
t 
anbe represented with one simple mesh, it would be very 
onvenient and eÆ
ient to render,manipulate, store and transmit any virtual environment.1.2 Subdivision Surfa
esWe 
onsider primarily stationary subdivision s
hemes in this resear
h work, whi
h meansthat the 
hoi
es of the re�nement rules do not depend on the subdivision level. On
e amesh is re�ned, the old mesh will not be used in 
omputing the next level of verti
es. Thepositions of verti
es for the next subdivision step only rely on the topology and positionof the 
urrent mesh. This requirement makes the implementation highly eÆ
ient and alsomakes the analysis of subdivision surfa
es mu
h simpler.Many di�erent s
hemes exist for the a
tual subdivision pro
ess [1, 2, 3, 4, 16, 20, 28,29, 30, 53℄. The �rst two were developed in 1978 by two di�erent pairs of people. TheDoo-Sabin s
heme [2℄ and the Catmull-Clark s
heme [1℄ are the most well-known, and areused in many high-end modeling and animation pa
kages. A third popular s
heme developedrelatively re
ently, the Loop s
heme [3℄, works only on triangle meshes. There are also othersubdivision s
hemes, like p3 s
heme [4℄ et
. Most subdivision methods are approximating.But there are also some interpolating subdivision s
hemes whose limit surfa
e interpolates



the given initial 
ontrol points. Su
h s
heme in
ludes Butter
y s
heme [30℄ and Kobbeltinterpolating s
heme [28℄ et
.Given an initial mesh, subdivision 
omputes a sequen
e of re�ned meshes 
onverging toa limit surfa
e. The re�ned meshes are obtained by adding new verti
es to the mesh and
onne
ting them with old verti
es. The positions of new verti
es are 
omputed as fun
tions ofpositions of the old verti
es. The positions of old verti
es in the re�ned mesh 
an be modi�edas well. To spe
ify a subdivision s
heme, two rules need to be des
ribed: a topologi
al rulefor obtaining the graph of the re�ned mesh from the graph of the initial mesh and a rule for
omputing the positions of new verti
es and modifying positions of the old verti
es. As anexample, the Catmull-Clark subdivision s
heme [1℄ is introdu
ed below.
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Figure 1.1: Basi
 Con
ept of the Catmull-Clark S
heme.Given a 
ontrol mesh, a Catmull-Clark subdivision surfa
e (CCSS) is generated by itera-tively re�ning the 
ontrol mesh [1℄. The limit surfa
e is 
alled a subdivision surfa
e be
ausethe mesh re�ning pro
ess is a generalization of the uniform B-spline surfa
e subdivision te
h-nique. Therefore, CCSSs in
lude uniform B-spline surfa
es and pie
ewise B�ezier surfa
esas spe
ial 
ases. It is known now that CCSSs in
lude non-uniform B-spline surfa
es andNURBS surfa
es as spe
ial 
ases as well [20℄. The valen
e of a mesh vertex is the numberof mesh edges adja
ent to the vertex. A mesh vertex is 
alled an extra-ordinary vertex if its



valen
e is di�erent from four. Vertex V in Figure 1.1 is an extra-ordinary vertex of valen
e�ve. A mesh fa
e with an extra-ordinary vertex is 
alled an extra-ordinary fa
e. The valan
eof an extra-ordinary fa
e is the valen
e of its extra-ordinary vertex. In the following, for thesake of simpli
ity, a mesh fa
e and the 
orresponding surfa
e pat
h will be denoted by thesame notation.In the Catmull-Clark subdivision s
heme[1℄, ea
h mesh re�ning step involves the 
on-stru
tion of three new types of points: fa
e points, edge points and vertex points, see Figure1.1. New points are 
onne
ted to form a new 
ontrol mesh. These 
ontrol meshes 
onvergeto a limit surfa
e. A fa
e point is 
reated for ea
h old polygon, de�ned as the average ofevery point in the polygon, i.e., 
entroid of ea
h fa
e:Fk+1i = Vk + Eki + Fki +Eki+14where k is the subdivision level. An edge point is 
reated for ea
h old edge, de�ned as theaverage of the midpoint of the original edge and the midpoint of the two new fa
e points forthe polygons that adjoin the original edge:Ek+1i = Vk +Eki + Fk+1i�1 + Fk+1i4And �nally, new vertex points are de�ned as follows.Vk+1 = n� 2n Vk + 1n2 nXi=1 Eki + 1n2 nXi=1 Fkiwhere n is the valan
e of vertex V and k is the subdivision depth. In this report, we 
onsidergeneral CCSSs. That is, the new vertex point Vk+1 is 
omputed as follows:Vk+1 = �nVk + �nn nXi=1 Eki + 
nn nXi=1 Fki (1.1)where �n, �n and 
n are positive numbers and their sum equals one.The new points then are 
onne
ted (see Fig. 1.1): ea
h fa
e point 
onne
ts to an edgepoint, whi
h 
onne
ts to a new vertex point, whi
h 
onne
ts to the edge point of the adjoining



edge, whi
h returns to the fa
e point. This is done for ea
h su
h quadruple, fanning outquadrilaterals around the fa
es. The s
heme only produ
es quadrilaterals, although they arenot ne
essarily planar.
(a) Initial 
ontrol mesh (b) 
ontrol mesh after one re�ne-ment

(
) after two re�nements (d) limit surfa
e of a ventilation
ontrol 
omponentFigure 1.2: An example of Catmull-Clark Subdivision Surfa
es.CCSSs 
an model/represent 
omplex shape of arbitrary topology be
ause there is nolimit on the shape and topology of the 
ontrol mesh of a CCSS [1℄. See Figure 1.2(d)for the representation of a ventilation 
ontrol 
omponent with a single CCSS. The initial
ontrol mesh of the surfa
e and the 
ontrol mesh after one re�nement and two re�nementsare shown in Figure 1.2(a), Figure 1.2(b) and Figure 1.2(
), respe
tively. The ventilation
ontrol 
omponent is a solid with seventeen holes (handles). It 
an not be represented by asingle trimmed B-spline or NURBS surfa
e.



1.3 Subdivision Surfa
e based RepresentationSubdivision surfa
es have important impa
t on several areas of geometri
 modeling:� Representation: Subdivision surfa
es provide a more general surfa
e representations
heme to the design 
ommunity be
ause subdivision surfa
es in
lude traditional sur-fa
e representation s
hemes as spe
ial 
ases. For instan
e, a NURBS surfa
e 
an begenerated as a subdivision surfa
e through knot insertion. Subdivision surfa
es alsoprovide a di�erent way to generate traditional surfa
es.� Modeling Capability: Subdivision surfa
es provide more 
exibility in shape mod-eling than traditional surfa
e representation s
hemes. It is possible to represent any
omplex shape with only one subdivision surfa
e. It is even possible to represent theresult of a Boolean operation of two surfa
es by a single subdivision surfa
e. This isdue to the fa
t that the 
ontrol mesh of a subdivision surfa
e 
an be of any shape andof any topology.� Numeri
al Stability: The 
onstru
tion pro
ess of a subdivision surfa
e is numeri
allystable no matter how 
ompli
ated the shape of the surfa
e. This is be
ause the meshre�ning pro
ess of a subdivision surfa
e is a lo
al pro
ess. It shares the same kind ofnumeri
al stability as the deCasteljau algorithm and the De Boor algorithm. Note thatthese algorithms represent some mesh re�ning pro
esses as well.� Smoothness and Dis
retization: Subdivision surfa
es 
an be represented both inparametri
 form and dis
rete form. Therefore subdivision surfa
es enjoy advantagesof both representation s
hemes. The polygonal mesh form of a subdivision surfa
e isextremely suitable for ma
hining and tessellation (in
luding FE mesh generation). Onthe other hand, it is possible to generate smooth parametri
 subdivision surfa
es ofany shape and any topology for any design purpose. These surfa
es 
an be C1, G1, C2



or G2 
ontinuous everywhere ex
ept at a few extraordinary points where smoothnessof the surfa
e is only one order lower that that at other points. Hen
e we have arepresentation s
heme that is good for all CAD/CAM appli
ations.However, geometri
 algorithms and modeling te
hnologies required in subdivision surfa
ebased modeling operations are not well studied yet [123℄. For instan
e, even though it isknown that one 
an use a subdivision surfa
e to model/represent 
omplex shape of arbitrarytopology, a methodology on how to build the 
ontrol mesh of su
h a surfa
e has never beenpresented. The 
onstru
tion is basi
ally a trial-and-error pro
ess.Hen
e we need approa
hes to 
onstru
t one-pie
e represented 
ontrol meshes for 
omplexshape with arbitrary topology. Subdivision surfa
e based modeling representation means torepresent the �nal obje
t in a design pro
ess with a subdivision surfa
e (i.e. a sparse 
ontrolmesh), no matter how 
ompli
ated the obje
t's topology or shape. No de
omposition ofthe obje
t into simpler 
omponents is ne
essary. Hen
e the number of parts in the �nalrepresentation is always the minimum: one.In this annual report, we study four te
hniques for subdivision surfa
e based modeling.One te
hnique is to use the subdivision surfa
e interpolation te
hnique to approximate thesurfa
e of the given model. But this approa
h would be diÆ
ult to build features su
h as
usps, 
reases and darts into the resultant surfa
e in su
h a pro
ess. A se
ond te
hnique is to
onstru
t a mesh through Boolean operations and multiresolution analysis. Both approa
hes
an a
hieve good results and 
an have expli
it error 
ontrol.A 
omparison of subdivision surfa
e based representation and multi-pie
e representationis given in Figure 1.3. Figure 1.3(a) is the 
ontrol mesh of the representation surfa
e shownin Figure 1.3(b) and Figure 1.3(
) is the mesh of the multi-pie
e representation surfa
eshown in Figure 1.3(d), where di�erent 
olors denoting di�erent parts. We 
an see fromFigure 1.3, with subdivision surfa
e based representation, the number of 
omponent in therepresentation is only one.



(a) One-pie
e mesh (b) One-pie
e surfa
e

(
) Multi-pie
e mesh (d) Multi-pie
e surfa
eFigure 1.3: Subdivision surfa
e based one-pie
e and multi-pie
e Representations.1.4 Stru
ture of the Subdivision based Modeling Sys-temThe obje
tive of the subdivision based one pie
e representation system is to represent the�nal obje
t in a design pro
ess with only one subdivision surfa
e (i.e. a sparse 
ontrol mesh),no matter how 
ompli
ated the obje
t's topology or shape and no de
omposition of the obje
tinto simpler 
omponents is ne
essary. Hen
e the output of our system is always a sparse
ontrol mesh whose Catmull-Clark subdivision surfa
e approximates the target model. Thesystem provides two possible ways to 
onstru
t su
h sparse 
ontrol mesh: interpolation andBoolean operations. Our system supports CSG (Constru
tive Solid Geometry) operationsas well as long as the CSG primitives are represented in subdivision surfa
es. The overall
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framework of the system is shown is Figure 1.4. The main steps of the framework will bedis
ussed in the later 
hapters.1.5 ContributionsOur resear
h work for this proje
t is fo
used on developing ne
essary mathemati
al theoriesand geometri
 algorithms to support subdivision surfa
e based modeling. In this se
tion wesummarize the 
ontributions of this annual resear
h work as follows.� Parametrization of CCSSs [63℄:Subdivision methods for evaluating surfa
es rely on performing repeated subdivisionsuntil the 
ontrol stru
ture approximates the limit surfa
e within some toleran
e. Itis then possible to push the 
ontrol points to their limit positions and bilinearly in-terpolate values a
ross an inexa
t surfa
e pat
h. One of the main problems that mayhinder the usage of subdivision surfa
es in shape design is the exponential growth rateof the number of verti
es in the re�ned mesh with respe
t to the subdivision depth.This would make realisti
 rendering and a

ura
y requirement both diÆ
ult to a
hievefor 
ompli
ated obje
ts. Hen
e an expli
it and exa
t evaluation and parametrizationmethod for subdivision surfa
e is indispensable.However, powerful evaluation and analysis te
hniques for subdivision surfa
es have notbeen fully developed yet. Parametrization methods that have been developed so far aresuitable for evaluation purpose only, not for analysis purpose, be
ause these methodseither do not have an expli
it expression, or are too 
ompli
ated for ea
h part to beexpli
it. For instan
e, in [22℄, eigen fun
tions are pre-
omputed numeri
ally and storedin a �le. So they 
an be used for evaluation purpose only.We proposed a new parametrization te
hnique for general Catmull-Clark subdivisionsurfa
es. The new te
hnique extends J. Stam's work [22℄ by rede�ning all the eigen



(a) Control mesh (b) Limit surfa
eFigure 1.5: Dire
t and exa
t evaluation of Catmull-Clark subdivision surfa
es.basis fun
tions in the parametri
 representation for general Catmull-Clark subdivisionsurfa
es and giving ea
h of them an expli
it form. The entire eigen stru
ture of thesubdivision matrix and its inverse are 
omputed exa
tly and expli
itly with no needto pre
ompute anything. Therefore, the new representation 
an be used not onlyfor evaluation purpose, but for analysis purpose as well [63℄. Our new approa
h isbased on an 
-partition of the parameter spa
e and a detoured subdivision path. Thisresults in a blo
k diagonal matrix with 
onstant size diagonal blo
ks (7 � 7) for the
orresponding subdivision pro
ess. Consequently, eigen de
omposition of the matrixis always possible and is simpler and more eÆ
ient. Furthermore, sin
e the numberof eigen basis fun
tions required in the new approa
h is only one half of the previousapproa
h [22℄, our new parametrization is also more eÆ
ient for evaluation purpose.



The 
amel model shown in Figure 1.5 is rendered using our parametrization te
hniqueswith all the positions and normals exa
tly 
omputed, not approximated. Hen
e, thequality of the image is better than those generated through the subdivision pro
ess.� Interpolation of meshes of arbitrary topology [60℄:Interpolation is a dire
t approa
h for building a sparse mesh stru
ture of a given modelin our subdivision based modeling system. Although there exist some interpolationmethods using subdivision surfa
es [14, 30, 31, 57℄, most of them 
annot handle openmeshes and the resultant surfa
e exhibits undesired artifa
ts and undulations. Weproposed a new method for 
onstru
ting a sparse mesh whose smooth Catmull-Clarksubdivision surfa
e (CCSS) interpolates the verti
es of a mesh with arbitrary topol-ogy. The new method handles both open and 
losed meshes. Normals or derivativesspe
i�ed at any verti
es of the mesh (whi
h 
an a
tually be anywhere) 
an also beinterpolated. The 
onstru
tion pro
ess is based on the assumption that, in addition tointerpolating the verti
es of the given mesh, the interpolating surfa
e is also similar tothe limit surfa
e of the given mesh. Therefore, 
onstru
tion of the interpolating surfa
e
an use information from the given mesh as well as its limit surfa
e. This approa
h,
alled similarity based interpolation [60℄, gives us more 
ontrol on the smoothness ofthe interpolating surfa
e and, 
onsequently, avoids the need of shape fairing in the 
on-stru
tion of the interpolating surfa
e. The 
omputation of the interpolating surfa
e's
ontrol mesh follows a new approa
h, whi
h does not require the resulting global linearsystem to be solvable. An approximate solution provided by any fast iterative linearsystem solver is suÆ
ient. Nevertheless, interpolation of the given mesh is guaranteed.This is an important improvement over previous methods be
ause with these features,the new method 
an handle meshes with large number of verti
es eÆ
iently. Althoughthe new method is presented for CCSSs, the 
on
ept of similarity based interpolation




an be used for other subdivision surfa
es as well.Figure 1.6 gives us an example of subdivision surfa
e based representation using inter-polation te
hniques. Figure 1.6(a) is a given model for whi
h we need to 
onstru
t aspars 
ontrol mesh. Figure 1.6(b) is a mesh whose 
ontrol points are dire
tly sampledfrom the model shown in Figure 1.6(a). By using our interpolation te
hnique, we 
an
onstru
t a sparse 
ontrol mesh shown in Figure 1.6(d), whose limit surfa
e interpo-lates the sampled mesh shown in Figure 1.6(b) and would also be almost the sameas the given model shown in Figure 1.6(a). Figure 1.6(
) is the limit surfa
e of themesh shown in Figure 1.6(b), whi
h 
an be used as a referen
e surfa
e in the pro
essof 
onstru
ting the mesh shown in Figure 1.6(d). The mesh shown in Figure 1.6(d) is
alled the subdivision surfa
e based representation of the given model shown in Figure1.6(a).

(a) Given model (b) Sampled meshof model (a) (
) Limit surfa
eof sample mesh(b) (d) Mesh ofone-pie
e rep-resentation of(a)Figure 1.6: subdivision surfa
e based representation using interpolation te
hniques.
� Voxelization of free-form solids [62℄:A voxelization te
hnique and its appli
ations for obje
ts with arbitrary topology are



presented. With parametrization te
hniques for subdivision surfa
es be
oming avail-able, it is possible now to model and represent any 
ontinuous but topologi
ally 
om-plex obje
t with an analyti
al representation. We proposed a method to 
onvert afree-form obje
t from its 
ontinuous geometri
 representation into a set of voxels thatbest approximates the geometry of the obje
t. Unlike traditional 3D s
an-
onversionbased methods, our voxelization method is performed by re
ursively subdividing the2D parameter spa
e and sampling 3D points from sele
ted 2D parameter spa
e points.Be
ause we 
an 
al
ulate every 3D point position expli
itly and a

urately, uniformsampling on surfa
es with arbitrary topology is not a problem any more.

(a) Given mesh (b) Limit surfa
eof (a) (
) Voxelization of(b) with resolution128� 128� 128 (d) Voxelization of(b) with resolution512� 512� 512Figure 1.7: Voxelization of free-form solids.Moreover, our dis
retization of 3D 
losed obje
ts is guaranteed to be leak-free when a3D 
ooding operation is performed. This is ensured by proving that our voxelizationresults satisfy the properties of separability, a

ura
y and minimality. In addition, a 3Dvolume 
ooding algorithm using dynami
 programming te
hniques is presented whi
h



signi�
antly speeds up the volume 
ooding pro
ess. Hen
e our method is suitable forvisualization of 
omplex s
enes, measuring obje
t volume, mass, surfa
e area, deter-mining interse
tion 
urves of multiple surfa
es and performing a

urate Boolean/CSGoperations. These 
apabilities are demonstrated by test examples shown in the report.For example, Figure 1.7 gives two results of voxelization of the ro
ker arm model shownin Figure 1.7(b), whose mesh is shown in Figure 1.7(a). The result shown in Figure1.7(
) is obtained by voxelizing the ro
ker arm model using resolution 128� 128� 128,while Figure 1.7(d) is obtained using resolution 512�512�512. It is easy to see, whenresolution is high enough, the voxelization result would be 
lose enough to the originalmodel.� Boolean operations on free-form solids [69℄:A method for performing robust and error 
ontrollable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfa
es (CCSSs) is developed.The given obje
ts are voxelized to make Boolean operations more eÆ
ient. However,di�erent from previous voxelization based approa
hes, the �nal result of the Booleanoperations in our method is represented with a 
ontinuous geometri
 representation( i.e. a polygonal mesh). This is a
hieved by doing the Boolean operations in theparameter spa
es of the solids, instead of the obje
t spa
e. The 2D parameter spa
e isre
ursively subdivided until a keep-or-dis
ard de
ision 
an be made for ea
h resultingsubpat
h using results of the voxelization pro
ess. This approa
h allows us to easily
ompute a 
ontinuous approximation of the interse
tion 
urve and, 
onsequently, builda 
ontinuous geometri
 representation for the Boolean operation result. To make theBoolean operation result more a

urate, a se
ondary lo
al voxelization 
an be per-formed for interse
ting subpat
hes. Be
ause the voxelization pro
ess itself is very fastand robust, the overall pro
ess is fast and robust too. Most importantly, error of



Boolean operation result 
an be estimated, hen
e error 
ontrol is possible. In addition,our method 
an handle any 
ases of Boolean operations as long as the given solids arerepresented by CCSSs. Therefore there are no spe
ial or degenerated 
ases to take
are of. Although the new method is presented for CCSSs, the 
on
ept a
tually worksfor any subdivision s
heme whose limit surfa
es 
an be parameterized. See Figure 1.8for an example of performing Boolean operations between two solids represented byCatmull-Clark subdivision surfa
es. Figure 1.8(a) is the union of the 
ylinder and thebunny model, while Figure 1.8(b) is the di�eren
e of the two models.

(a) Union (b) Di�eren
eFigure 1.8: Boolean operations on free-form solids.
� Adaptive tessellation of CCSSs [61, 64, 66℄:Catmull-Clark subdivision s
heme provides a powerful method for building smooth and
omplex surfa
es. But the number of fa
es in the uniformly re�ned meshes in
reasesexponentially with respe
t to subdivision depth. Adaptive tessellation redu
es thenumber of fa
es needed to yield a smooth approximation to the limit surfa
e and,




onsequently, makes the rendering pro
ess more eÆ
ient. We have developed a newadaptive tessellation method for general Catmull-Clark subdivision surfa
es. Di�erentfrom previous 
ontrol mesh re�nement based approa
hes, whi
h generate approximatemeshes that usually do not interpolate the limit surfa
es, the new method is basedon dire
t evaluation of the limit surfa
e to generate an ins
ribed polyhedron of thelimit surfa
e. With expli
it evaluation of general Catmull-Clark subdivision surfa
esbe
oming available, the new adaptive tessellation method 
an pre
isely measure errorfor every point of the limit surfa
e. Hen
e, it has 
omplete 
ontrol of the a

ura
y ofthe tessellation result. Cra
ks are avoided by using a re
ursive 
olor marking pro
essto ensure that adja
ent pat
hes or subpat
hes use the same limit surfa
e points inthe 
onstru
tion of the shared boundary. The new method performs limit surfa
eevaluation only at points that are needed for the �nal rendering pro
ess. Thereforeit is very fast and memory eÆ
ient. The new method is presented for the generalCatmull-Clark subdivision s
heme. But it 
an be used for any subdivision s
hemethat has an expli
it evaluation method for its limit surfa
e. An example of adaptivetessellation is shown in Figure 1.9. Figure 1.9(a) is the given gargoyle model, whi
his a subdivision surfa
e. Figure 1.9(b) is a uniform tessellation of Figure 1.9, whi
his very dense. Figures 1.9(
), 1.9(d) and 1.9(e) are three adaptive tessellations ofthe given model with di�erent error toleran
es. From these �gures we 
an see sparsepolygonal approximation 
an be a
hieved through adaptive tessellation. Figure 1.9(f)is the triangulated tessellation of Figure 1.9(e), whi
h 
onsists of only triangles in thepolygonal approximation.� A system that supports subdivision surfa
e based modeling is implemented and alot of examples have been tested. All the examples show that our approa
hes 
anobtain very good subdivision based representation results. The following Figure 1.10



(a) Given model (b) Uniform tessellation (
) Adaptive tessellation

(d) Adaptive tessellation (e) Adaptive tessellation (f) Triangulated tessella-tionFigure 1.9: Adaptive tessellation on surfa
es with arbitrary topology.is a snapshot of our subdivision surfa
e based modeling system.� Others results:We also a
hieved some other good results during the annual resear
h. Although theyare not dire
tly related to our subdivision surfa
e based modeling system, they all aregood appli
ations of subdivision surfa
es and may have some impa
ts in my futureresear
h work.



Figure 1.10: A snapshot of the subdivision surfa
e based modeling system.{ Constrained S
aling of CCSSs [67℄:A method to s
ale a Catmull-Clark subdivision surfa
e while holding the shapeand size of spe
i�
 features (sub-stru
tures) un
hanged is presented. The basi
idea of the method, �x-and-stret
h, is similar to a previous approa
h for trimmedNURBS surfa
es, i.e., the new surfa
e is formed by �xing sele
ted regions ofthe given subdivision surfa
e that 
ontain the features, s
aling and stret
hingthe remaining part; the goal is to ensure that the resulting surfa
e re
e
ts theshape and 
urvature distribution of the un
onstrainedly s
aled version of the givensurfa
e. However, the stret
hing pro
ess, the 
ore of the entire pro
ess, is more
ompli
ated be
ause of the 
omplexity of a subdivision surfa
e's topology. Themajor 
ontributions of the new 
onstrained s
aling te
hnique in
lude new strain



energy 
omputation te
hniques and energy optimization te
hniques for regionsaround extra-ordinary points. The new method is more powerful than the previousmethod in that it 
an handle more 
ompli
ated shapes and, 
onsequently, 
an beused for more 
hallenging appli
ations. Test results on the ro
ker arm model that
an not be represented by trimmed NURBS surfa
es are shown in Figure 1.11.The left model in Figures 1.11(a) and 1.11(b) is the given model. The blue parts inthese �gures are the spe
i�ed feature whi
h will not be 
hanged in the 
onstraineds
aling pro
ess. The right part of Figure 1.11(a) is 
onstrained s
aling with s
alefa
tors Sx = 1:3, Sy = 1:2 and Sz = 1:1. The right part of Figure 1.11(b) isobtained in the 
onstrained s
aling pro
ess with s
ale fa
tor Sx = 0:8, Sy = 0:95and Sz = 0:9.

(a) Constrained s
aling (bigger) (b) Constrained s
aling (smaller)Figure 1.11: Constrained s
aling of Catmull-Clark subdivision surfa
es.{ Texture mapping on surfa
es of arbitrary topology [65℄:A very simple and yet highly eÆ
ient, high quality texture mapping method for



surfa
es of arbitrary topology has been presented. The new method proje
ts thegiven surfa
e from the 3D obje
t spa
e into the 2D texture spa
e to identify the2D texture stru
ture that will be used to texture the surfa
e. The obje
t spa
e totexture spa
e proje
tion is optimized to ensure minimum distortion of the texturemapping pro
ess. The optimization is a
hieved through a 
ommonly used normpreserving minimization pro
ess on edges of the surfa
e. The main di�eren
ehere is, by using an initial value approa
h, the optimization problem 
an be setup as a quadrati
 programming problem and, 
onsequently, solved by a linearleast squares method. Three methods to 
hoose a good initial value are presented.Test 
ases show that the new method works well on surfa
es of arbitrary topology,with the ex
eption of surfa
es with ex
eptionally abnormal 
urvature distribution.Other advantages of the new method in
lude uniformity and seamlessness of thetexture mapping pro
ess. The new method is suitable for appli
ations that donot require pre
ise texture mapping results but demand highly eÆ
ient mappingpro
ess su
h as 
omputer animation or video games. Examples of texture mappingon surfa
es of arbitrary topology are shown in Figure 1.12. Figures 1.12(a) and1.12(b) are obtained with a global norm preserving based optimization, whileFigures 1.12(
) and 1.12(d) are obtained through pat
h based parametrization. Itis easy to see global method 
an obtain uniform texture mapping results, whi
hare more realisti
 than non-uniform ones.{ Rendering live s
enes using view dependent textured splatting te
hniques [68℄:We presented a novel approa
h for rendering low resolution point 
louds withmultiple high resolution textures, the type of data 
ommonly generated by real-time vision systems. The low pre
ision, noisy, and sometimes in
omplete natureof su
h data sets is not suitable for existing point-based rendering te
hniquesthat are designed to work with high pre
ision and high density point 
louds.



Our new algorithm, View-dependent Textured Splatting (VDTS), 
ombines tra-ditional splatting with a view-dependent texturing strategy to in
rease renderingquality of low resolution data sets with high resolution images. VDTS requiresno pre-pro
essing, addresses texture visibility and anti-aliasing on the 
y, and
an be eÆ
iently a

elerated by 
ommodity graphi
s hardware. Therefore it isparti
ularly well-suited for rendering dynami
 s
enes in real time and online.1.6 NotationsThe following notational 
onventions are adopted in this report. Spa
e obje
ts su
h aspoints, lines and parametri
 fun
tions are denoted by boldfa
e upper 
ase roman 
hara
ters,e.g., V. Linearly transformed items or Fourier points are denoted by boldfa
e lower 
aseroman 
hara
ters, e.g., v. All ve
tors are assumed to be 
olumns. Ve
tors of ordinary items(resp. linearly transformed items or Fourier points) are denoted by upper (resp. lower) 
aseitali
ized 
hara
ters, e.g., V (resp. g). Matri
es are denoted by upper
ase roman 
hara
ters,e.g., M. The transpose of a ve
tor V (resp. matrix M) is denoted by V T (resp. MT).1.7 OverviewThe organization of this report is as follows.� First an expli
it parametrization method is presented for exa
t evaluation of Catmull-Clark subdivision surfa
es in Chapter 2. With an expli
it parametrization, subdivi-sion is no longer a must in order to obtain the limit surfa
e of a given mesh, be
ausedire
t and exa
t evaluation 
an be dire
tly applied now.� In Chapter 3, an interpolation method for meshes of arbitrary topology is presented.Using interpolation, a subdivision surfa
e based representation for any model witharbitrary topology 
an be a
hieved.



� A voxelization te
hnique and its appli
ations for obje
ts with arbitrary topology arepresented in Chapter 4. The new te
hnique 
onverts a free-form obje
t from its
ontinuous geometri
 representation into a set of voxels that best approximates thegeometry of the obje
t. The voxelization results 
an further be used for perform-ing robust and error 
ontrollable Boolean operations in our subdivision surfa
e basedmodeling system.� A te
hnique for performing robust and error 
ontrollable Boolean operations on free-form solids represented by Catmull-Clark subdivision surfa
es (CCSSs) is presented inChapter 5. After the Boolean operations, a representation 
an be a
hieved in thisstage, although the resulting meshes 
ould be dense.� Be
ause subdivision surfa
e based representations obtained from interpolation or Booleanoperations usually are dense meshes, good mesh simpli�
ation or redu
tion methodsare needed. Adaptive tessellation is su
h a method, whi
h redu
es the number of fa
esneeded to yield a smooth approximation to the limit surfa
e and, 
onsequently, makesthe rendering pro
ess more eÆ
ient. In Chapter 6, we present a new adaptive tessel-lation method for general Catmull-Clark subdivision surfa
es whi
h 
an signi�
antlyredu
e the number of polygons for representing a CCSS with a

urate error 
ontrol.� Multiresolution analysis is another good method for simplifying dense meshes with ar-bitrary topology. In Chapter 7 multiresolution representation for subdivision surfa
ebased representations is presented, whi
h results in mu
h sparse 
ontrol meshes andhas expli
it error estimation.� We 
on
lude the report in Chapter 7 and point out some dire
tions for future work.



(a) Uniform texture Mapping (b) Uniform tex-ture Mapping

(
) Pat
h based texture Mapping (d) Pat
h basedtexture MappingFigure 1.12: Texture Mapping on surfa
es of arbitrary topology.



Chapter 2Parametrization and Evaluation ofGeneral Catmull-Clark SubdivisionSurfa
es
In this 
hapter, a new parametrization te
hnique and its appli
ations for general Catmull-Clark subdivision surfa
es are presented. Our new te
hnique [63℄ extends J. Stam's work[22℄ by rede�ning all the eigen basis fun
tions in the parametri
 representation for generalCatmull-Clark subdivision surfa
es and giving ea
h of them an expli
it form. The entireeigen stru
ture of the subdivision matrix and its inverse are 
omputed exa
tly and expli
itlywith no need to pre
ompute anything. Therefore, the new representation 
an be used notonly for evaluation purpose, but for analysis purpose as well. The new approa
h is basedon an 
-partition [22℄ of the parameter spa
e and a detoured subdivision path. This resultsin a blo
k diagonal matrix with 
onstant size diagonal blo
ks (7� 7) for the 
orrespondingsubdivision pro
ess. Consequently, eigen de
omposition of the matrix is always possible andis simpler and more eÆ
ient. Furthermore, sin
e the number of eigen basis fun
tions requiredin the new approa
h is only one half of the previous approa
h [22℄, the new parametrizationis also more eÆ
ient for evaluation purpose. This is demonstrated by several appli
ations ofthe new te
hniques in texture mapping, spe
ial feature generation, surfa
e trimming, booleanoperations and adaptive rendering. 26



The organization of this 
hapter is: A brief introdu
tion is given in Se
tion 1. Se
tion2 gives a brief review of the Catmull-Clark subdivision s
heme and previous evaluationte
hniques. Se
tion 3 shows an intuitive but expensive approa
h in parameterizing an extra-ordinary Catmull-Clark pat
h. Se
tion 4 shows a more eÆ
ient approa
h in parameterizinga Catmull-Clark pat
h using an extended subdivision path. Se
tion 5 shows how to 
omputethe eigen stru
ture of the subdivision matrix of the extended subdivision path. Se
tion 6shows the evaluation pro
ess of the new parametri
 representation at an arbitrary pointof a Catmull-Clark pat
h. Se
tion 7 gives some examples of analysis with our expli
itrepresentation around an extra-ordinary vertex. Se
tion 8 shows appli
ation examples ofthe new s
heme in texture mapping, spe
ial feature generation, surfa
e trimming, adaptiverendering, mesh interpolation and boolean operations. The 
on
luding remarks are given inSe
tion 9.2.1 Introdu
tionSubdivision surfa
es have be
ome popular re
ently in graphi
al modelling and animation be-
ause of their 
apability in modeling/representing 
omplex shape of arbitrary topology [12℄,their relatively high visual quality, and their stability and eÆ
ien
y in numeri
al 
omputa-tion. Subdivision surfa
es 
an model/represent 
omplex shape of arbitrary topology be
ausethere is no limit on the shape and topology of the 
ontrol mesh of a subdivision surfa
e.Subdivision methods for evaluating surfa
es rely on performing repeated subdivisionsuntil the 
ontrol stru
ture approximates the limit surfa
e within some toleran
e. It is thenpossible to push the 
ontrol points to their limit positions and bilinearly interpolate valuesa
ross an inexa
t surfa
e pat
h. But in some appli
ations, the exa
t evaluation is 
riti
al.Hen
e a good parametrization for subdivision surfa
e is indispensable.However, powerful evaluation and analysis te
hniques for subdivision surfa
es have notbeen fully developed yet. Parametrization methods that have been developed so far are



suitable for evaluation purpose only, not for analysis purpose, be
ause these methods eitherdo not have an expli
it expression, or are too 
ompli
ated for ea
h part to be expli
it. Forinstan
e, in [22℄, eigen fun
tions are pre-
omputed numeri
ally and stored in a �le. Sothey 
an be used for evaluation purpose only. Note that exa
t evaluation at a point ofa subdivision surfa
e is possible only if there is an expli
it parametrization of the surfa
e.Hen
e, an expli
it parametrization is not only 
riti
al for analysis purpose, but for evaluationand rendering purpose as well.In this 
hapter we will present an 
-partition based approa
h to solve several importantproblems of subdivision surfa
es: (1) 
omputation of new 
ontrol verti
es at a spe
i�edsubdivision level, (2) expli
it parametrization of an extra-ordinary pat
h, and (3) surfa
eevaluation at arbitrary parameter spa
e point with eigen fun
tions 
omputed on the 
y.The new approa
h is based on the observation that the subdivision pro
ess on the 
ontrolverti
es 
an be broken into subdivision pro
esses on smaller, same frequen
y groups after afew linear transformations. Using a di�erent ordering of the verti
es and the idea of enlargingthe subdivision matrix, the subdivision matrix 
an be transformed into a blo
k matrix withea
h blo
k being 
ir
ulant [5, 27℄. Hen
e it is natural to use the Fourier matri
es to transformthem into diagonal matrix. Ea
h su
h subdivision pro
ess on points of the same frequen
y isindependent of the valen
e of the extra-ordinary vertex. The dimension of the 
orrespondingsubdivision matrix for ea
h frequen
y group is 7� 7. Therefore, the pro
ess of using a largesubdivision matrix to perform the subdivision pro
ess on the 
ontrol verti
es 
an be repla
edwith a set of 7�7 matri
es on the same frequen
y groups. This not only makes 
omputationof the eigen stru
tures of the subdivision matri
es always possible, but also simpler and moreeÆ
ient. Inverses of the eigenve
tor matri
es 
an also be expli
itly 
omputed.
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Figure 2.1: (a) Control verti
es that in
uen
e an extra-ordinary pat
h. (b) New 
ontrolverti
es (solid dots) generated after a Catmull-Clark subdivision.2.2 Previous Work2.2.1 Catmull-Clark Subdivision Surfa
esGiven a 
ontrol mesh, a Catmull-Clark subdivision surfa
e (CCSS) is generated by iterativelyre�ning the 
ontrol mesh [1℄. The limit surfa
e is 
alled a subdivision surfa
e be
ause themesh re�ning pro
ess is a generalization of the uniform B-spline surfa
e subdivision te
hnique.The valen
e of a mesh vertex is the number of mesh edges adja
ent to the vertex. A meshvertex is 
alled an extra-ordinary vertex if its valen
e is di�erent from four. Vertex V inFigure 3.1(a) is an extra-ordinary vertex of valen
e �ve. A mesh fa
e with an extra-ordinaryvertex is 
alled an extra-ordinary fa
e. The valan
e of an extra-ordinary fa
e is the valen
eof its extra-ordinary vertex. In the following, for the sake of simpli
ity, a mesh fa
e and the
orresponding surfa
e pat
h will be treated the same and denoted by the same notation.Given an extra-ordinary fa
e S = S0;0. If the valen
e of its extra-ordinary vertex is n, thenthe surfa
e pat
h 
orresponding to this extra-ordinary fa
e is in
uen
ed by 2n + 8 
ontrolverti
es [1, 22℄. The 
ontrol verti
es shown in Figure 3.1(a) are the ones that in
uen
e thepat
h marked with an \S = Sm�1;0". In general, if Sm�1;0 is the extra-ordinary subpat
hgenerated after m � 1 subdivision steps, then by performing a Catmull-Clark subdivisionstep on the 
ontrol verti
es of Sm�1;0, one gets 2n+17 new 
ontrol verti
es. See Figure 3.1(b)



for the new 
ontrol verti
es generated for the pat
h Sm�1;0 shown in (a). These 2n+17 new
ontrol verti
es de�ne four subpat
hes: Sm;b, b = 0; 1; 2; 3 (Figure 3.1(b)). Sm;0 is again anextra-ordinary pat
h but Sm;1, Sm;2, and Sm;3 are regular uniform bi
ubi
 B-spline pat
hes.Iteratively repeat this pro
ess, one gets a sequen
e of regular bi
ubi
 B-spline pat
hes (Sm;b),m � 1, b = 1; 2; 3, a sequen
e of extra-ordinary pat
hes (Sm;0), m � 0, and a sequen
e ofextra-ordinary verti
es. The extra-ordinary pat
hes 
onverge to the limit point of the extra-ordinary verti
es [14℄. The regular bi
ubi
 B-spline pat
hes (Sm;b), m � 1, b = 1; 2; 3, andthe limit point of the extra-ordinary verti
es form a partition of S.2.2.2 Previous Parametrization and Evaluation MethodsAn algorithm for the evaluation of a subdivision surfa
e at an arbitrary point was �rstproposed by J. Stam in 1998 for Catmull-Clark subdivision surfa
es [22℄ and then in 1999for Loop subdivision surfa
es [23℄. Stam's approa
h shows that an extra-ordinary surfa
epat
h and its derivatives 
an be represented as a linear 
ombination of the 
ontrol pointswith weights de�ned by a set of 2n + 8 eigenbasis fun
tions where n is the valen
e of theextra-ordinary pat
h. The representation satis�es simple s
aling relations and 
an be easilyevaluated in 
onstant time. However, even though analyti
al expressions for the eigenbasisfun
tions have been derived, some of them are too 
ompli
ated to be reported in the paper[22℄. Besides, some of the eigenbasis fun
tions are redundant. We will show in this 
hapterthat only n + 6 eigenbasis fun
tions are a
tually needed and, 
onsequently, the evaluationpro
ess 
an be made more eÆ
ient. J. Stam's approa
h [22℄ is mainly developed for evalua-tion purpose. As we shall present, our parametrization results [63℄ 
an be used not only forevaluation, but for analysis purpose as well.Warrent and Weimer presented a method in [27℄ for 
omputing all eigenvalues and eigen-ve
tors of the subdivision matrix by writing the subdivision matrix for the 2-ring in blo
k
ir
ulant form. Ball and Storry [5℄ also used the similar approa
h to 
ompute the eigen



stru
ture of the subdivision matrix. However, as far as we know, the inverse of the matrix ofthe eigenve
tors has never been 
omputed expli
itly, and the overall expli
it eigen stru
turehas never been integrated into the parametrization formula. In this paper, based on theeigen analysis results of [5℄, an expli
it and exa
t evaluation formula is derived.Zorin extended the work of J. Stam by 
onsidering subdivision rules for pie
ewise smoothsurfa
es with parameter-
ontrolled boundaries [25℄. The main 
ontribution of their work isthe usage of a di�erent set of basis ve
tors for the evaluation pro
ess whi
h, unlike eigen-ve
tors, depend 
ontinuously on the 
oeÆ
ients of the subdivision rules. The advantageof this algorithm is that it is possible to de�ne evaluation for parametri
 families of ruleswithout 
onsidering ex
essive number of spe
ial 
ases, while improving numeri
al stabilityof 
al
ulation.In addition to Stam's approa
h, two di�erent parameterizations of Catmull-Clark subdi-vision surfa
es have been proposed by Boier-Martin and Zorin [8℄. The motivation of theirwork is to provide parametrization te
hniques that are di�erentiable everywhere. Althoughall the natural parameterizations of subdivision surfa
es are not C1 around extraordinaryverti
es of valen
e higher than four[8℄, the resulting surfa
es are still C2 almost everywhere.Moreover, despite of the fa
t that the partial derivatives diverge around an extraordinaryvertex, in this paper, we will show that an standardized normal ve
tor 
an be 
al
ulatedexpli
itly everywhere. As we know, pre
isely 
al
ulated normal ve
tor is indispensable forsurfa
e shading purposes.Exa
t evaluation of pie
ewise smooth Catmull-Clark surfa
es near sharp and semi-sharpfeatures is 
onsidered in [21℄. Constant-time performan
e is a
hieved by employing Jordande
omposition of the subdivision matrix. In this paper we will show that spe
ial features 
anbe generated using ordinary Catmull-Clark rules with 
onstant-time evaluation performan
eas well.
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-partition of the unit square [22℄.2.3 Parametrization of a Pat
hThe regular bi
ubi
 B-spline pat
hes fSm;bg, m � 1, b = 1; 2; 3, indu
e a partition on theunit square [0; 1℄� [0; 1℄. The partition is de�ned by : f
m;bg, m � 1, b = 1; 2; 3, with
m;1 = [ 12m ; 12m�1 ℄� [0; 12m ℄;
m;2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m;3 = [0; 12m ℄� [ 12m ; 12m�1 ℄(see Figure 2.2 for an illustration of the partition [22℄). For any (u; v) 2 [0; 1℄ � [0; 1℄ but(u; v) 6= (0; 0), there is an 
m;b that 
ontains (u; v). To �nd the value of S at (u; v), �rstmap 
m;b to the unit square. If (u; v) is mapped to (�u; �v) by this mapping, then 
omputethe value of Sm;b at (�u; �v). The value of S at (0; 0) is the limit of the extra-ordinary verti
es.For 
onvenien
e of subsequent referen
e, the above partition will be 
alled an 
-partition ofthe unit square.In the above pro
ess, m and b 
an be 
omputed as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) = 8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 :The mapping from 
m;b to the unit square is de�ned as:(u; v) ! (�u; �v) = (�(u); �(v));



where �(t) = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 : (2.1)Sin
e ea
h Sm;b is a standard B-spline surfa
e, it 
an be expressed asS(u; v) =W T (�u; �v)MGm;bwhere Gm;b is the 
ontrol point ve
tor of Sm;b, W (u; v) is a ve
tor 
ontaining the 16 powerbasis fun
tions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3; u3v; u2v2; uv3; u3v2; u2v3; u3v3℄;and M is the B-spline 
oeÆ
ient matrix. An important observation is, W T (�u; �v) 
an beexpressed as the produ
t of W T (u; v) and two matri
es:W T (�u; �v) = W T (u; v)KmDb;where K is a diagonal matrixK = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64)and Db is an upper triangular matrix depending on b only. Db 
an be obtained by repla
ing�u; �v in W (�u; �v) with �(u); �(v) de�ned in Eq. (2.1). Therefore, we haveS(u; v) =W T (u; v)KmDbMGm;b:The 
omputation of the 
ontrol verti
es of Sm;b involves two matri
es, A and �A [22℄. �A isa (2n+17)� (2n+8) matrix, representing the subdivision pro
ess shown in Figure 3.1(b). Ais a (2n+8)�(2n+8) submatrix of �A, representing the pro
ess of mapping the 2n+8 
ontrolverti
es of the given extra-ordinary pat
h to the 2n+8 
ontrol verti
es of its extra-ordinarysubpat
h. Let G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄



then G (See Fig. 3.1(a) for its labelling) is the 
olumn ve
tor representing the 
ontrol verti
esof S. By applying A to G (m � 1) times we get the 2n + 8 
ontrol verti
es of the extra-ordinary subpat
h Sm�1;0. Now by applying �A to the 
ontrol verti
es of Sm�1;0 (representedas Gm�1), we get 2n + 17 new 
ontrol points whi
h in
lude the 2n + 8 
ontrol verti
es ofSm;0. Let �Gm be the 
olumn ve
tor representation of these 2n+ 17 verti
es, we have�Gm = �AGm�1 = �AAm�1G :Then by multiplying �Gm with an appropriate \pi
king" matrix Pb, we get the 
ontrol verti
esof the subpat
h Sm;b: Gm;b = Pb �Gm = Pb �AAm�1G :Hen
e we have S(u; v) = W T (u; v)KmDbMPb �AAm�1G: (2.2)This is a parametrization of an extra-ordinary pat
h. However, this is a 
ostly pro
ess touse be
ause it involves m � 1 multipli
ations of the (2n + 8) � (2n + 8) matrix A. In thenext se
tion, we will present an eÆ
ient approa
h to 
al
ulate Gm;b for any b and m.2.4 Cal
ulate Control Verti
es after m SubdivisionsThe goal here is to show that instead of using the dire
t path from G to Gm�1 to 
omputeGm�1 = Am�1G in the above equation, one should use the indire
t, longer path (G! g !gm�1 ! Gm�1) in Figure 2.3 to do the job. The reason for doing so is: the 
orrespondingmatrix T is a blo
k diagonal matrix with ea
h diagonal blo
k of dimension 7 � 7 only.Therefore, the pro
ess of 
omputing their eigen de
ompositions is not only always possible,but also mu
h simpler and more eÆ
ient.Details of this new approa
h and de�nitions of related mappings are given below. We
onsider a general CCSS here. That is, the new vertex point V0 after one subdivision is
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Ĝ

Ĝ ĝ
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Figure 2.3: The extended subdivision diagram.
omputed as de�ned in Eq. 1.1. New fa
e points and edge points are 
omputed the sameway as in [1℄.First, to prepare G for the major transformation, we extend G into a ve
tor of sevenequal-length 
omponents, 
alled Ĝ:Ĝ = (V T ; ET ; F T ; IT1 ; IT2 ; IT3 ; IT4 )T ;where V = (V;V; � � � ;V)T ;E = (E1;E2; � � � ;En)T ;F = (F1;F2; � � � ;Fn)T ;Ik = (Ik; Ik+4; 0; � � � ; 0)T ; k = 1; 2; 3I4 = (I4; 0; 0; � � � ; 0)Twith all of them having the same length of n. We 
an get Ĝ from G by a simple extensionmatrix H1, i.e., Ĝ = H1G. Note that the matrix indu
ing Ĝi to Ĝi+1, i.e., H1AH�11 , is a7n�7n blo
k matrix with ea
h blo
k (n�n) being 
ir
ulant [5, 27℄. Therefore, ea
h of theseblo
ks 
an be diagonalized exa
tly using the dis
rete Fourier transform. Let ĝ be the result



of applying the dis
rete Fourier transform L to the 
omponents of Ĝ:ĝ = (LV T ;LET ;LF T ;LIT1 ;LIT2 ;LIT3 ;LIT4 )T= (vT ; eT ; fT ; iT1 ; iT2 ; iT3 ; iT4 )T :Ea
h 
omponent of ĝ has the same length n, but is indexed from 0 to n � 1. We 
an get ĝfrom Ĝ by 
ombining all L's into a single matrix H2, i.e., ĝ = H2Ĝ. It is easy to see that H2is a blo
k diagonal matrix. If we re-arrange the elements of ĝ into a set of same frequen
ygroups: g = (hT0 ; hT1 ; � � � ; hTn�1)T ;where h! = (v!; e!; f!; i1!; i2!; i3!; i4!)T , with 0 � ! � n� 1. We 
an get g from ĝ througha 7n � 7n permutation matrix H3, i.e., g = H3ĝ. The above relationships hold for gj, Gj,ĝj and Ĝj, j � 1, as well (See Fig. 2.3). Sin
e H1, H2 and H3 are invertible, we 
an easily
al
ulate gj and Gj from ea
h other.For ea
h j � 1, the subdivision pro
ess performed on Gj�1 to get Gj 
an be re
e
tedon gj�1 and gj through H1, H2 and H3. The indu
ed subdivision pro
ess [5℄ on gj�1 
an berepresented by a 7n� 7n matrix T as:gj = Tgj�1 = Tjg:T is a blo
k diagonal matrix with ea
h diagonal blo
k T! (! = 0; 1; 2; � � � ; n � 1), being a7� 7 matrix. The expression of ea
h T! 
an be found in [5℄. Therefore, for ea
h m � 1, wehave (See Fig. 2.3): Am�1 = H�11 H�12 H�13 Tm�1H3H2H1 :By 
ombining the above expression with (2.2), we haveS(u; v) = W TKmDbMPb �AH�11 H�12 H�13 Tm�1H3H2H1G (2.3)For a given (u; v), every matrix in (2.3) is known to us if valan
e n is known. Hen
e it 
anbe used to exa
tly and expli
itly evaluate the position of S(u; v).



2.5 Eigen analysis of TEquation (2.3) provides a formal parametrization of an extra-ordinary pat
h. This parametriza-tion, however, is still 
ostly to evaluate be
ause it involvesm�1 multipli
ations of the matrixT. The evaluation pro
ess 
an be 
onsiderably simpli�ed if T is de
omposed as T = X�1�X,where � is a diagonal matrix of eigenvalues of T and X is an invertible matrix whose 
olumnsare the 
orresponding eigenve
tors. Therefore, the evaluation of Tm�1 be
omes the evalua-tion of X�1�m�1X only.Note that T is a blo
k diagonal matrix. To �nd the eigen de
omposition of T, we �rst�nd the eigen de
omposition of ea
h diagonal blo
k T! of T:T! = X�1! �!X!; (! = 0; 1; � � � ; n� 1):Sin
e ea
h diagonal blo
k T! is of size 7 � 7, its eigen de
omposition 
an be 
al
ulatedexpli
itly. X, � and X�1 are then formed as blo
k diagonal matri
es with diagonal blo
ksbeing X!, �! and X�1! , respe
tively. Consequently, S(u; v) 
an be expressed as:S(u; v) = W TKmZb�m�1ZG (2.4)where Z = XH3H2H1 and Zb = DbMPb �AZ�1. For any given n, these matri
es are knownexpli
itly.There are totally n + 6 di�erent eigenvalues in �. These di�erent eigenvalues of T are:�0 = (4�n � 1 +p16�2n � 8�n + 8�n � 3 )=8�1 = (4�n � 1�p16�2n � 8�n + 8�n � 3 )=8�2! = (
! + 5 +p
2! + 10
! + 9 )=16�2!+1 = (
! + 5�p
2! + 10
! + 9 )=16�n+1 = 1�n+2 = 1=8�n+3 = 1=16�n+4 = 1=32�n+5 = 1=64where 1 � ! � n=2, 
! = 
os(2�!=n), and �n and �n are de�ned in (1.1). It is easy to 
he
kthat �0 > �1 and �2 > �i for 3 � i � n.



2.6 Evaluation of a CCSS Pat
hIn this se
tion we show how 
an Eq. (2.4) be used in the eÆ
ient evaluation of a CCSSpat
h at a given (u; v). Eq. (2.4) 
an be used for both extra-ordinary and regular pat
hesbe
ause the derivation of Eq. (2.4) did not use the assumption that n 6= 4.First note that S(u; v) de�ned in Eq. (2.4) 
an be written as a linear 
ombination ofthese di�erent eigenvalues in � to the (m� 1)st power:S(u; v) = W TKm n+5Xj=0 �m�1j (Zb�jZ)G;where �j is a 7n� 7n matrix with all the entries being zero ex
ept the ones 
orrespondingto �j in matrix �. Those entries of �j are 1. Let Mb;j = Zb�jZ. We getS(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G: (2.5)The exa
t expressions of Mb;j are shown in the end of this 
hapter. Eq. (2.5) is the mostimportant result of this report [60, 61, 62, 63, 64, 65, 66, 67, 69℄. This equation 
an be usedto evaluate a CCSS pat
h at any point (in
luding (0; 0)), and it 
an also be used to 
omputethe derivative of a CCSS pat
h at any point (in
luding (0; 0) as well). The pat
h 
an beregular or extra-ordinary.Note that for any m � 0, we have W T (u; v)Km = W T (2mu; 2mv). De�ne�b;j(u; v) = W T (2mu; 2mv)�m�1j Mb;j;�b(u; v) = Pn+5j=0 �b;j(u; v):�b;j(u; v) are 
alled the jth eigen basis fun
tion of CCSSs. There are totally n+6 eigen basisfun
tions and for any given (u; v), every eigen basis fun
tion 
an be exa
tly and expli
itlyrepresented. It is esay to 
he
k that all the eigen basis fun
tions satisfy the so 
alled s
alingrelation [22, 25℄: �b;j(u=2; v=2) = �j�b;j(u; v)



With the above de�nition, Eq. (2.5) 
an be represented asS(u; v) = �b(u; v) G;whi
h is used for fast rendering in our implementation.One 
an 
ompute the derivatives of S(u; v) to any order simply by di�erentiatingW (u; v)in Eq. (2.5) a

ordingly. For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2.6)2.7 Behavior Around an Extra-Ordinary Point2.7.1 Limit Point of an Extra-Ordinary VertexEq. (2.5) not only 
an be used for evaluation purpose, but analyti
 derivation as well. Forexample, one gets the limit point of an extra-ordinary vertex simply by setting u = v = 0and m!1 in Eq. (2.5): S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �G= 5V+(12�n+8
n)�E+(2�n+8
n)�F5+14�n+16
n (2.7)where �E = (Pni=1Ei)=n and �F = (Pni=1Fi)=n. This result generalizes Eq. (13) of [14℄.2.7.2 Partial Derivatives Around an Extra-Ordinary VertexIt is known the �rst partial derivatives of S(u; v) at (0; 0) diverge in a natural parametrization[8℄. However, knowing the dire
tions of them is suÆ
ient in many appli
ations. As pointedout by [5℄, when �0 � �2, a general Catmull-Clark subdivision surfa
e is not C1 
ontinuous.Suppose �0 < �2, dividing both sides of Eq. (2.6) by 2m�m�12 , and by setting u = v = 0 andm!1, we get Du(0; 0) = [0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDv(0; 0) = [0; 0; 1; 0; � � � ; 0℄ �M2;2 �Gwhere Du and Dv are the dire
tion ve
tors of �S(0;0)�u and �S(0;0)�v , respe
tively. The normalve
tor at (0; 0) is the 
ross produ
t of them. Similarly, when �0 < �2, it is easy to 
al
ulate



the se
ond partial derivatives at (0; 0). These derivatives are listed as follows.Duu(0; 0) = [0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �GDuv(0; 0) = [0; 0; 0; 0; 1; 0; � � � ; 0℄ �M2;2 �GDvv(0; 0) = [0; 0; 0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �Gwhere Duu, Duv and Dvv are the dire
tion ve
tors of �2S(0;0)�u2 , �2S(0;0)�u�v and �2S(0;0)�v2 , respe
tively.Sin
e M2;2 is expli
itly and exa
tly known, all these ve
tors 
an be 
al
ulated on
e G is given.2.7.3 Proof of tangent plane 
ontinuityWith the expli
it expressions of partial derivatives of S(u; v) at (0; 0), some properties ofCCSS at an extra-ordinary point 
an be proved easily. For instan
e, one 
an prove thatwhen �0 < �2, there exists a 
ommon tangent plane at an extra-ordinary point.The tangent plane 
ontinuity property has been proven by many people with di�erentapproa
hes [5, 14, 16, 17℄. Here a simple proof using our parametrization results is givenbelow.Expand Du and Dv, we haveDu =Pni=1 �ei �Ei +Pni=1 �fi � FiDv =Pni=1 êi �Ei +Pni=1 f̂i � Fiwhere �ei =P5t=1 xt1
(i�t+2); êi =P5t=1 xt2
(i�t+2)�fi =P5t=1 xt3
(i�t+2); f̂i =P5t=1 xt4
(i�t+2))where 
! = 
os(2�!=n). All s
alars xij's in the above de�nitions depend on valan
e n onlyand 
an be derived from Mb;2 expli
itly. To prove the existen
e of a 
ommon tangent planeat an extra-ordinary point, one needs to show that 
omputation of the normal ve
tor isindependent of k (the ID of a fa
e adja
ent to an extra-ordinary point [5℄, whi
h determinesthe order of the 
ontrol points of a pat
h):( nXi=1 �eiEi+k + nXi=1 �fiFi+k)� ( nXi=1 êiEi+k + nXi=1 f̂iFi+k):



To prove this, it is suÆ
ient to show that P �eiEi+k �P êiEi+k is independent of k. Theother parts 
an be proved similarly. NotenXi=1 �ei�kEi � nXj=1 êj�kEj =Xi�j (�ei�kêj�k � �ej�kêi�k)Ei �EjTo prove the above expression is independent of k, we only need to prove (�ei�kêj�k��ej�kêi�k)is independent of k: �ei�kêj�k � �ej�kêi�k=P1�s;t�5 xs1xt2(
i�k�s+2
j�k�t+2 � 
j�k�s+2
i�k�t+2)=P1�s;t�5 xs1xt2 (
i�j�s+t � 
j�i�s+t)=2whi
h is independent of k. Hen
e all the pat
hes sharing a 
ommon extra-ordinary pointhave the same normal ve
tor at the extra-ordinary point. Therefore, there exists a 
ommontangent plane at an extra-ordinary point.When �0 � �2, it 
an be proved similarly that the resulting surfa
e does not have a
ommon tangent pla
e [5℄. In fa
t, Eq. (2.5) and Eq. (2.6) 
an be used for many otheranalyti
 purposes as well. For example, the 
urvature property at an extra-ordinary point
an be expli
itly analyzed using these two formulas [6℄.Although most of these properties of CCSS around an extra-ordinary vertex are wellknown, an expli
it parametrization of CCSS nevertheless makes the analyzing pro
ess mu
hmore simpler and intuitive. Moreover, our results possibly 
an be used for studying other un-known properties of CCSS as well. For instan
e, it is possible to investigate the integrabilityof a CCSS using the parametrization te
hnique presented in this 
hapter.2.8 Appli
ations2.8.1 Fast, Exa
t and Expli
it RenderingEq. (2.5) not only gives us an expli
it method to evaluate S(u; v), but also a faster and
onvenient way to render S(u; v). Note that Mb;j depend on the valen
e of the extra-ordinaryvertex only. They 
an be expli
itly and analyti
ally 
omputed for every di�erent valen
e.



Figure 2.4: left: Control mesh of a horse model, right: exa
tly evaluated Catmull-Clarksubdivision surfa
e.For a given valen
e, we only need to perform su
h 
al
ulation on
e, no matter how manypat
hes in the mesh are with su
h a valen
e. On
e the step sizes for u and v are given, we
an 
al
ulate all �b(ui; vk) beforehand and store them in a look-up table. Therefore, theevaluation of S(u; v) at ea
h point (ui; vk) basi
ally is just a multipli
ation of �b(ui; vk) andG only. An algorithm of the fast rendering pro
ess is shown below:CCSS-Rendering(Mesh, ustep, vstep,�n,
n)1. For ea
h valan
e n involved in input Mesh2. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep3. Cal
ulate �b(u; v)4. For ea
h pat
h whose valan
e is n in input Mesh5. Find its 2n + 8 
ontrol points G6. For u = 0 : 1 : ustep and For v = 0 : 1 : vstep7. 
al
ulate ea
h S(u; v) and its normal using Eq. (2.5)8. Display all these S(u; v)'sAll the examples shown in this 
hapter are rendered using this algorithm. One 
an seethat it is essentially the same as the rendering pro
ess of a regular pat
h. An important



di�eren
e between this approa
h and the previous approa
h [22℄ is that nothing need to bepre
omputed when our method is used, while the the Stam method [22℄ need to pre
omputea huge number of eigen basis fun
tions and stored them in a �le. In addition, the previousapproa
h [22℄ was developed for spe
ial �n and �n only. Therefore, it 
annot handle generaleigen basis fun
tions while we 
an 
al
ulate all the eigen basis fun
tions expli
itly with onlya small overhead. The horse shown in Fig. 2.4 (right) is rendered using this algorithm withall the positions and normals exa
tly 
omputed, not approximated. Hen
e, the quality ofthe image is better than those generated through the subdivision pro
ess. Fig. 2.4 (left) isthe 
ontrol mesh of the shape shown in Fig. 2.4 (right).

(a) Mesh with tripled edges (b) Surfa
e with spe
ial featuresFigure 2.5: Generating spe
ial features using Catmull Clark subdivision surfa
es



2.8.2 Generating Spe
ial FeaturesEq. (2.5) 
an be used to render subdivision surfa
es with spe
ial features. As we know,spe
ial features 
an be generated by properly arranging the 
ontrol mesh. For instan
e,tripling a line in the 
ontrol mesh generates a ridge or edge-like feature; tripling a 
ontrolpoint generates a dart-like feature. One 
an get subdivision surfa
es with 
ompli
ated fea-tures and, 
onsequently, 
ompli
ated shape through this pro
ess. However, no matter how
ompli
ated the topology of the 
ontrol mesh, as long as it is a two-manifold (to satisfy thede�nition of a CCSS), Eq. (2.5) will always generate the 
orre
t result. An example of aCCSS with sharp edges, 
orners and several genera is shown in Fig. 2.5. The 
ontrol meshof the surfa
e is shown in Fig. 2.5(a). Sin
e the features are generated from parametrizationof the 
ontrol mesh dire
tly, the result shown in Fig. 2.5(b) is better than those generatedby Boolean operations.2.8.3 Texture MappingPre
ise texture mapping on a CCSS is possible only if a proper parametri
 representation isavailable for ea
h extra-ordinary pat
h.Without a proper parametrization,texture mapping on obje
t of any topology is almostimpossible. Now with Eq. (2.5), texture mapping is doable on any obje
t of any genus.However, to implement texture mapping on a CCSS, one needs to divide the interiorfa
es of the 
ontrol mesh into regions su
h that ea
h region is of a re
tangular stru
ture �rst.Su
h a division will be 
alled a regular division. The division is not unique.Figure 2.6 shows a division of the interior fa
es of a CCSS into seven re
tangular regions.On
e a regular division of the interior fa
es of the 
ontrol mesh is available, one simplyperforms texture mapping on ea
h of these regions using standard approa
h. Examples oftexture mapping on three subdivision surfa
e represented obje
ts: a ro
ker arm, a spa
estation and a leopard are shown in Fig. 2.7(a), 2.7(b), and 2.7(
), respe
tively. The regular



Figure 2.6: Regular division of the 
ontrol mesh of a CCSS.division usually is not unique. Di�erent divisions of the interior fa
es of the 
ontrol meshwould lead to di�erent texture outputs.2.8.4 Surfa
e TrimmingSurfa
e trimming is another important appli
ation used in 
omputer graphi
s and CAD/CAM.The trimming loops are de�ned in the parameter spa
e of the surfa
e and iso-parametri
 linesin the parameter spa
e are 
lipped against the trimming loops to have the trimmed regionsremoved. Hen
e, a global or lo
al parametrization is ne
essary for pre
ise and eÆ
ient ren-dering of a trimmed CCSS. In Fig. 2.8.4, trimmed CCSSs surfa
e are shown. In Fig. 2.8(a),the trimmed regions are de�ned by the logo of the 2006 International CAD Conferen
e, andin Fig. 2.8(b), the trimmed regions are de�ned by the boundaries of the word `SIGGRAPH'.The CCSS surfa
e has four extra-ordinary verti
es in the trimmed region, but partitioningof the 
ontrol mesh is not required here be
ause the surfa
e is rendered on the basis ofindividual pat
hes.



(a) Ro
k Arm (b) Leopard (
) Spa
e StationFigure 2.7: Texture mapping on Catmull-Clark subdivision surfa
es

(a) (b)Figure 2.8: Surfa
e trimming on Catmull-Clark subdivision surfa
es



2.8.5 Adaptive RenderingAdaptive rendering is a te
hnique for fast rendering of 
ompli
ated obje
ts. The renderingpro
ess of a pat
h depends on its 
atness. A 
at pat
h will not be tessellated as densely asother pat
hes. Adaptive rendering is not a problem with (2.5) be
ause Eq. (2.5) is 
apableof generating any point of the surfa
e required in the tessellation pro
ess. One thing we mustkeep in mind is that, in order to avoid 
ra
k, we must generate the same number of pointson the shared boundary of adja
ent fa
es. But we 
an generate any number of points, evenzero, inside a pat
h. An example of adaptive rendering is shown in Fig. 2.8.5. Fig. 2.9(
)is the given ventilation 
ontrol 
omponent model whi
h is represented by a single CCSS.Its 
ontrol mesh is shown in Fig. 2.9(a). The adaptive tessellation of the model is shownin Fig. 2.9(b). The 
atness of pat
hes is determined by the maximum norm of the se
ondorder forward di�eren
es of its 
ontrol points. More details about the adaptive tessellationte
hnique is presented in Chapter 6.

(a) Given Mesh (b) Adaptive Tessella-tion (
) Limit Surfa
eFigure 2.9: Adaptive tessellation of Catmull-Clark subdivision surfa
es



2.8.6 InterpolationPerforming exa
t interpolation on meshes with arbitrary topology has been done by manypeople [29, 30, 28, 14, 31℄. Given an 
ontrol mesh the goal is to produ
e a smooth andvisually pleasing surfa
e whose shape mat
hes the original data points or given normals inthe given mesh exa
tly. Usually many 
onstrains on the interpolatory surfa
e need to be
onsidered when optimization is used. For example, in [14℄, some energy fairing 
onstrainsare taken into a

ount in building a global system. Be
ause there was not an available expli
itparametrization, the fairing pro
ess appeared to be very 
ompli
ated in [14℄. However, withour expli
it parametrization and evaluation, all kinds of 
onstrains 
an be integrated intothe global system. For example, Fig. 2.10(b) is the interpolating result of the mesh givenin Fig. 2.10(a) using the �rst, se
ond and third derivatives as the 
onstrains. More detailsabout the interpolating meshes of arbitrary topology are presented in Chapter 3.

(a) Given Mesh (b) InterpolationFigure 2.10: Interpolation using Catmull-Clark subdivision surfa
es



2.8.7 Boolean OperationsIn solid modelling, an obje
t is formed by performing Boolean operations on simpler obje
tsor primitives. A CSG tree is used in re
ording the 
onstru
tion history of the obje
t andis also used in the ray-
asting pro
ess of the obje
t. Surfa
e-surfa
e interse
tion (in
ludingthe in-on-out test) and ray-surfa
e interse
tion are the 
ore operations in performing theBoolean operations and the ray-
asting pro
ess. Ea
h operation requires a parametrizationof the surfa
e to do the work. This is espe
ially important for the in-on-out test. None ofthese is a problem with Eq. (2.5). Examples of performing Boolean operations on two andthree 
ows are presented in Figure 2.11(a) and 2.11(b), respe
tively. A di�eren
e operationis �rst performed to remove some portions from ea
h of these 
ows and a union operationis then performed to join them together. Performing Boolean operations on subdivision sur-fa
es has been studied by Biermann, Kristjansson, and Zorin [7℄. The emphasis of their workis di�erent though - they fo
us on 
onstru
tion of the approximating multiresolution sur-fa
e for the result, instead of pre
ise 
omputation of the surfa
e-surfa
e interse
tion 
urves.More details about performing Boolean operations on surfa
es with arbitrary topology arepresented in Chapter 5.2.9 SummaryNew parametrization and evaluation te
hniques for extra-ordinary pat
hes of CCSSs arepresented in this 
hapter. The parametrization is obtained by performing subdivision on agroup of same-frequen
y point sets after a few linear transformations, not on the 
ontrol ver-ti
es themselves dire
tly. This results in a blo
k diagonal matrix with 
onstant size diagonalblo
ks (7� 7) for the 
orresponding subdivision pro
ess. Consequently, eigen de
ompositionof the subdivision matrix is always possible and is simpler and more eÆ
ient. Besides, thenew approa
h works for the general CCSSs, not just a spe
ial 
ase. The evaluation pro
essusing this parametrization works for both extra-ordinary and regular CCSS pat
hes.



(a) (b)Figure 2.11: Performing Boolean operations on Catmull-Clark subdivision surfa
esOne thing has to be pointed out here. The exponent m in (2.5) 
an not be 
an
elledout. This is be
ause when �j is not a multiple of 1=2, m� 1 in Km�1 and �m�1j Mb;j does not
an
el out. Hen
e, when n 6= 4, there does not exist a matrix M su
h that S(u; v) = W TMG.



Chapter 3Subdivision Depth Computation forCatmull-Clark Subdivision Surfa
es
In this 
hapter, a new subdivision depth 
omputation te
hnique for extra-ordinary Catmull-Clark subdivision surfa
e (CCSS) pat
hes is presented. The new te
hnique improves a previ-ous te
hnique by using a matrix representation of the se
ond order norm in the 
omputationpro
ess. This enables us to get a more pre
ise estimate of the rate of 
onvergen
e of these
ond order norm of an extra-ordinary CCSS pat
h and, 
onsequently, a more pre
ise sub-division depth for a given error toleran
e.3.1 Introdu
tionGiven a Catmull-Clark subdivision surfa
e (CCSS) pat
h, subdivision depth 
omputation isthe pro
ess of determining how many times the 
ontrol mesh of the CCSS pat
h should besubdivided so that the distan
e between the resulting 
ontrol mesh and the surfa
e pat
his smaller than a given error toleran
e. Good subdivision depth 
omputation te
hniquesare important be
ause they allows us to meet pre
ision requirement in appli
ations su
h astrimming, �nite element mesh generation, boolean operations, and tessellation of a CCSSwithout ex
essively subdividing its 
ontrol mesh.A good subdivision depth 
omputation te
hnique requires pre
ise estimate of the distan
e51



between the 
ontrol mesh and the limit surfa
e. Optimum distan
e evaluation te
hniquesfor regular CCSS pat
hes are available [10, 18℄. Distan
e evaluation for an extra-ordinaryCCSS pat
h is more 
ompli
ated. A �rst attempt in that dire
tion is done in [10℄. Thedistan
e is evaluated by measuring norms of the �rst order forward di�eren
es of the 
ontrolpoints. Sin
e �rst order forward di�eren
es 
an not measure the 
urvature of a surfa
e butits dimension, the distan
e 
omputed by this approa
h is usually bigger than what it really isfor regions already 
at enough and, 
onsequently, leads to over-estimated subdivision depth.An improved distan
e evaluation te
hnique for extra-ordinary CCSS pat
hes is presentedin [64℄. The distan
e is evaluated by measuring norms of the se
ond order forward di�eren
es(
alled se
ond order norms) of the 
ontrol points of the given extra-ordinary CCSS pat
h.Sin
e se
ond order forward di�eren
es 
an measure both height and width of a region, thedistan
e 
omputed by this approa
h re
e
ts 
urvature of the pat
h and, hen
e, leads toreasonable subdivision depths for regions already 
at enough. However, it has been observedre
ently that, for extra-ordinary CCSS pat
hes, the 
onvergen
e rate of se
ond order norm
hanges with the subdivision pro
ess, espe
ially between the �rst subdivision level and these
ond subdivision level. Therefore, using a �xed 
onvergen
e rate in the distan
e evaluationpro
ess for all subdivision levels would over-estimate the distan
e and, 
onsequently, over-estimate the subdivision depth as well.In this 
hapter we present an improved subdivision depth 
omputation method for extra-ordinary CCSS pat
hes. The new te
hnique uses a matrix representation of the maximumse
ond order norm in the 
omputation pro
ess to generate a re
urren
e formula. This re
ur-ren
e formula allows the smaller 
onvergen
e rate of the se
ond subdivision level to be usedas a bound in the evaluation of the maximum se
ond order norm and, 
onsequently, leadsto a more pre
ise subdivision depth for the given error toleran
e.The remaining part of the 
hapter is arranged as follows. A brief review of the ba
kgroundis given in Se
tion 2. A matrix based subdivision depth 
omputation te
hnique for extra-



ordinary CCSS pat
hes is presented in se
tion 3. Examples showing the new te
hniqueimproves the old one are presented in Se
tion 4. Con
luding remarks are given in Se
tion 5.3.2 Problem Formulation and Ba
kgroundGiven a 
ontrol mesh M =M0, let �S be its Catmull-Clark subdivision surfa
e (CCSS). Forea
h interior fa
e F of M, there is a 
orresponding pat
h S in the limit surfa
e �S. The
ontrol mesh of S 
ontains F as the 
enter fa
e. If we perform a Catmull-Clark subdivisionstep on the 
ontrol mesh, we get four new mesh fa
es in the pla
e of F. This is the 
ase nomatter F is a regular fa
e or an extra-ordinary fa
e. See Figure 3.1(b) for the four new fa
esF00, F10, F01 and F11 in the pla
e of the extra-ordinary fa
e F shown in Figure 3.1(a). Sin
eea
h of these new fa
es 
orresponds to a quarter subpat
h of S, we shall 
all these new fa
essubfa
es of F even though they are not pyhsi
ally subsets of F. Therefore, ea
h subdivisionstep generates four new subfa
es for the 
enter fa
e F of the 
ontrol mesh. Be
ause the
orresponden
e between F and S is one-to-one, sometime, instead of saying performing asubdivision step on S, we simply say performing a subdivision step on F.

(a)

F

V

(b)

edge point

face point

vertex point

New edge

F

F F

F00

10 11

01

Figure 3.1: (a) Control mesh of an extra-ordinary pat
h; (b) new verti
es and edges generatedafter a Catmull-Clark subdivision.The distan
e between an interior mesh fa
e F and the 
orresponding pat
h S is de�ned



as the maximum of kL(u; v)� S(u; v)k:DF = max (u;v)2
 kL(u; v)� S(u; v)k (3.1)where 
 is the unit square parameter spa
e of S and L(u; v) is the bilinear parametrizationof F on 
. DF is also 
alled the distan
e between S and its 
ontrol mesh. For a given� > 0, the subdivision depth of F with respe
t to � is a positive integer d su
h that if F isre
ursively subdivided d times, the distan
e between ea
h of the resulting subfa
es and the
orresponding subpat
h is smaller than �. In the following, we review some of the previousresults needed in the new work.3.2.1 Distan
e Evaluation for a Regular Pat
h
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Figure 3.2: De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform bi
ubi
 B-spline surfa
e pat
h de�ned on the unit square
 = [0; 1℄ � [0; 1℄ with 
ontrol points Vi;j, 0 � i; j � 3, and let L(u; v) be the bilinearparametrization of the 
enter mesh fa
e fV1;1;V2;1;V2;2;V1;2g (see Figure 3.2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:



Then the distan
e between S(u; v) and L(u; v) satis�es the following lemma [10℄.Lemma 1: The distan
e between L(u; v) and S(u; v) satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the se
ond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk ; k2Vi;j �Vi;j�1 �Vi;j+1k g (3.2)3.2.2 Subdivision Depth Computation for Extra-Ordinary Pat
hesThe distan
e evaluation me
hanism of the previous subdivision depth 
omputation te
hniquefor extra-ordinary CCSS pat
hes utilizes se
ond order norm as a measurement s
heme aswell [64℄, but the pattern of se
ond order forward di�eren
es (SOFDs) used in the distan
eevaluation pro
ess is di�erent from (3.2).
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Figure 3.3: (a) Ordering of 
ontrol points of an extra-ordinary pat
h. (b) Ordering of new
ontrol points (solid dots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n + 8, be the 
ontrol points of an extra-ordinary pat
h S(u; v) =S00(u; v), with V1 being an extra-ordinary vertex of valen
e n. The 
ontrol points are or-dered following J. Stam's fashion [22℄ (Figure 3.3(a)). The 
ontrol mesh of S(u; v) is denoted� = �00. The se
ond order norm of S, denoted M = M0, is de�ned as the maximum norm



of the following SOFDs. There are 2n+ 10 of them.M = maxf f k2V1 �V2i �V2((i+1)%n+1)k j 1 � i � ng [ f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � ng[ f k 2V3 �V2 �V2n+8 k; k 2V4 �V1 �V2n+7 k; k 2V5 �V6 �V2n+6 k; k 2V2n+3 �V2n+2 �V2n+4 k;k 2V7 �V8 �V2n+5 k; k 2V6 �V1 �V2n+4 k; k 2V5 �V4 �V2n+3 k; k 2V2n+6 �V2n+2 �V2n+7 k;k 2V2n+7 �V2n+6 �V2n+8 k; k 2V2n+4 �V2n+3 �V2n+5 k g g (3.3)By performing a subdividion step on �, one gets 2n+17 new verti
es V1i , i = 1; :::; 2n+17(see Figure 3.3(b)). These 
ontrol points form four 
ontrol point sets �10, �11, �12 and �13,representing 
ontrol meshes of the subpat
hes S10, S11, S12 and S13, respe
tively (see Figure3.3(b)) where �10 = fV1i j 1 � i � 2n + 8 g, and the other three 
ontrol point sets �11, �12and �13 are shown in Figure 3.4. S10 is an extra-ordinary pat
h but S11, S12 and S13 are regularpat
hes. Therefore, se
ond order norm similar to the one de�ned in (3.2) 
an be de�ned forS11, S12 and S13, while a se
ond order norm similar to (3.3) 
an be de�ned for the 
ontrol mesh
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Figure 3.4: Control verti
es of subpat
hes S11, S12 and S13.of S10. We use M1 to denote the se
ond order norm of S10. This pro
ess 
an be iterativelyrepeated on S10, S20, S30, ... et
. We have the following lemma for a general Sk0 and its se
ondorder norm Mk [64℄.Lemma 2: For any k � 0, if Mk represents the se
ond order norm of the extra-ordinarysub-pat
h Sk0 after k Catmull-Clark subdivision steps, then Mk satis�es the following in-equality Mk+1 � 8>><>>: 23Mk; n = 31825Mk; n = 5(34 + 8n�464n2 )Mk; n > 5 :A
tually, the lemma works in a more general sense, i.e., ifMk stands for the se
ond ordernorm of the 
ontrol mesh Mk, instead of �k0, the lemma still works. The se
ond order norm



of Mk is de�ned as follows: for regions not involving the extra-ordinary point, use standardSOFDs; for the vi
inity of the extra-ordinary point, use SOFDs de�ned in (3.3). The proofis essentially the same.Distan
e EvaluationTo 
ompute the distan
e between the extra-ordinary pat
h S(u; v) and the 
enter fa
e of its
ontrol mesh, F = fV1;V6;V5;V4g, we need to parameterize the pat
h S(u; v) �rst.
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-partition of the unit square.By iteratively performing Catmull-Clark subdivision on S(u; v) = S00, S10, S20, ... et
, weget a sequen
e of regular pat
hes f Smb g, m � 1, b = 1; 2; 3, and a sequen
e of extra-ordinarypat
hes f Sm0 g, m � 1. The extra-ordinary pat
hes 
onverge to a limit point whi
h is thevalue of S at (0; 0) [14℄. This limit point and the regular pat
hes f Smb g, m � 1, b = 1; 2; 3,form a partition of S. If we use 
mb to represent the region of the parameter spa
e that
orresponds to Smb then f 
mb g, m � 1, b = 1; 2; 3, form a partition of the unit square
 = [0; 1℄� [0; 1℄ (see Figure 3.5) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄; 
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄:(3.4)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6= (0; 0), �rst�nd the 
mb that 
ontains (u; v). m and b 
an be 
omputed as follows.m(u; v) = minfdlog 12ue; dlog 12veg; b(u; v) = 8<: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (3.5)Then map this 
mb to the unit square with the following mapping(u; v)! (um; vm)where tm = (2mt)%1 = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 (3.6)



The value of S(u; v) is equal to the value of Smb at (um; vm), i.e.,S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the 
enter fa
e of Smb 's 
ontrol mesh. Sin
eSmb is a regular pat
h, following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the se
ond order norm of the 
ontol mesh of Smb . The se
ond order norm ofSmb is smaller than the se
ond order norm of Mm, Mm. Hen
e, the above inequality 
an bewritten as kLmb (u; v)� Smb (u; v)k � 13Mm: (3.7)If we use L(u; v) to represent the bilinear parametrization of the 
enter fa
e of S(u; v)'s
ontrol mesh F = fV1;V6;V5;V4gL(u; v) = (1� v)[(1� u)V1 + uV6℄ + v[(1� u)V4 + uV5℄; 0 � u; v � 1then the maximum distan
e between S(u; v) and its 
ontrol mesh 
an be written ask L(u; v) � S(u; v) k � k L(u; v)� Lmb (um; vm)k+ kLmb (um; vm)� S(u; v) k (3.8)where 0 � u; v � 1 and um and vm are de�ned in (3.6). The se
ond term on the right handside of the inequality 
an be evaluated using (3.7). Hen
e, one only needs to work with the�rst term on the right hand side of the inequality.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄:
k0 
orresponds to the subpat
h Sk0. This means that (2ku; 2kv) is within the parameterspa
e of Sk0 for 0 � k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk are de�ned in(3.6). Consequently, we 
an 
onsider Lk0(uk; vk) for 0 � k < m where Lk0 is the bilinearparametrization of the 
enter fa
e of the 
ontrol mesh of Sk0 (with the understanding thatL00 = L and (u0; v0) = (u; v)). Hen
e, the �rst term on the right hand side of (3.8) 
an bewritten askL(u; v)�Lmb (um; vm)k � m�2Xk=0 kLk0(uk; vk)�Lk+10 (uk+1; vk+1)k+kLm�10 (um�1; vm�1)�Lmb (um; vm)k:(3.9)The following two lemmas are needed in the evaluation of the right side of the above in-equality.



Lemma 3: If (u; v) 2 
mb where b and m are de�ned in (3.5) then for any 0 � k < m�1we have k Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the se
ond order norm of Mk and L00 = L.Lemma 4: If (u; v) 2 
mb where b and m are de�ned in (3.5) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the se
ond order norm of Mm�1.By applying Lemmas 3 and 4 on (3.9) and then using (3.7) on (3.8), we have the followinglemma on the distan
e between an extra-ordinary CCSS pat
h S(u; v) and its 
ontrol meshL(u; v) [64℄.Lemma 5: The maximum of k L(u; v)� S(u; v) k satis�es the following inequalityk L(u; v)� S(u; v) k � 8>>>>><>>>>>:
M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (3.10)where M =M0 is the se
ond order norm of the extra-ordinary pat
h S(u; v).Subdivision Depth ComputationLemma 5 
an be used to estimate the distan
e between a level-k 
ontrol mesh and the surfa
epat
h for any k > 0. This is be
ause the distan
e between a level-k 
ontrol mesh and thesurfa
e pat
h is dominated by the distan
e between the level-k extra-ordinary subpat
h andthe 
orresponding 
ontrol mesh whi
h, a

oriding to Lemma 5, isk Lk(u; v)� S(u; v) k � 8>><>>: Mk; n = 31825Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the se
ond order norm of S(u; v)'s level-k 
ontrol mesh Mk. The previoussubdivision depth 
omputation te
hnique for extra-ordinary surfa
e pat
hes is obtained by
ombining the above result with Lemma 2 [64℄.



Theorem 6: Given an extra-ordinary surfa
e pat
h S(u; v) and an error toleran
e �, ifk levels of subdivisions are iteratively performed on the 
ontrol mesh of S(u; v), wherek = �logwMz� �with M being the se
ond order norm of S(u; v) de�ned in (3.3),w = 8>><>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>><>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distan
e between S(u; v) and the level-k 
ontrol mesh is smaller than �.3.3 New Subdivision Depth Computation Te
hniquefor Extra-Ordinary Pat
hesThe SOFDs involved in the se
ond order norm of an extra-ordinary CCSS pat
h (see eq.(3.3)) 
an be 
lassi�ed into two groups: group I and group II. Group I 
ontains those SOFDsthat involve verti
es in the vi
inity of the extra-ordinary vertex (see Figure 3.6(a)). Theseare the �rst 2n SOFDs in (3.3). Group II 
ontains the remaining SOFDs, i.e., SOFDs thatinvolve verti
es in the vi
inity of the other three verti
es of S (see Figure 3.6(b)). These arethe last 10 SOFDs in (3.3). It is easy to see that the 
onvergen
e rate of the SOFDs in groupII is the same as the regular 
ase, i.e., 1=4 [10℄. Therefore, to study properties of the se
ondorder normM , it is suÆ
ient to study norms of the SOFDs in group I. The maximum of thesenorms will be 
alled the se
ond order norm of group I. We will use M = M0 to representgroup I's se
ond order norm as well be
ause norms of group I's SOFDs dominate norms ofgroup II's SOFDs. For 
onvenien
e of referen
e, in the subsequent dis
ussion we shall simplyuse the term \se
ond order norm of an extra-ordinary CCSS pat
h" to refer to the \se
ondorder norm of group I of an extra-ordinary CCSS pat
h".3.3.1 Matrix based Rate of Convergen
eThe se
ond order norm of S = S00 
an be put in matrix form as follows:M = kAPk1
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Figure 3.6: (a) Vi
inity of the extra-ordinary point. (b) Vi
inity of the other three verti
esof S.where A is a 2n � (2n+ 1) matrix
A =

266666666666664
2 �1 0 0 0 �1 0 0 � � � 0 02 0 0 �1 0 0 0 �1 � � � 0 02 0 0 0 0 �1 0 0 � � � 0 0...2 0 0 �1 0 0 0 0 � � � �1 00 2 �1 0 0 0 0 0 � � � 0 �10 0 �1 2 �1 0 0 0 � � � 0 0...0 0 0 0 0 0 0 0 � � � 2 �1

377777777777775and P is a 
ontrol point ve
torP = [V1; V2; V3; : : : ; V2n+1℄T :A is 
alled the se
ond order norm matrix for extra-ordinary CCSS pat
hes. If i levels ofCatmull-Clark subdivision are performed on the 
ontrol mesh of S = S00 then, following thenotation of Se
tion 2, we have an extra-ordinary subpat
h Si0 whose se
ond order norm 
anbe expressed as: Mi = 

A�iP

1where � is a subdivision matrix of dimension (2n + 1) � (2n + 1). The fun
tion of � is toperform a subdivision step on the 2n+ 1 
ontrol verti
es around (and in
luding) the extra-ordinary point (see Figure 3.6(a)). For example, when n = 3, � is of the following form:



� = 2666666664
5=12 1=6 1=36 1=6 1=36 1=6 1=363=8 3=8 1=16 1=16 0 1=16 1=161=4 1=4 1=4 1=4 0 0 03=8 1=16 1=16 3=8 1=16 1=16 01=4 0 0 1=4 1=4 1=4 03=8 1=16 0 1=16 1=16 3=8 1=161=4 1=4 0 0 0 1=4 1=4

3777777775 :We are interested in knowing the relationship between kAPk1 and kA�iPk1. We need twolemmas for this relationship. The �rst one shows the expli
it form of A+A where A+ is thepseudo-inverse of A. The se
ond one shows that A+A 
an a
t as a right identity matrix forA�i.Lemma 7: The produ
t of the se
ond order norm matrix A and its pseudo-inverse ma-trix A+ 
an be expressed as follows:A+A = 8<: H; n = 2k + 1H + E; n = 4k + 2H + E +W+ Z; n = 4k (3.11)where k is a positive integer, and H, E, W and Z are (2n + 1) � (2n + 1) matri
es of the



following form with H being a 
ir
ulant matrix:
H � 12n+1 2666664 2n �1 � � � �1 �1�1 2n � � � �1 �1... ...�1 �1 � � � 2n �1�1 �1 � � � �1 2n

3777775 ; E = 1n
26666666666666664
0 0 0 0 0 0 � � � 00 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �10 0 0 0 0 0 � � � 0... ...0 0 �1 0 1 0 � � � 10 0 0 0 0 0 � � � 00 0 1 0 �1 0 � � � �1

37777777777777775 ;

W = 23n
266666666666666666664
0 0 0 0 0 � � � 00 �1 0 0 0 � � � 00 �1 0 �1 0 � � � 00 0 0 �1 0 � � � 00 1 0 �1 0 � � � 00 1 0 0 0 � � � 00 1 0 1 0 � � � 00 0 0 1 0 � � � 00 �1 0 1 0 � � � 0... ...0 0 0 1 0 � � � 00 �1 0 1 0 � � � 0

377777777777777777775
; Z = 23n

266666666666666666664
0 0 0 0 0 0 � � � 00 0 �1 0 1 0 � � � 10 0 �2 0 0 0 � � � 00 0 �1 0 �1 0 � � � �10 0 0 0 �2 0 � � � �20 0 1 0 �1 0 � � � �10 0 2 0 0 0 � � � 00 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2... ...0 0 1 0 1 0 � � � 10 0 0 0 2 0 � � � 2

377777777777777777775
:

Proof We prove that if n = 2k + 1 for some positive integer k then A+A = H where His de�ned above.From properties of pseudo-inverse matri
es [9℄, we know thatA+A = ALAwhere AL is a left weak generalized inverse matrix of A, i.e., AL is a matrix satisfying thefollowing 
onditions AALA = AALAAL = AL(ALA)T = ALA (3.12)Thus, to prove A+A = H, we just need to show that there exists a left weak generalizedmatrix AL of A su
h that ALA = H. We �rst prove that there exists a (2n+1)� (2n) matrixC su
h that C A = H: (3.13)



(3.13) is equivalant toATCT = AT [C1 C2 � � � C2n+1℄ = HT = H = [H1 H2 � � � H2n+1℄where CTi are row ve
tors of C and Hi are 
olumn ve
tors of H. This is a system of 2n + 1linear equations: ATCi = Hi, i = 1; 2; :::; 2n + 1. Ea
h of these systems has a solution Cibe
ause rank(AT ) = rank(ATi ) < 2n + 1where ATi = �AT Hi�. Hen
e, there is at least one solution for C in (3.13) when n = 2k + 1.It 
an be proved that there is no solution for CA = H when n = 4k + 2 be
ause forsome Ci we would have rank(AT ) < rank(ATi ). However, there is at least one solution forCA = H+ E. Same for CA = H+ E +W+ Z when n = 4k.It is easy to verify that, when n = 2k + 1, the matrix C satis�es 
onditions 1 and 3 in(3.12), i.e., ACA = AH = A and (CA)T = CA:As far as the se
ond 
ondition is 
on
erned, there are two possibilities for CAC:Case 1: CAC = CIn this 
ase, C is a left weak generalized inverse of matrix A. Hen
e, we have A+A =CA = H.Case 2: CAC = C +D, where D 6= 0.We 
laim, in this 
ase, C + D is a left weak generalized matrix of A and C + D is also asolution of (3.13). We �rst show that C + D is also a solution of (3.13). Note that H2 = H.Hen
e, we have: (C + D)A = CACA = H2 = H = CA:This also shows that DA = 0. To prove that C + D is a left weak generalized matrix of A,note that A(C + D)A = ACA +ADA = ACA = A; and(C + D)A(C + D) = CA(C + D) + DA(C + D) = CA(C + D)= CAC + CAD = CAC = C +DThe se
ond equation is true be
auseCAC = CACAC = CA(C + D) = CAC + CAD:Therefore, the �rst and se
ond 
onditions of (3.12) are satis�ed. We also have ((C+D)A)T =(C + D)A be
ause (C + D)A = H and H is a symmetri
 matrix. Hen
e, C + D is indeed aleft weak generalized matrix of A. Consequently, we have A+A = (C + D)A = H.



The other two 
ases n = 4k + 2 and n = 4k 
an be proved similarly. 2Lemma 8: A+A is a right identity matrix of A�i, i.e., A�iA+A = A�i, for any i.ProofWe prove the 
ase n = 2k+1 �rst. Let F be a (2n+1)�(2n+1) Fourier transformmatrix F = 1p2n+ 1 2666664 1 1 1 � � � 1 11 ! !2 � � � !2n�1 !2n1 !2 !4 � � � !4n�2 !4n... ... ...1 !2n !4n � � � !4n2�2n !4n2
3777775where ! = e2�i=(2n+1). It is easy to see thatF�HF = I� 26664 1 0 � � � 00 0 � � � 0... ... ...0 0 � � � 0 37775where I is a (2n+ 1) � (2n+ 1) identity matrix. Hen
e, when n = 2k + 1 we haveA�iA+A = A�iH = A�iFF�HFF� = A�iF(I� 26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775)F�= A�i � A�iF26664 1 0 � � � 00 0 � � � 0... ...0 0 � � � 0 37775F� = A�i � A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 :Note that A�i 26664 1 1 � � � 11 1 � � � 1... ...1 1 � � � 1 37775 = 0be
ause the row sum of A is 0 and row sum of � is 1. Hen
e, we have A�i = A�iA+A whenn = 2k + 1.We next prove the lemma for n = 4k + 2. Note that in this 
ase �E = 14E and AE = 0.With these results we have A�iE = 14iAE = 0:



Hen
e, A�iA+A = A�i(H + E) = A�i.Finally, we prove the lemma for n = 4k. Similar to the previous 
ase, we 
an prove that�W = 12W, AW = 0 and �Z = 12Z1, AZ = 0. Therefore, we have A�iW = 12iAW = 0 andA�iZ = 12iAZ = 0. Hen
e, A�iA+A = A�i(H + E +W+ Z) = A�i. 2With this lemma, we havekA�iPk1kAPk1 = kA�iA+APk1kAPk1 � kA�iA+k1 kAPk1kAPk1 = 

A�iA+

1Use ri to represent kA�iA+k1. Then, for any 0 < j < i, we have the following re
urren
eformula for riri � 

A�iA+

1 = 

A�i�jA+A�jA+

1 � 

A�i�jA+

1 

A�jA+

1 = ri�j rj (3.14)where r0 = 1. Hen
e, we have the following lemma on the 
onvergen
e rate of se
ond ordernorm of an extra-ordinary CCSS pat
h.Lemma 9: The se
ond order norm of an extra-ordinary CCSS pat
h satis�es the follow-ing inquality: Mi � ri M0 (3.15)where ri = kA�iA+k1 and ri satis�es the re
urren
e formula (3.14).The re
urren
e formula (3.14) shows that ri in (3.15) 
an be repla
ed with ri1. However,experiment data show that, while the 
onvergen
e rate 
hanges by a 
onstant ratio in mostof the 
ases, there is a signi�
ant di�eren
e between r2 and r1. The value of r2 is smallerthan r21 by a signi�
ant gap. Hen
e, if we use ri1 for ri in (3.15), we would end up with abigger subdivision depth for a given error toleran
e. A better 
hoi
e is to use r2 to boundri, as follows. ri � 8<: rj2; i = 2jr1rj2; i = 2j + 1 (3.16)3.3.2 Distan
e EvaluationFollowing (3.8) and (3.9), the distan
e between the extra-ordinary CCSS pat
h S(u; v) andthe 
enter fa
e of its 
ontrol mesh L(u; v) 
an be expressed askL(u; v)� S(u; v)k �Pm�2k=0 kLk0(uk; vk)� Lk+10 (uk+1; vk+1)k+ kLm�10 (um�1; vm�1)� Lmb (um; vm)k+ kLmb (um; vm)� Smb (um; vm)k (3.17)



where m and b are de�ned in (3.5) and (ui; vi) are de�ned in (3.6). By applying Lemma 3,Lemma 4 and (3.7) on the �rst, se
ond and third terms of the right hand side of the aboveinequality, respe
tively, we getkL(u; v)� S(u; v)k � 
m�2Xk=0 Mk + 14Mm�1 + 13Mm �M0(
m�2Xk=0 rk + 14rm�1 + 13rm)where 
 = 1=minfn; 8g. The last part of the above inequality follows from Lemma 8.Consequently, through a simple algebra, we havekL(u; v)� S(u; v)k � 8><>: M0[
(1�rj21�r2 + 1�rj�121�r2 r1) + r1rj�124 + rj23 ℄; if m = 2jM0[
(1�rj21�r2 + 1�rj21�r2 r1) + rj24 + r1rj23 ℄; if m = 2j + 1It 
an be easily proved that the maximum o

urs at m =1. Hen
e, we have the followinglemma.Lemma 10: The maximum of kL(u; v)� S(u; v)k satis�es the following inequalitykL(u; v)� S(u; v)k � M0minfn; 8g 1 + r11� r2where ri = kA�iA+k1 and M = M0 is the se
ond order norm of the extra-ordinary pat
hS(u; v).3.3.3 Subdivision Depth ComputationLemma 9 
an also be used to evaluate the distan
e between a level-i 
ontrol mesh and theextra-ordinary pat
h S(u; v) for any i > 0. This is be
ause the distan
e between a level-i
ontrol mesh and the surfa
e pat
h S(u; v) is dominated by the distan
e between the level-iextra-ordinary subpat
h and the 
orresponding 
ontrol mesh whi
h, a

oriding to Lemma 9,is kLi(u; v)� S(u; v)k � Miminfn; 8g 1 + r11� r2where Mi is the se
ond order norm of S(u; v)'s level-i 
ontrol mesh, Mi. Hen
e, if the rightside of the above inequality is smaller than a given error toleran
e �, then the distan
e be-tween S(u; v) and the level-i 
ontrol mesh is smaller than �. Consequently, we have thefollowing subdivision depth 
omputation theorem for extra-ordinary CCSS pat
hes.Theorem 11: Given an extra-ordinary surfa
e pat
h S(u; v) and an error toleran
e �, ifi � minf2l; 2k + 1g



levels of subdivision are iteratively performed on the 
ontrol mesh of S(u; v), wherel = dlog 1r2 ( 1minfn; 8g 1 + r11� r2M0� )e ; k = dlog 1r2 ( r1minfn; 8g 1 + r11� r2 M0� )ewith ri = kA�iA+k1 and M0 being the se
ond order norm of S(u; v), then the distan
ebetween S(u; v) and the level-i 
ontrol mesh is smaller than �.3.4 ExamplesThe new subdivision depth te
hnique has been inplemented in C++ on the Windows platformto 
ompare its performan
e with the previous approa
h. MatLab is used for both numeri
aland symboli
 
omputation of ri in the implementation. Table 1 shows the 
omparisonresults of the previous te
hnique, Theorem 6, with the new te
hnique, Theorem 10. Twoerror toleran
es 0:01 and 0:001 are 
onsidered and the se
ond order norm M0 is assumedto be 2. For ea
h error toleran
e, we 
onsider �ve di�erent valen
es: 3, 5, 6, 7 and 8 forthe extra-ordinary vertex. As 
an be seen from the table, the new te
hnique has a 30%improvement over the previous te
hnique in most of the 
ases. Hen
e, the new te
hniqueindeed improves the previous te
hnique signi�
antly.To show that the rates of 
onvergen
e are indeed di�eren
e between r1 and r2, theirvalues from several typi
al extra-ordinary CCSS pat
hes are in
luded in Table 2. Note thatwhen we 
ompare r1 and r2, the value of r1 should be squared �rst.Table 1. Comparison between the old te
hnique and the new te
hnique� = 0:01 � = 0:001N Old New Old NewTe
hnique Te
hnique Te
hnique Te
hnique3 14 9 19 125 16 11 23 166 19 16 27 227 23 14 33 228 37 27 49 33Table 2. Values of r1 and r2 for some extra-ordinary pat
hes.N r1 r23 0.6667 0.29175 0.7200 0.40166 0.8889 0.50987 0.8010 0.51218 1.0078 0.5691



3.5 SummaryA new subdivision depth 
omputation te
hnique for extra-ordinary CCSS pat
hes is pre-sented in this 
hapter. Like the previous te
hnique, the subdivision depth is 
omputedbased on norms of the se
ond order forward di�eren
es of the 
ontrol points. However, the
omputation pro
ess is performed on matrix representation of the se
ond order norm, whi
hgives us a better bound of the 
onvergen
e rate and, 
onsequently, a tighter subdivisiondepth for a given error toleran
e. Test results show that the new te
hnique improves theprevious te
hnique by about 30% in most of the 
ases. This is a signi�
ant result be
auseof the exponential nature of the subdivision pro
ess. We are not sure if the new te
hnique
an be further improved though.



Chapter 4Interpolation based Shape DesignTe
hniques for Catmull-ClarkSubdivision Surfa
esAs we dis
ussed before, there are two possible approa
hes to build a one-pie
e represented
ontrol mesh for a given model. One is to use the subdivision surfa
e interpolation te
h-nique to approximate the surfa
e of the given model. Another approa
h is to 
onstru
t amesh stru
ture through Boolean operations and multiresolution analysis. Both approa
hes
an a
hieve a one pie
e represented 
ontrol mesh whose Catmull-Clark subdivision surfa
eresults in the given model. In this 
hapter we dis
uss the interpolation based one-pie
erepresentation method [60℄, i.e., to 
onstru
t a one pie
e represented 
ontrol mesh, whoseCatmull-Clark subdivision surfa
e (CCSS) interpolates the verti
es of a given mesh of arbi-trary topology. The Boolean operation based one-pie
e representation method [69℄ will bedis
ussed in Chapter 5.Our new interpolation method [60℄ handles both open and 
losed meshes. Normals orderivatives spe
i�ed at any verti
es of the mesh (whi
h 
an a
tually be anywhere) 
an alsobe interpolated. The 
onstru
tion pro
ess is based on the assumption that, in addition tointerpolating the verti
es of the given mesh, the interpolating surfa
e is also similar to thelimit surfa
e of the given mesh. Therefore, 
onstru
tion of the interpolating surfa
e 
an useinformation from the given mesh as well as its limit surfa
e. This approa
h, 
alled similaritybased interpolation, gives us more 
ontrol on the smoothness of the interpolating surfa
e and,
onsequently, avoids the need of shape fairing in the 
onstru
tion of the interpolating surfa
e.The 
omputation of the interpolating surfa
e's 
ontrol mesh follows a new approa
h, whi
hdoes not require the resulting global linear system to be solvable. An approximate solutionprovided by any fast iterative linear system solver is suÆ
ient. Nevertheless, interpolationof the given mesh is guaranteed. This is an important improvement over previous methods[14℄ be
ause with these features, the new method 
an handle meshes with large numberof verti
es eÆ
iently. Although the new method is presented for CCSSs, the 
on
ept ofsimilarity based interpolation 
an be used for other subdivision surfa
es as well [60℄.70



This remaining part of this 
hapter is organized as follows: The Se
tion 1 gives a briefintrodu
tion to related and previous interpolation methods. Also a overview of our ourinterpolation method is given in this se
tion. In Se
tion 2, the similarity based interpolationte
hnique for 
losed meshes is dis
ussed detailedly. A te
hnique that works for open meshesis presented in Se
tion 3. Implementation issues and test results are presented in Se
tion 4.A summary is given in Se
tion 5.4.1 Introdu
tionGiven a 3D mesh, there exist in�nitely many smooth surfa
es that interpolate the meshverti
es. Any of them 
an be used as a solution to the interpolation problem. But, to ashape designer, usually only one of them is the surfa
e he really wants. That surfa
e, 
alledthe designer's 
on
ept surfa
e, is a pie
e of important information for the interpolationpro
ess. If that information is available to the interpolation system, then by 
onstru
ting aninterpolating surfa
e whose shape is most `similar' to the designer's 
on
ept surfa
e, we getthe best result one 
an get for the interpolation pro
ess. We 
all an interpolation pro
esssimilarity based interpolation if the interpolation also depends on establishing `similarity'with a referen
e surfa
e. In the above 
ase, the referen
e surfa
e is the designer's 
on
eptsurfa
e.The result of a similarity based interpolation depends on the quality of the referen
esurfa
e. The 
loser the shape of the referen
e surfa
e to the designer's 
on
ept surfa
e, thebetter the result. The designer's 
on
ept surfa
e usually is not available to the interpolationsystem. But it is reasonable to assume that the given mesh 
arries a shape similar to thedesigner's 
on
ept surfa
e. After all, these are the verti
es the user extra
ted from his 
on
eptsurfa
e. Consequently, limit surfa
e of the given mesh, when viewed as the 
ontrol mesh ofa Catmull-Clark subdivision surfa
e [1℄, would be similar to the designer's 
on
ept surfa
e.Therefore, using the limit surfa
e as the referen
e surfa
e in the interpolation pro
ess, i.e.,
onstru
ting an interpolating surfa
e of a given mesh that is also similar to the limit surfa
eof the given mesh, we should get an interpolating surfa
e that is relatively 
lose to thedesigner's 
on
ept surfa
e. This interpolation 
on
ept has not been studied with subdivisionsurfa
es before, although interpolation using subdivision surfa
es has already been studiedfor a while [28, 30, 31, 47, 53℄.4.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given mesh with a subdivision surfa
e: interpo-lating subdivision [28, 29, 30, 50, 53℄ or global optimization [31, 47, 60℄. In the �rst 
ase, asubdivision s
heme that interpolates the 
ontrol verti
es, su
h as the Butter
y s
heme[30℄,Zorin et al's improved version [29℄ or Kobbelt's s
heme [28℄, is used to generate the inter-polating surfa
e. New verti
es are de�ned as lo
al aÆne 
ombinations of nearby verti
es.This approa
h is simple and easy to implement. It 
an handle meshes with large numberof verti
es. However, sin
e no vertex is ever moved on
e it is 
omputed, any distortion in



the early stage of the subdivision will persist. This makes interpolating subdivision verysensitive to the irregularity in the given mesh. In addition, it is diÆ
ult for this approa
h tointerpolate normals or derivatives.The se
ond approa
h, global optimization, usually needs to build a global linear systemwith some 
onstraints [52℄. The solution to the global linear system is an interpolatingmesh whose limit surfa
e interpolates the 
ontrol verti
es in the given mesh. This approa
husually requires some fairness 
onstraints in the interpolation pro
ess, su
h as the energyfun
tions presented in [47℄, to avoid undesired undulations. Although this approa
h seemsmore 
ompli
ated, it results in a traditional subdivision surfa
e. For example, the method in[47℄ results in a Catmull-Clark subdivision surfa
e (CCSS), whi
h is C2 
ontinuous almosteverywhere and whose properties are well studied and understood. The problem with thisapproa
h is that a global linear system needs to be built and solved. Hen
e it is diÆ
ult tohandle meshes with large number of 
ontrol verti
es.There are also subdivision te
hniques that produ
e surfa
es to interpolate given 
urves orsurfa
es that near- (or quasi-)interpolate given meshes [51℄. But those te
hniques are eitherof di�erent natures or of di�erent 
on
erns and, hen
e, will not be dis
ussed here.4.1.2 OverviewIn this 
hapter, we address the one-pie
e representation problem by using similarity basedinterpolation te
hnique developed for CCSSs. Given a 3D mesh P with arbitrary topology,our new method [60℄ 
al
ulates a 
ontrol mesh Q whose CCSS interpolates the verti
es ofP . The CCSS of Q is 
onstru
ted with the additional assumption that its shape is similarto a referen
e surfa
e, the limit surfa
e of P . A shape fairing pro
ess is not required inthe 
onstru
tion pro
ess of the interpolating surfa
e. The 
omputation of the 
ontrol meshQ follows a new approa
h whi
h does not require the resulting global linear system to besolvable. An approximate solution provided by any fast iterative linear system solver is suÆ-
ient. Hen
e, handling meshes with large number of verti
es is not a problem. Nevertheless,interpolation of the given mesh is guaranteed. The new method 
an handle both 
losed andopen meshes. The interpolating surfa
e 
an interpolate not only verti
es of a given mesh,but also derivatives and normals anywhere in the parameter spa
e of the surfa
e.4.2 Similarity based Interpolation4.2.1 Mathemati
al SetupGiven a 3D mesh with n verti
es: P = fP1;P2; � � � ;Png, the goal here is to 
onstru
t a
ontrol mesh Q whose CCSS interpolates P (the verti
es of P , for now). The 
onstru
tionof Q follows the following path. First, we perform one or more levels of Catmull-Clarksubdivision on P to get a �ner 
ontrol mesh G. G satis�es the following property: ea
h fa
eof G is a quadrilateral and ea
h fa
e of G has at most one extra-ordinary vertex. The verti
esof G are divided into two groups. A vertex of G is 
alled a Type I vertex if it 
orresponds to



a vertex of P . Otherwise it is 
alled a Type II vertex. Q is then de�ned as a 
ontrol meshwith the same number of verti
es and the same topology as G. We assume Q has m verti
esQ = fQ1;Q2; � � � ;Qmg, m > n, and the �rst n verti
es 
orrespond to the n Type I verti
esof G (and, 
onsequently, the n verti
es of P ). These n verti
es of Q will also be 
alled TypeI verti
es and the remaining m� n verti
es Type II verti
es. This way of setting up Q is toensure the parametri
 form developed for a CCSS pat
h [22, 63℄ 
an be used for the limitsurfa
e of Q, denoted S(Q), and we have enough degree of freedom in our subsequent work.Note that m is usually mu
h bigger than n. The remaining job then is to determine theposition of ea
h vertex of Q.In previous methods [31, 47℄ the n Type I verti
es of Q are set as independent variables,the m � n Type II verti
es are represented as linear 
ombinations of the Type I verti
es.Sin
e m � n is bigger than n, this setting leads to an over-determined system. Withoutany freedom in adjusting the solution of the system, one has no 
ontrol on the shape ofthe resulting interpolating surfa
e S(Q) even if it 
arries undesirable undulations. In ourapproa
h [60℄, instead, the m � n Type II verti
es are set as independent variables andthe n Type I verti
es are represented as linear 
ombinations of the Type II verti
es. Thisapproa
h provides us with enough degrees of freedom to adjust the solution of the resultinglinear system and, 
onsequently, more 
ontrol on the shape of the interpolating surfa
e S(Q).4.2.2 Interpolation RequirementsRe
all that Type I verti
es of Q are those verti
es that 
orrespond to verti
es of P . Hen
e,ea
h vertex of P is the limit point of a Type I vertex of Q. We assume the limit point of Qiis Pi, 1 � i � n. Then for ea
h Type I vertex Qi (1 � i � n), we haveQi = Ci � eQ+ 
Pi (4.1)where eQ = fQn+1;Qn+2; � � � ;Qmg is the ve
tor of Type II verti
es. Ve
tor Ci and 
onstant
 depend on the topology of P and the degree of vertex Pi. Ci and 
 
an be easily obtainedusing the formula for 
al
ulating the limit point of a CCSS [22, 47, 63℄. The 
onditions ineq. (4.1) are 
alled interpolation requirements, be
ause they have to be exa
tly satis�ed.Note that the interpolation requirements in eq. (4.1) form a system of linear equations.By solving this system of linear equations, we solve the interpolation problem [31℄. But inthis 
ase one tends to get undesired undulations on the resulting interpolating surfa
e [47℄.4.2.3 Similarity ConstraintsTwo CCSSs are said to be similar if their 
ontrol meshes have the same topology and theyhave similar ith derivatives (1 � i <1) everywhere. The �rst 
ondition of this de�nition isa suÆ
ient 
ondition for the se
ond 
ondition to be true, be
ause it ensures the 
onsideredCCSSs have the same parameter spa
e. The CCSSs 
onsidered here, S(Q) and S(G), satisfythe �rst 
ondition. Hen
e, we have the suÆ
ient 
ondition to make the assumption that



S(Q) and S(G) are similar. In the following, we assume S(Q) and S(G) are similar in thesense of the above de�nition.With expli
it parametrization of a CCSS available [22℄, it is possible for us to 
onsiderderivatives of S(Q) and S(G) at any point of their parameter spa
e. However, to avoid
ostly integration of derivative expressions, we will only 
onsider derivatives sampled at thefollowing parameter points [58℄:f(k1=2i; k2=2j) j 0 � i; j � 1 ; 0 � k1 � 2i; 0 � k2 � 2jg (4.2)for ea
h pat
h of S(Q) and S(G). In the above similarity de�nition, two derivatives aresaid to be similar if they have the same dire
tion. In the following, we use the similarity
ondition to set up 
onstraints in the 
onstru
tion pro
ess of S(Q).Given two surfa
es, let Du and Dv be the u and v derivatives of the �rst surfa
e and D̂uand D̂v the u and v derivatives of the se
ond surfa
e. These derivatives are similar if thefollowing 
ondition holds: Du � D̂u = 0 and Dv � D̂v = 0 (4.3)A di�erent 
ondition, shown below, is used in [31, 47℄.Du � (D̂u � D̂v) = 0 and Dv � (D̂u � D̂v) = 0 (4.4)These two 
onditions are not ne
essarily equivalent. Our test 
ases show that eq. (4.3)gives better interpolating surfa
es. This is be
ause eq. (4.4) only requires the 
orrespond-ing derivatives to lie in the same tangent plane, no restri
tions on their dire
tions. As aresult, using eq. (4.4) 
ould result in unne
essary undulations. Note that eq. (4.3) requiresdire
tions of Du and Dv to be the same as that of D̂u and D̂v, respe
tively.Conditions of the type shown in eq. (4.3) are 
alled similarity 
onstraints. These 
on-straints do not have to be satis�ed exa
tly, only to the extent possible. The interpolationmethod used in [31℄ 
onsiders interpolation requirements only. The method in [47℄ alsoin
ludes fairness 
onstraints to avoid undesired undulations and artifa
ts.4.2.4 Global Linear SystemIf the derivatives of S(Q) and S(G) are sampled at a point in eq. (4.2) then, a

ording toeq. (4.3) and the derivative of the parametri
 form of a CCSS pat
h [22, 58℄, we would have(V T �Q)� (V T �G) = 0 (4.5)where V is a 
onstant ve
tor of s
alars whose values depend on the type of the derivative andthe point where the sampling is performed. This expression a
tually 
ontains 3 equations,one for ea
h 
omponent. Repla
e the Type I verti
es Q1;Q2; � � � ;Qn in the above expressionwith eq. (4.1) and 
ombine all the similarity 
onstraints, we get a system of linear equationswhi
h 
an be represented in matrix form as follows:D �X = C



where X is a ve
tor of length 3(m�n), whose entries are the x, y and z 
omponents of eQ. Dusually is not a square matrix. Hen
e we need to �nd an X su
h that (D�X�C)T �(D�X�C)is minimized. This is a quadrati
 programming problem and 
an be solved using a linearleast squares method. It is basi
ally a pro
ess of �nding a solution of the following linearsystem: A �X = B (4.6)where A = DTD and B = DTC. A is a symmetri
 matrix. Hen
e only half of its ele-ments need to be 
al
ulated and stored. On
e X is known, i.e., eQ is known, we 
an �ndQ1;Q2; � � � ;Qn using eq. (4.1).The matrix D 
ould be very big if many sample points or 
onstrains are used. Fortunately,we do not have to 
al
ulate and store the matrix D and the ve
tor C. Note that A and B
an be written as A =XDi(Di)T and B =XDi
iwhere (Di)T is the ith row of D and 
i is the ith entry of C. Note that the number ofrows (
onstrains) of D 
an be as large as possible, but the number of its 
olumns is �xed,3(m � n). Suppose the ith 
onstraint (See eq. (4.5)), with Q1;Q2; � � � ;Qn repla
ed, iswritten in ve
tor form as UT �X = u. Then UT is the ith row of matrix D and u is the ithentry of C. Hen
e rows of matrix D and entries of C 
an be 
al
ulated independently fromeq. (4.5) for ea
h 
onstraint of ea
h sample point. Therefore, A and B 
an be a

umulatively
al
ulated, 
onstraint by 
onstraint. No matter how many sample points are used, and nomatter how many 
onstraints are 
onsidered for every sample point, only a �xed amountmemory is required for the entire pro
ess and the size of matrix A is always the same,3(m� n)� 3(m� n).Note that the solution of eq. (4.6) only determines the positions of Type II verti
es ofQ. Type I verti
es of Q are represented as linear 
ombinations of Type II verti
es in theinterpolation requirements de�ned in eq. (4.1). Sin
e interpolation of the verti
es of P isdetermined by the interpolation requirements (See eq. (4.1)) only, this means as long aswe 
an �nd a solution for eq. (4.6), the task of 
onstru
ting an interpolating surfa
e thatinterpolates the verti
es of P 
an always be ful�lled, even if the solution is not pre
ise.Hen
e, an exa
t solution to the linear system eq. (4.6) is not a must for our method. Anapproximate solution provided by a fast iterative linear system solver is suÆ
ient. As aresult, the new method 
an handle meshes with large number of verti
es eÆ
iently. This isan important improvement over previous methods.With the similarity assumption, the surfa
e interpolation problem is basi
ally a pro
essof using an iterative method to �nd an approximate solution for the global linear system eq.(4.6). An initial guess for the iterative pro
ess 
an be obtained dire
tly from G by s
alingG properly, su
h that dimension of the s
aled limit surfa
e is the same as the interpolatingsurfa
e. The required s
aling fa
tors sx, sy and sz for su
h a task 
an be determined by the
ondition that the bounding box of the s
aled limit surfa
e is the same as the bounding boxof the interpolating surfa
e. This 
an easily be done by 
omparing the maxima and minimaof the verti
es of the given mesh in all three dire
tions with the maxima and minima of



their 
orresponding limit points. The s
aled mesh 
alled Ĝ, is a good initial guess for theiterative pro
ess be
ause Ĝ is a
tually very 
lose to the 
ontrol mesh of the interpolatingsurfa
e we want to obtain. In our implementation, the Gauss-Seidel method is used for theiterative pro
ess. The iterative pro
ess would 
onverge to a good approximate solution veryrapidly with this initial guess. However, it should be pointed out that there is no need to
arry out the iterative pro
ess to a very pre
ise level. A

ording to our test 
ases, a residualtoleran
e of the size � = 10�6 does not produ
e mu
h noti
eable improvement on the qualityof the interpolating surfa
e than a residual toleran
e of the size � = 10�3, while the formertakes mu
h more time than the latter. Therefore a relatively large residual toleran
e 
anbe supplied to the iterative linear system solver to prevent it from running too long on theiterative pro
ess, while not improving the quality of the interpolating surfa
e mu
h. This isespe
ially important for pro
essing meshes with large number of verti
es.4.2.5 Additional Interpolation RequirementsIn addition to the interpolation requirements 
onsidered in eq. (4.1), other interpolationrequirements 
an be in
luded in the global linear system as well. One 
an also modify orremove some of the interpolation requirements in eq. (4.1). For example, if we wants the�rst u�derivative of the interpolating surfa
e at Pi to be Du, we need to set up a 
onditionsimilar to eq. (4.5) as follows: (V T �Q)�Du = 0where V is a 
onstant ve
tor. The di�eren
e here is, this is not a similarity 
onstraint, butan interpolation requirement. However, if we want a parti
ular normal to be interpolated, weshould set up interpolation requirements for the u derivative and the v derivative whose 
rossprodu
t equals this normal, instead of setting up an interpolation requirement for the normaldire
tly, to avoid the involvement of non-linear equations in the system. Then by 
ombiningall the new interpolation requirements with the original interpolation requirements in eq.(4.1), we get all the expressions for verti
es that are not 
onsidered independent variablesin the linear system in eq. (4.6). Note that in
luding a new interpolation requirement inthe interpolation requirement pool requires us to 
hange a variable vertex in eq. (4.6) toa non-variable vertex. A
tually, interpolation requirements 
an be spe
i�ed for any pointsof the interpolating surfa
e, not just for verti
es of P . This is possible be
ause we have aparametri
 representation for ea
h pat
h of a CCSS [22℄. For example, if we want the positionof a pat
h at parameter (1=2; 3=4) to be T, we 
an set up an interpolation requirement of theform: V T �Q = T where V is a 
onstant ve
tor whose values depend on (1=2; 3=4). Thereforethe interpolating surfa
e 
an interpolate positions, derivatives and normals anywhere in theparameter spa
e.4.2.6 Interpolation of Normal Ve
torsThe dire
tion of normal ve
tors 
an be interpolated exa
tly by using additional interpola-tion requirements. The key idea is to 
hange some similarity 
onstrains to interpolation



requirements, whi
h means move some equations in eq. (4.5) into the linear system in eq.(4.1). A
tually the dire
tion of partial derivatives 
an also be interpolated by using su
hadditional interpolation requirements. Additional interpolation requirements are 
onditionslike eq. (4.1) that are guaranteed to be satis�ed and hen
e, are not involved in the solvingof the global linear system in eq. (4.6).However eq. (4.5) is only good for exa
tly interpolating partial derivatives. For exa
tlyinterpolating normal ve
tors, we need to interpolate the derivatives in u- and v-dire
tionsrespe
tively to avoid the involvement of non-linear systems. For example, for a given normalve
tor V, whose dire
tion is required to be interpolated at point P in the interpolatingsurfa
e. Assume the derivatives at point P in the resulting interpolating surfa
e in u- andv-dire
tions are D1 and D2, respe
tively. Then we need to integrate the following twoequations into linear system eq. (4.1):� D1 � V = 0D2 � V = 0 (4.7)Note that here D1 and D2 
an be linearly represented using only the 
ontrol points of the
orresponding surfa
e pat
h [22℄ and these 
ontrol points are unknowns in eq. (4.1) and eq.(4.6). Be
ause the above two equations in eq. (4.7) now are in linear system eq. (4.1), whi
his required to be satis�ed exa
tly, the exa
t interpolation of the dire
tion of normal ve
torV is guaranteed. For example, Fig. 4.1(f) is interpolated not only at vertex positions, butnormal ve
tors at boundary verti
es as well.4.3 Handling Open MeshesThe interpolation pro
ess developed in the previous se
tion 
an not be used for open meshes,su
h as the one shown in Fig. 4.1(a), dire
tly. This is be
ause boundary verti
es of an openmesh have no 
orresponding limit points, nor derivatives, therefore, one 
an not set upinterpolation requirements for these verti
es, as required by the new interpolation pro
ess.One way to over
ome this problem is to add an additional ring of verti
es along the 
urrentboundary and 
onne
t the verti
es of this ring with 
orresponding verti
es of the 
urrentboundary to form an additional ring of fa
es, su
h as the example shown in Figure 4.1(
). Thenewly added verti
es are 
alled dummy verti
es. We then apply the interpolation methodto the extended open mesh as to a 
losed mesh ex
ept that there are no interpolationrequirements for the dummy verti
es. This te
hnique of extending the boundary of a givenmesh is similar to a te
hnique proposed for uniform B-spline surfa
e representation in [46℄.Note that in this 
ase, the interpolation pro
ess does not use the limit surfa
e of the givenmesh, but rather the limit surfa
e of the extended mesh as a referen
e surfa
e. Therefore,the shape of the interpolating surfa
e depends on lo
ations of the dummy verti
es as well.Determining the lo
ation of a dummy vertex, however, is a tri
ky issue, and the user shouldnot be burdened with su
h a tri
ky task. In our system, this is done by using lo
ations of the
urrent boundary verti
es of the given mesh as the initial lo
ations of the dummy verti
esand then solving the global linear system in eq. (4.6) to determine their �nal lo
ations.



(a) (b) (
) (d) (e) (f)Figure 4.1: Interpolating an open mesh: (a) given mesh; (b) limit surfa
e of (a); (
) extendedversion of (a); (d) limit surfa
e of (
); (e) interpolating surfa
e of (a) that uses (d) as areferen
e surfa
e; (f) interpolating surfa
e of (a) with additional requirements.This approa
h of generating dummy verti
es works �ne be
ause dummy verti
es only a�e
tsimilarity 
onstraints. Figure 4.1(e) is a surfa
e that interpolates the mesh given in Fig.4.1(a) and uses 4.1(d) as a referen
e surfa
e.The above setting of the dummy verti
es usually is not enough to 
reate an interpo-lating surfa
e with the desired boundary shape. Additional requirements (not 
onstraints)are needed in the interpolation pro
ess. As explained in Se
tion 4.2.5, a platform that al-lows us to de�ne additional requirements 
an be 
reated by treating the dummy verti
es asnon-variables in eq. (4.6). We 
an then spe
ify new derivative 
onditions or normal 
on-ditions to be satis�ed at the original boundary verti
es. With the additional interpolationrequirements, a designer has more 
ontrol on the shape of the interpolating surfa
e in areasalong the boundary and, 
onsequently, 
an generate an interpolating surfa
e with the desiredboundary shape. For example, Figure 4.1(f) is an interpolating surfa
e of the mesh given inFigure 4.1(a), but generated with additional interpolation requirements. The interpolatingsurfa
e obviously looks more like a real glass now.4.4 Test ResultsThe proposed approa
h has been implemented in C++ using OpenGL as the supportinggraphi
s system on the Windows platform. Quite a few examples have been tested with themethod des
ribed here. All the examples have extra-ordinary verti
es. Some of the testedresults are shown in Figures 4.1 and 4.2. Due to limited spa
e, limit surfa
e of the meshshown in Figure 4.2(d) whi
h is very simple are not shown here. For all other 
ases, the limitsurfa
es of the given meshes and the interpolating surfa
es are both shown so that one 
an



(a) Given (b) Limit (
) Interpo-lating (d) Given Mesh (e) Interpolating

(f) Given Mesh (g) Limit Surfa
e (h) Interpolating Surfa
e

(i) Given Mesh (j) Limit Surfa
e (k) Interpolating

(l) Given Mesh (m) Limit Surfa
e (n) InterpolatingFigure 4.2: Interpolating meshes with arbitrary topology.



tell if these surfa
es are indeed similar to ea
h other in the least squares sense.In our implementation, only one subdivision is performed on the given mesh for ea
hexample and the �rst, se
ond and third derivatives in u and v dire
tions are used to 
onstru
tinterpolation 
onstraints and build the global linear system. These derivatives are sampledat points with parameters (k12i ; k22j ), i; j = 0; 1 or 1, and 0 � k1 � 2i, 0 � k2 � 2j, forea
h pat
h. That is, 9 points are sampled for ea
h pat
h, whi
h is good enough for most
ases. For bigger pat
hes one 
an use more sample points be
ause pat
hes do not have tobe sampled uniformly.The mesh shown in Figure 4.2(f) is an example of an open mesh with dis
onne
tedboundaries. Figure 4.2(h) is the interpolating surfa
e without using additional interpolationrequirements in the 
onstru
tion pro
ess.As 
an be seen from Figure 4.2, all the resulting interpolating surfa
e are very smoothand visually pleasing, ex
ept the interpolating surfa
e shown in Figure 4.2(n). The surfa
ehas some undulations around the ne
k, but we do not think they are 
aused 
ompletely byour method. We believe this is more of a problem with the general interpolation 
on
ept.Note that the input mesh, Figure 4.2(l), has some abrupt 
hanges of vertex positions andtwists in the ne
k area. This is also re
e
ted by some visible undulations in the ne
k areaof the limit surfa
e, Figure 4.2(m), even though they are not as 
lear as in the interpolatingsurfa
e. An approximation 
urve/surfa
e, like a spline 
urve, 
an be regarded as a lowpass �lter [29℄, whi
h makes the given 
ontrol polygon or mesh smoother. An interpolation
urve/surfa
e, on the other hand, 
an be regarded as a high pass �lter, whi
h magni�esundulations or twists in the input mesh. Sin
e a limit surfa
e is an approximation surfa
e, itredu
es the impa
t of abrupt vertex lo
ation 
hanges and twists in the input mesh while theinterpolating surfa
e enhan
es it. This is why the undulations are more obvious in Figure4.2(n) than in Figure 4.2(m).The new interpolation method 
an handle meshes with large number of verti
es in a mat-ter of se
onds on an ordinary PC (3.2GHz CPU, 512MB of RAM). For example, the meshesshown in Figures 4.2(l), 4.2(a) and 1.6(b) have 1022, 354 and 272 verti
es, respe
tively. Ittakes 51, 14 and 3 se
onds, respe
tively, to interpolate these meshes. For smaller meshes, likeFigures 4.1(a), 4.2(i), 4.2(d) and 4.2(f), the interpolation pro
ess is done almost in real time.Hen
e our interpolation method is suitable for intera
tive shape design, where simple shapeswith small or medium-sized 
ontrol vertex sets are 
onstru
ted using design or interpolationmethods, and then 
ombined using CSG trees to form 
omplex obje
ts.4.5 SummaryA new interpolation method for meshes with arbitrary topology using general CCSSs ispresented. This interpolation te
hnique gives us a one-pie
e represented 
ontrol mesh, whoselimit surfa
e approximates the target model. The development of the interpolation method isbased on the assumption that the interpolating surfa
e should be similar to the limit surfa
eof the given mesh. Our test results show that this approa
h leads to good interpolationresults even for 
ompli
ated data sets.



The new method has several spe
ial properties. First, by using information from theverti
es of the given mesh as well as its limit surfa
e, one has more 
ontrol on the smoothnessof the interpolating surfa
e. Hen
e, a surfa
e fairing pro
ess is not needed in the new method.Se
ond, there is no system solvability problem for the new method. The global linear systemthat the new method has to solve does not require an exa
t solution, an approximate solutionis suÆ
ient. The approximate solution 
an be provided by any fast iterative linear solver.Consequently the new method 
an pro
ess meshes with large number of verti
es eÆ
iently.Third, the new method 
an handle both open and 
losed meshes. It 
an interpolate not onlyverti
es, but normals and derivatives as well. These normals and derivative 
an be anywhere,not just at the verti
es of the given mesh. Therefore, the new interpolation method is general.



Chapter 5Voxelization of Free-form SolidsRepresented by Catmull-ClarkSubdivision Surfa
esA voxelization te
hnique [62℄ and its appli
ations for obje
ts with arbitrary topology arepresented in this 
hapter. The voxelization te
hnique will be used for performing a

urateBoolean operations dis
ussed in next 
hapter. By performing CSG or Boolean operations[69℄, we 
an obtain one-pie
e representations for obje
ts of arbitrary topology.With parametrization te
hniques for subdivision surfa
es be
oming available [22, 63℄, it ispossible now to model and represent any 
ontinuous but topologi
ally 
omplex obje
t withan analyti
al representation. In this 
hapter we present a method to 
onvert a free-formobje
t from its 
ontinuous geometri
 representation into a set of voxels that best approx-imates the geometry of the obje
t. Unlike traditional 3D s
an-
onversion based methods[79, 80, 81, 96, 82℄, our voxelization method is performed by re
ursively subdividing the 2Dparameter spa
e and sampling 3D points from sele
ted 2D parameter spa
e points. Be
ausewe 
an 
al
ulate every 3D point position expli
itly and a

urately, uniform sampling onsurfa
es with arbitrary topology is not a problem any more. Moreover, our dis
retization of3D 
losed obje
ts is guaranteed to be leak-free when a 3D 
ooding operation is performed.This is ensured by proving that our voxelization results satisfy the properties of separability,a

ura
y and minimality. In addition, a 3D volume 
ooding algorithm using dynami
 pro-gramming te
hniques is presented whi
h signi�
antly speeds up the volume 
ooding pro
ess.Hen
e our method is suitable for visualization of 
omplex s
enes, measuring obje
t volume,mass, surfa
e area, determining interse
tion 
urves of multiple surfa
es and performing a

u-rate Boolean/CSG operations. These 
apabilities are demonstrated by test examples shownin this 
hapter.The stru
ture of this 
hapter is as follows: A brief introdu
tion is given in Se
tion 1.Some ba
kground about 3D dis
rete spa
e is introdu
ed in Se
tion 2. In Se
tion 3, somerelated work is dis
ussed. The voxelization method is presented in Se
tion 4. The proof ofthe 
orre
tness of our voxelization method is given in Se
tion 5. In Se
tion 6, a dynami
82



programming method based volume 
ooding algorithm is presented. Some appli
ations ofthe voxelization te
hnique are dis
ussed and some test examples are shown in Se
tion 7. Wedraw some 
on
lusions in Se
tion 8.5.1 Introdu
tionVolume graphi
s [74℄ represents a set of te
hniques aimed at modeling, manipulation andrendering of geometri
 obje
ts, whi
h have proven to be, in many aspe
ts, superior to tra-ditional 
omputer graphi
s approa
hes. The main advantages of volume graphi
s are: (1)de
oupling of voxelization from rendering, (2) uniformity of representation, and (3) sup-port of Boolean, blo
k and CSG operations. Two drawba
ks of volume graphi
s te
hniquesare their high memory and pro
essing time demands. However, with the progress in both
omputers and spe
ialized volume rendering hardware, these drawba
ks are gradually losingtheir signi�
an
e.To be represented by the voxel raster, a geometri
 obje
t has to go through a pro
ess
alled voxelization. This pro
ess is 
on
erned with 
onverting geometri
 obje
ts from their
ontinuous geometri
 representation into a set of voxels that best approximates the 
ontinu-ous obje
t. Traditional voxelization methods (also referred to as 3D s
an-
onversion) mimi
the 2D s
an-
onversion pro
ess that pixelizes (rasterizes) 2D geometri
 obje
ts. Hen
e tradi-tional voxelization methods only work well for polygon based 3D obje
ts. For surfa
es witharbitrary topology, voxelization using 3D s
an-
onversion is not eÆ
ient, nor a

urate.Subdivision surfa
es have be
ome popular re
ently in graphi
al modeling, visualizationand animation be
ause of their 
apability in modeling/representing 
omplex shape of ar-bitrary topology [1℄, their relatively high visual quality, and their stability and eÆ
ien
yin numeri
al 
omputation. Subdivision surfa
es 
an model/represent 
omplex shape of ar-bitrary topology be
ause there is no limit on the shape and topology of the 
ontrol meshof a subdivision surfa
e. With parametrization te
hniques for subdivision surfa
es be
om-ing available [22, 63℄ and with the fa
t that non-uniform B-spline and NURBS surfa
es arespe
ial 
ases of subdivision surfa
es be
oming known [20℄, we now know that subdivisionsurfa
es 
over both parametri
 forms and dis
rete forms. Parametri
 forms are good fordesign and representation, dis
rete forms are good for ma
hining and tessellation (in
ludingFE mesh generation). Hen
e, we have a representation s
heme that is good for all graphi
sand CAD/CAM appli
ations.In this paper we propose a voxelization method for free-form solids represented byCatmull-Clark subdivision surfa
es. Instead of dire
t sampling of 3D points, the new methodis based on re
ursive sampling of 2D parameter spa
e points of a surfa
e pat
h. Hen
e thenew method is more eÆ
ient and less sensitive to numeri
al error.Note that a voxelization pro
ess does not render the voxels but merely generates adatabase of the dis
rete digitization of the 
ontinuous obje
t [95℄. Some previous voxeliza-tion methods use quad-trees to store the voxelization result. This approa
h 
an save memoryspa
e but might sa
ri�
e in time when used for appli
ations su
h as Boolean operations orinterse
tion 
urves determination. Nevertheless, with 
heap and giga-byte memory 
hips



be
oming available, storage requirement is no longer a major issue in the design of an algo-rithm. People 
are more about the eÆ
ien
y of the algorithm. The new method stores thevoxelization result dire
tly in a Cubi
 Frame Bu�er for fast operation purpose.5.2 Ba
kground: 3D Dis
rete Spa
e

(a) 6-adja
ent (b) 18-adja
ent (
) 26-adja
entFigure 5.1: N -adja
ent, N 2 f6; 18; 26g.A 3D dis
rete spa
e is a set of integral grid points in 3D Eu
lidean spa
e de�ned bytheir Cartesian 
oordinates (x; y; z), with x; y; z 2 Z. A voxel is a unit 
ube 
entered atthe integral grid point. Usually a voxel is assigned a value of 0 or 1. The voxels assignedan `1', 
alled the `bla
k' voxels, represent opaque obje
ts. Those assigned a `0', 
alled the`white' voxels, represent the transparent ba
kground. Outside the s
ope of this paper is anon-binary approa
h where the voxel values are mapped onto the interval [0,1℄ representingeither partial 
overage, variable densities, or graded opa
ities. Due to its larger dynami
range of values, this approa
h 
an support higher quality rendering.Two voxels are said to be 26-adja
ent (See Fig. 5.1(
)) if they share a vertex, an edge, ora fa
e. Every given voxel has 26 su
h adja
ent voxels: eight share a vertex (
orner) with thegiven voxel, twelve share an edge, and six share a fa
e. A

ordingly, fa
e-sharing voxels aresaid to be 6-adja
ent (See Fig. 5.1(a)), and edge-sharing and fa
e-sharing voxels are said tobe 18-adja
ent (See Fig. 5.1(b)).The pre�x N is used to de�ne the adja
en
y relation, with N= 6, 18, or 26. A sequen
eof voxels having the same value (e.g., `bla
k') is 
alled an N -path if all 
onse
utive pairs areN -adja
ent. A set of voxels are said to be N -
onne
ted if there is an N -path between everypair of its voxels. It is easy to see that N -
onne
tedness is an equivalent relation. Giventhree disjoint sets of voxels A, B and C, A is said to N -separate B and C if any N -pathfrom a voxel of B to a voxel of C interse
ts A.



5.3 Previous Voxelization Te
hniquesVoxelization te
hniques 
an be 
lassi�ed into two major 
ategories. The �rst 
ategory 
on-sists of methods that extend the standard 2D s
an-line algorithm and employ numeri
al
onsiderations to guarantee that no gaps appear in the resulting dis
retization. As we knowpolygons are fundamental primitives in 3D surfa
e graphi
s in that they approximate arbi-trary surfa
es as a mesh of polygonal pat
hes. Hen
e, early work on voxelization fo
usedon voxelizing 3D polygon meshes [79, 80, 81, 96, 82℄ by using 3D s
an-
onversion algorithm.Although this type of methods 
an be extended to voxelize parametri
 
urves, surfa
es andvolumes [83℄, it is diÆ
ult to deal with free-from surfa
es of arbitrary topology.The other widely used approa
h for voxelizing free-form solids is to use spatial enumer-ation algorithms whi
h employ point or 
ell 
lassi�
ation methods in either an exhaustivefashion or by re
ursive subdivision [89, 90, 91, 92℄. However, 3D spa
e subdivision te
h-niques for models de
omposed into 
ubi
 subspa
es are 
omputationally expensive and thusinappropriate for medium or high resolution grids. The voxelization te
hnique that we willbe presenting uses re
ursive subdivision. The di�eren
e is the new method performs re
ur-sive subdivision on 2D parameter spa
e, not on the 3D obje
t. Hen
e expensive distan
e
omputation between 3D points is avoided.Like 2D pixelization, voxelization is a powerful te
hnique for representing and modeling
omplex 3D obje
ts. This is proved by many su

essful appli
ations of volume graphi
ste
hniques in re
ently reported resear
h work. For example, voxelization 
an be used forvisualization of 
omplex obje
ts or s
ene [90℄. It 
an also be used for measuring integralproperties of solids, su
h as mass, volume and surfa
e area [92℄. Most importantly, it 
anbe used for interse
tion 
urve 
al
ulation and performing a

urate Boolean operations. Forexample, in [91, 93℄, a series of Boolean operations are performed on obje
ts represented bya CSG tree. Voxelization is su
h an important te
hnique that several hardware implemen-tations of this te
hnique have been reported re
ently [85, 86℄.5.4 Voxelization based on Re
ursive 2D Parameter Spa
eSubdivision5.4.1 Basi
 IdeaGiven a free-form obje
t represented by a CCSS and a 
ubi
 frame bu�er of resolutionM1�M2�M3, the goal is to 
onvert the CCSS represented free-form obje
t (i.e. 
ontinuousgeometri
 representation) into a set of voxels that best approximates the geometry of theobje
t. We assume ea
h fa
e of the 
ontrol mesh is a quadrilateral and ea
h fa
e has at mostone extra-ordinary vertex (a vertex with a valen
e di�erent from 4). If this is not the 
ase,simply perform Catmull-Clark subdivision on the 
ontrol mesh of the CCSS twi
e.With parametrization te
hniques for subdivision surfa
es be
oming available, it is pos-sible now to model and represent any 
ontinuous but topologi
ally 
omplex obje
t with an
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(b)(a)Figure 5.2: Basi
 idea of parameter spa
e based re
ursive voxelization.analyti
al representation [22, 23, 25, 63℄. Consequently, any point in the surfa
e 
an be ex-pli
itly 
al
ulated. On the other hand, for any given parameter spa
e point (u; v), a surfa
epoint S(u; v) 
orresponding to this parameter spa
e point 
an be exa
tly 
omputed as well.Therefore, voxelization does not have to be performed in the 3D obje
t spa
e, as the previ-ous re
ursive voxelization methods did, one 
an do voxelization in 2D spa
e by performingre
ursive subdivision and testing on the 2D parameter spa
e.We �rst 
onsider the voxelization pro
ess of a subpat
h, whi
h is a small portion of apat
h. Given a subpat
h of S(u; v) de�ned on [u1; u2℄ � [v1; v2℄, we voxelize it by assumingthis given subpat
h is small enough (hen
e, 
at enough) so that all the voxels generatedfrom it are the same as the voxels generated using its four 
orners:V1 = S(u1; v1); V2 = S(u2; v1); V3 = S(u2; v2); V4 = S(u1; v2): (5.1)Usually this assumption does not hold. Hen
e a test must be performed before the pat
hor subpat
h is voxelized. It is easy to see that if the voxels generated using its four 
ornersare not N -adja
ent (N 2 f6; 18; 26g) to ea
h other, then there exist holes between them. Inthis 
ase, the pat
h or subpat
h is still not small enough. To make it smaller, we perform amidpoint subdivision on the 
orresponding parameter spa
e by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpat
hes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄);S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing pro
ess on ea
h of the subpat
hes. The pro
ess is re
ursively repeateduntil all the subpat
hes are small enough and 
an be voxelized using only their four 
orners.The verti
es of the resulting subpat
hes after the re
ursive parameter spa
e subdivisionare then used as verti
es for voxelization that approximates the limit surfa
e. For example,



if the four re
tangles in Figure 5.2(a) are the parameter spa
es of four adja
ent subpat
hesof S(u; v), and if the re
tangles shown in Figure 5.2(b) are the parameter spa
es of theresulting subpat
hes when the above re
ursive testing pro
ess stops, then 3D points will beevaluated at the 2D parameter spa
e points marked with small solid 
ir
les to form voxelsthat approximate the limit surfa
e.To make things simple, we �rst normalize the input mesh to be of dimension [0;M1�1℄�[0;M2 � 1℄� [0;M3 � 1℄. Then for any 2D parameter spa
e point (u; v) generated from there
ursive testing pro
ess (See Fig. 5.2), dire
t and exa
t evaluation is performed to get its3D surfa
e position and normal ve
tor at S(u; v). To get the voxelized 
oordinates (i; j; k)from S(u; v), simply seti = bS(u; v):x+ 0:5
; j = bS(u; v):y + 0:5
; k = bS(u; v):z + 0:5
: (5.2)On
e every single point marked in the re
ursive testing pro
ess is voxelized, the pro
ess forvoxelizing the given pat
h is �nished. The proof of the 
orre
tness of our voxelization resultswill be dis
ussed in the next se
tion.Sin
e the above pro
ess guarantees that shared boundary or vertex of pat
hes or sub-pat
hes will be voxelized to the same voxel, we 
an perform voxelization of free-form obje
tsrepresented by a CCSS pat
h by pat
h. One thing that should be pointed out is, to avoidsta
k over
ow, only small subpat
hes should be fed to the re
ursive subdivision and test-ing pro
ess. This is espe
ially true when a high resolution 
ubi
 frame bu�er is given orsome polygons are very big in the given 
ontrol mesh. Generating small subpat
hes is not aproblem for a CCSS on
e the parametrization te
hniques are available. For example, in ourimplementation, the size of subpat
hes (in the parameter spa
e) fed to re
ursive testing is18 � 18 , i.e. ea
h pat
h is divided into 8 � 8 subpat
hes before the voxelization pro
ess. Inaddition, feeding small size subpat
hes to the re
ursive testing pro
ess ensures the assump-tion of our voxelization pro
ess to be satis�ed, be
ause the smaller the parameter size of asubpat
h, the 
atter the subpat
h.5.4.2 Voxelization AlgorithmsThe above voxelization method, based on re
ursive subdivision of the parameter spa
e, issummarized into the following algorithms: Voxelization and VoxelizeSubPat
h. The parame-ters to these algorithms are explained as follows. S: 
ontrol mesh of a CCSS whi
h representsthe given obje
t; N : an integer that spe
i�es the N -adja
ent relationship between adja
entvoxels; M1, M2, and M3: resolution of the Cubi
 Frame Bu�er; k: an integer that spe
i�esthe number of subpat
hes (k � k) that should be generated before fed to the re
ursive vox-elization pro
ess.Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)1. Normalize S so that S is bounded [0;M1 � 1℄� [0;M2 � 1℄� [0;M3 � 1℄2. for ea
h pat
h pid in S3. for u = 1k : 1; step size 1k



4. for v = 1k : 1; step size 1k5. VoxelizeSubPat
h(N , pid, u� 1k , u, v � 1k , v);VoxelizeSubPat
h(int N , int pid, 
oat u1, 
oat u2, 
oat v1, 
oat v2)1. (i1; j1; k1) = Voxelize(S(pid; u1; v1));2. (i2; j2; k2) = Voxelize(S(pid; u2; v1));3. (i3; j3; k3) = Voxelize(S(pid; u2; v2));4. (i4; j4; k4) = Voxelize(S(pid; u1; v2));5. if(ju2 � u1j < 1=maxfM1;M2;M3g) return;6. �i = maxfjia � ibjg, with a and b 2 f1; 2; 3; 4g;7. �j = maxfjja � jbjg, with a and b 2 f1; 2; 3; 4g;8. �k = maxfjka � kbjg, with a and b 2 f1; 2; 3; 4g;9. if(N = 6 & �i +�j +�k � 1) return;10. if(N = 18 & �i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) return;11. if(N = 26 & �i � 1 & �j � 1 & �k � 1) return;12. u12 = (u1 + u2)=2; v12 = (v1 + v2)=2;13. VoxelizeSubPat
h(N; pid; u1; u12; v1; v12);14. VoxelizeSubPat
h(N; pid; u12; u2; v1; v12);15. VoxelizeSubPat
h(N; pid; u12; u2; v12; v2);16. VoxelizeSubPat
h(N; pid; u1; u12; v12; v2);In algorithm `VoxelizeSubPat
h', 
orresponding surfa
e points for the four 
orners areevaluated using eq. (2.5), where pid tells us whi
h pat
h we are 
urrently working on. Theroutine `Voxelize' voxelizes points by using eq. (5.2). Lines 9, 10 and 11 are used to testif voxelizing the four 
orners of a subpat
h is enough to generate a 6-, 18- and 26-adja
entvoxelization, respe
tively. While Line 5 prevents the re
ursive pro
ess from non-stop deadloop in 
ase Lines 9, 10 and 11 are always not satis�ed.5.5 Separability, A

ura
y and MinimalityLet S be a C1 
ontinuous surfa
e in R3. We denote by �S the dis
rete representation of S.�S is a set of bla
k voxels generated by some digitalization method. There are three majorrequirements that �S should meet in the voxelization pro
ess. First, separability [95, 96℄, whi
hrequires to preserve the analogy between 
ontinuous and dis
rete spa
e and to guarantee that�S is not penetrable sin
e S is C1 
ontinuous. Se
ond, a

ura
y. This requirement ensuresthat �S is the most a

urate dis
rete representation of S a

ording to some appropriate errormetri
. Third, minimality [95, 96℄, whi
h requires the voxelization should not 
ontain voxelsthat, if removed, make no di�eren
e in terms of separability and a

ura
y. The mathemati
alde�nitions for these requirements 
an be found in [96℄, whi
h are based on [95℄.First we 
an see that voxelization results generated using our re
ursive subdivisionmethod satisfy the requirement of minimality. The reason is that voxels are sampled di-re
tly from the obje
t surfa
e. The termination 
ondition of our re
ursive sampling pro
ess



(i.e., Line 8, 9, 10 in algorithm `VoxelizeSubPat
h') and the 
oordinates transformation in eq.(5.2) guarantee that every point in the surfa
e has one and only one image in the resultingvoxelization. In other words,8 P 2 S; 9 Q 2 �S; su
h that P 2 Q: (5.3)Note that here P is a 3D point and Q is a voxel, whi
h is a unit 
ube. On the other hand,be
ause all voxels are mapped dire
tly from the obje
t surfa
e using eq. (5.2), we have8 Q 2 �S; 9 P 2 S; su
h that P 2 Q: (5.4)Hen
e no voxel 
an be removed from the resulting voxelization, i.e., the property of mini-mality is satis�ed. In addition, from eq. (5.3) and eq. (5.4) we 
an also 
on
lude that theresulting binary voxelization is the most a

urate one with respe
t to the given resolution.Hen
e the property of a

ura
y is satis�ed as well.To prove that our voxelization results satisfy the separability property, we only needto show that there is no holes in the resulting voxelization. For simpli
ity, here we only
onsider 6-separability, i.e., there does not exist a ray from a voxel inside the free-formsolid obje
t to the outside of the free-form solid obje
t in x, y or z dire
tion that 
anpenetrate our resulting voxelization without interse
ting any of the bla
k voxels. We provethe separability property by 
ontradi
tion. As we know violating separability means thereexists at least a hole (voxel) Q in the resulting voxelization that is not in
luded int �S butis interse
ted by S and, there must also exist two 6-adja
ent neighbors of Q that are notin
luded in �S either and are on opposite sides of S. Be
ause S interse
ts with Q, thereexist at least one point P on the surfa
e that interse
ts with Q. But the image of P aftervoxelization is not Q be
ause Q is a hole. However, the image of P after voxelization mustexist be
ause of the termination 
ondition of our re
ursive sampling pro
ess (i.e., Line 8, 9,10 in algorithm `VoxelizeSubPat
h'). Moreover, a

ording to our voxelization method, P 
anonly be voxelized into voxel Q be
ause of eq. (5.2). Hen
e Q 
annot be a hole, 
ontradi
tingour assumption. Therefore, we 
on
lude that �S is 6-separating.5.6 Volume Flooding with Dynami
 Programming5.6.1 Seed Sele
tionA seed must be designated before a 
ooding algorithm 
an be applied. In 2D 
ooding, a seedis usually given by the user intera
tively. However, in 3D 
ooding, for a 
losed 3D obje
t,it is impossible for a user to designate a voxel as a seed by mouse-
li
king be
ause voxelsinside a 
losed 3D obje
t are invisible. Hen
e an automati
 method is needed to sele
t aninside voxel as a seed for volume 
ooding. On
e we 
an 
orre
tly 
hoose an inside voxel, theby applying a 
ooding operation, all inside voxels 
an be obtained. To sele
t a voxel as aseed for volume 
ooding, we need to tell if a voxel is inside or outside the 3D obje
t. Thisis not a trivial problem. In the past In-Out test for voxels is not eÆ
ient and not a

urate[92℄, espe
ially for topologi
ally 
ompli
ated 3D obje
ts.



With the availability of parametrization te
hniques for subdivision surfa
es, we now 
an
al
ulate derivatives and normals exa
tly and expli
itly for ea
h point lo
ated on the 3Dobje
t surfa
e. Hen
e the normal for ea
h voxel 
an also be exa
tly 
al
ulated in the vox-elization pro
ess. Be
ause the dire
tion of a normal is perpendi
ular to the surfa
e andpoints towards the outside of the surfa
e, the 
losest voxel in its opposite dire
tion must belo
ated either inside or on the surfa
e (Assume the voxelization resolution is high enough).For a given voxel (
alled start voxel), to 
hoose the 
losest voxel in its normal's oppositedire
tion, we just need to 
al
ulate the dot produ
t of its normal and one of the axis ve
tors.These ve
tors are: f1; 0; 0g, f�1; 0; 0g, f0; 1; 0g, f0;�1; 0g, f0; 0; 1g, f0; 0;�1g 
orrespond-ing to x, �x, y, �y, z and �z dire
tion, respe
tively. The dire
tion with biggest dot produ
tis 
hosen for �nding an inside voxel. If the 
losest voxel in this 
hosen dire
tion is also abla
k voxel (i.e., lo
ated on the 3D obje
t surfa
e), another start voxel has to be sele
tedand the above pro
ess is repeated until an inside voxel is found. The found inside voxel 
anbe designated as a seed for inside volume 
ooding. Similarly, an outside voxel 
an also befound for outside volume 
ooding. In this 
ase, the seed voxel should not be 
hosen fromthe normal's opposite dire
tion, but along the normal's dire
tion.
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BFigure 5.3: A voxel with multiple pie
es of obje
t surfa
e in it.However, if the voxelization resolution is not high enough, the 
losest voxel in the normal'sopposite dire
tion might be an outside voxel. For example, in Figure 5.3, ABCD denotesa voxel and part of the obje
t surfa
e passes through this voxel. Di�erently, there are twopie
es of surfa
e that are not 
onne
ted but are all inside this voxel. If we 
hoose P1 as thestart point in Figure 5.3 to �nd an inside voxel using the above seed sele
tion method, anoutside voxel will be wrongly 
hosen. Hen
e the above method is no longer appli
able in this
ase. To resolve the problem in this situation, higher voxelization resolution 
ould be used.However, no matter how high the voxelization resolution is, we still 
annot guarantee 
aseslike the one shown in Figure 5.3 will not o

ur. Hen
e other approa
h is needed.Fortunately, voxels that have multiple pie
es of surfa
e passing through, like the oneshown in Figure 5.3, 
an be easily identi�ed in the voxelization pro
ess. To identify thesevoxels, we need to 
al
ulate normals for ea
h voxel. For example, in Figure 5.3, if surfa
epoint P1 is mapped to voxel ABCD, then the normal at P1 whi
h is N1, is also memorizedas the normal of this voxel. Next time if another surfa
e point, say P2, is also mapped to



voxel ABCD, then the normal at P2 whi
h is N2, will be �rst 
ompared with the memorizednormal of voxel ABCD by 
al
ulating their dot produ
t. If N1 �N2 > 0, then nothing needto be done. Otherwise, say surfa
e point P3, whi
h is mapped to the same voxel and itsnormal is N3, if N1 � N3 � 0, then this voxel is marked as a voxel that has multiple pie
epassing through. On
e every voxel that has multiple pie
es of surfa
e passing through ismarked, we 
an easily solve the problem simply by not 
hoosing these marked voxels as thestart voxels.5.6.2 3D Flooding using Dynami
 ProgrammingHere we only present 
ooding algorithms using 6-separability, but the idea 
an be applied toN -separability with N = 18 or 26, Although 6-separability is used in the 
ooding pro
ess,the voxelization itself 
an be N -adja
ent with N = 6; 18 or 26, On
e a seed is 
hosen, 3D
ooding algorithms 
an be performed in order to �ll all the voxels that are 6-
onne
tedwith this seed voxel. The simplest 
ooding algorithm is re
ursive 
ooding, whi
h re
ursivelysear
h adja
ent voxels in 6 dire
tions for 6-
onne
ted voxels. This method sounds ideallyreasonable but does not work in real world be
ause even for a very low resolution, it wouldstill 
ause sta
k over
ow.Another method that 
an be used for 
ooding is 
alled linear 
ooding, whi
h sear
hesadja
ent voxels that are 6-
onne
ted with the given the seed voxel, linearly from the �rstvoxel to the last voxel in the 
ubi
 frame bu�er, and marks all the found voxels with gray.The sear
h pro
ess is repeated until no more white (`0') voxels is found that are 6-
onne
tedwith one of the gray voxels. Linear 
ooding is simple and does not require extra memory inthe 
ooding pro
ess. However, it is very slow, espe
ially when a high resolution is used inthe voxelization pro
ess.In many appli
ations, 3D 
ooding operations are required to be fast with low extramemory 
onsumption. To make a 3D 
ooding algorithm appli
able and eÆ
ient, we 
an
ombine the re
ursive 
ooding and the linear 
ooding methods using the so 
alled dynami
programming te
hnique.Dynami
 programming usually breaks a problem into subproblems, and these subprob-lems are solved and the solutions are memorized, in 
ase they need to be solved again.This is the essentiality of dynami
 programming. To use dynami
 programming in our 3D
ooding algorithm, we use a sub-routine FloodingXYZ whi
h marks inside voxels having thesame x, y or z 
oordinates as the given seed voxel, and all marked voxels are memorized bypushing them into a sta
k 
alled GRAYSTACK. Note here the sta
k has a limited spa
e,whose length is spe
i�ed by the user. When the sta
k rea
hes its maximal 
apa
ity, no grayvoxels 
an be pushed into it. Hen
e it guarantees limited memory 
onsumption. The 3D
ooding algorithm with dynami
 programming 
an improve the 
ooding speed signi�
antly.For ordinary resolution, say, 512 � 512 � 512, a 
ooding operation 
an be done almost inreal time. The pseudo 
ode for the 3D volume 
ooding algorithm is given as follows and theparameters (si, sj, sk) are the 
oordinates of the given seed voxel.



VolumeFlooding(int si, int sj, int sk)1. FloodingXYZ(si, sj, sk);2. loop = 1;3. while(loop)4. while (GRAYSTACK is not empty)5. (i; j; k) = GRAYSTACK.Pop();6. FloodingXYZ(i; j; k)7. loop = 0;8. for(i = 0; i < M1; i++)9. for(j = 0; j < M2; j++)10. for(k = 0; k < M3; k++)11. if ( Voxel (i; j; k) is white and is 6-adja
ent with a gray voxel)12. FloodingXYZ(i; j; k);13. loop = 1;5.7 Appli
ations5.7.1 Visualization of Complex S
enesRay tra
ing is a 
ommonly used method in the �eld of visualization of volume graphi
s.This is due to its ability to enhan
e spatial per
eption of the s
ene using te
hniques su
has transparen
y, mirroring and shadow 
asting. However, there is a main disadvantagefor ray tra
ing approa
h: large 
omputational demands. Hen
e rending using this methodis very slow. Re
ently, surfa
e splatting te
hnique for point based rendering has be
omepopular [68, 94℄. Surfa
e splatting requires the position and normal of every point to beknown, but not their 
onne
tivity. With expli
it position and exa
t normal informationfor ea
h voxel in our voxelization results, now it is mu
h easier for us to render dis
retevoxels using surfa
e splatting te
hniques. The rendering is fast and high quality results 
anbe obtained. For example, Fig. 5.4(f) is the given mesh, Fig. 5.4(g) is the 
orrespondinglimit surfa
e. After the voxelization pro
ess, Fig. 5.4(h) is generated only using basi
 pointbased rendering te
hniques with expli
itly known normals to ea
h voxel. While Fig. 5.4(i)is rendered using splatting based te
hniques. The size of 
ubi
 frame bu�er used for Fig.5.4(h) is 512� 512� 512. The voxelization resolution used for Fig. 5.4(i) is 256� 256� 256.Although the resolution is mu
h lower, we 
an tell from Fig. 5.4, that the one using splattingte
hniques is smoother and 
loser to the 
orresponding obje
t surfa
e given in Fig. 5.4(g).5.7.2 Integral Properties MeasurementAnother appli
ation of voxelization is that it 
an be used to measure integral properties ofsolid obje
ts su
h as mass, volume and surfa
e area. Without dis
retization, these integralproperties are very diÆ
ult to measure, espe
ially for free-form solids with arbitrary topology.
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Volume 
an be measured simply by 
ounting all the voxels inside or on the surfa
eboundary be
ause ea
h voxel is a unit 
ube. With eÆ
ient 
ooding algorithm, voxels insideor on the boundary 
an be pre
isely 
ounted. But the resulting measurement may not bea

urate be
ause boundary voxels do not o

upy all the 
orresponding unit 
ubes. Hen
efor higher a

ura
y, higher voxelization resolution is needed. On
e the volume is known, itis easy to measure the mass simply by multiplying the volume with density. Surfa
e area
an be measured similarly. But using this approa
h would lead to big error be
ause we donot know how surfa
es pass through their 
orresponding voxels. Fortunately, surfa
e area
an be measured mu
h more pre
isely in the voxelization pro
ess. As we know, during there
ursive voxelization pro
ess, if the re
ursive pro
ess stops, all the marked parameter pointsof a pat
h or subpat
h (See Fig. 5.2) are points used for �nal voxelization. Hen
e all thesequadrilaterals 
orresponding to these marked parameter points 
an be used for measuringsurfa
e area after these marked parameter spa
e points are mapped to 3D spa
e. The 
atnessof these quadrilaterals is required to be tested if high a

ura
y is needed. The de�nition ofpat
h 
atness and the 
atness testing method 
an be found in [64℄.5.7.3 Performing Boolean and CSG OperationsThe most important appli
ation of voxelization is to perform Boolean and CSG operations onfree-form obje
ts. In solid modeling, an obje
t is formed by performing Boolean operationson simpler obje
ts or primitives. A CSG tree is used in re
ording the 
onstru
tion historyof the obje
t and is also used in the ray-
asting pro
ess of the obje
t. Surfa
e-surfa
einterse
tion (in
luding the in-on-out test) and ray-surfa
e interse
tion are the 
ore operationsin performing the Boolean and CSG operations. With voxelization, all of these problemsbe
ome mu
h easier set operations. For instan
e, Fig. 5.4(d) is generated by subtra
tinga 
ylinder from the Venus model. While Fig. 5.4(k) and Fig. 5.4(l) are the union anddi�eren
e results of the 
ow model and the ro
ker arm model shown in Fig. 5.4(g). Note thatall these union and di�eren
e pairs are positioned the same way when Boolean operations areperformed. Fig. 5.4(j) is generated by subtra
ting the the heart model shown in Fig. 5.4(
),from ro
k arm model shown in Fig. 5.4(g). And Fig. 5.4(
) is generated by subtra
tingthe ro
k arm model shown in Fig. 5.4(g) from the heart model. A me
hani
al part is alsogenerated in Fig. 5.4(e) using CSG operations. Interse
tion 
urves 
an be similarly generatedby sear
hing for 
ommon voxels of obje
ts. The bla
k 
urve shown in Fig. 5.4(b) and Fig.5.4(a) is the interse
tion 
urve generated from two di�erent obje
ts.5.8 SummaryA method to 
onvert a free-form obje
t from its 
ontinuous geometri
 representation toa set of voxels that best approximates the geometry of the obje
t is presented. The newvoxelization method 
an be used furthermore in next 
hapter for our subdivision surfa
ebased one-pie
e representation system when Boolean operation is used to 
onstru
t one-pie
e represented mesh stru
ture. Unlike traditional 3D s
an-
onversion based methods, the



new method does the voxelization pro
ess by re
ursively subdividing the 2D parameter spa
eand sampling 3D surfa
e points only at sele
ted 2D parameter spa
e positions. Be
ause of the
apability to 
al
ulate every 3D point position expli
itly and a

urately, uniform samplingon surfa
es with arbitrary topology is not a problem for the approa
h at all. Moreover,the new method guarantees that dis
retization of 3D 
losed obje
ts is leak-free when a 3D
ooding operation is performed. This is ensured by proving that voxelization results of thenew method satisfy the properties of separability, a

ura
y and minimality. In addition, a3D volume 
ooding algorithm using dynami
 programming te
hniques is presented whi
hsigni�
antly speeds up the volume 
ooding pro
ess. Hen
e the new method is suitable forvisualization of 
omplex s
enes, measuring obje
t volume, mass, surfa
e area, determininginterse
tion 
urve of multiple surfa
es and performing a

urate Boolean/CSG operations.



Chapter 6Trimming Te
hniques for Free-FormSolids Represented by Catmull-ClarkSubdivision Surfa
esIn this 
hapter a method for performing robust and error 
ontrollable Boolean operations onfree-form solids represented by Catmull-Clark subdivision surfa
es (CCSSs) is presented [69℄.The given obje
ts are voxelized [62℄ using the voxelization method presented in 
hapter 4 tomake Boolean operations more eÆ
ient. However, di�erent from previous voxelization basedapproa
hes, the �nal results of the Boolean operations in our method are represented witha 
ontinuous geometri
 representation, that is, our results after Boolean operations are one-pie
e representations of solid obje
ts. They are represented with topologi
ally 
orre
t meshstru
ture [69℄. This is a
hieved by doing the Boolean operations in the parameter spa
es ofthe solids, instead of the obje
t spa
e. The 2D parameter spa
e is re
ursively subdivideduntil a keep-or-dis
ard de
ision 
an be made for ea
h resulting subpat
h using results of thevoxelization pro
ess. This approa
h allows us to easily 
ompute a parametri
 approximationof the interse
tion 
urve and, 
onsequently, build a 
ontinuous geometri
 representationfor the Boolean operation result. To make the Boolean operation result more a

urate,a se
ondary lo
al voxelization 
an be performed for interse
ting subpat
hes. Be
ause thevoxelization pro
ess itself is very fast and robust, the overall pro
ess is fast and robust too.Most importantly, error of Boolean operation result 
an be estimated, hen
e error 
ontrolis possible. In addition, our method 
an handle any 
ases of Boolean operations as long asthe given solids are represented by CCSSs. Therefore there are no spe
ial or degenerated
ases to take 
are of. Although the new method is presented for CCSSs, the 
on
ept a
tuallyworks for any subdivision s
heme whose limit surfa
es 
an be parameterized.The remaining part of the 
hapter is arranged as follows. In se
tion 1, a brief introdu
tionis given. Some ba
kground and previous works related to this one are given in Se
tion 2. Ades
ription of our voxelization te
hnique is given in Se
tion 3. The pro
ess of performingBoolean operations on solids represented by CCSSs is dis
ussed in Se
tion 4. Lo
al voxeliza-tion te
hnique is presented in Se
tion 5. Error 
ontrol is given in Se
tion 6. Implementation96



issues and test 
ases are shown in Se
tion 7. Con
luding remarks are given in Se
tion 8.6.1 Introdu
tionBoolean operations are a nature way of 
onstru
ting 
omplex solid obje
ts from simplerprimitives. For example, the Constru
tive Solid Geometry (CSG) representation s
heme al-lows users to de�ne 
omplex 3D solid obje
ts by hierar
hi
ally 
ombining simple geometri
primitives using Boolean operations and aÆne transformations. However, for many appli-
ations CSG is not the most eÆ
ient approa
h. Another major representation s
heme usedin solid modeling is boundary representation (B-rep). But for 
ompli
ated obje
ts, be
ausehigher order B-reps are needed, it is usually very diÆ
ult to �nd the interse
ting 
urve ana-lyti
ally. In addition, 
ares always to be taken to handle spe
ial 
ases and degenerated 
ases[99℄. Hen
e, a

urate Boolean operations are usually not fast, nor robust, although ex
ellentresults have been a
hieved by some 
ommer
ial solid modeling engines.Voxelization of 3D obje
ts has been studied and used for 3D obje
t modeling and ren-dering for a while. With voxelization, it is a
tually very simple to get all the resulting voxelsafter Boolean operations be
ause now Boolean operations be
ome simple set operations. ThediÆ
ult part is how to represent the resulting obje
t properly and a

urately when voxeliza-tion is used in the Boolean operation pro
ess. Traditionally results of Boolean operationsare represented as sets of voxels [109, 110℄ and spe
ial volumetri
 rendering algorithms aredeveloped for visualizing Boolean operation results [94, 112℄. The main disadvantage of thisapproa
h is that there is no 
ontinuous geometri
 representation for the resulting obje
ts.Consequently, the results of Boolean operations 
annot be s
aled seamlessly or smoothlybe
ause of the nature of dis
retization.In this paper, we present a method for performing robust and error 
ontrollable Booleanoperations on free-form solids represented by Catmull-Clark subdivision surfa
es (CCSSs).The given solids are voxelized so that Boolean operations 
an be performed more eÆ
ientlyand robustly. However, the �nal results of Boolean operations in our method are still repre-sented with a 
ontinuous geometri
 representation. This is a
hieve by performing Booleanoperations subpat
h by subpat
h in 2D parameter spa
e. Ea
h subpat
h is small enough toensure the resulting voxels are either adja
ent or overlapping. Consequently, 
onne
tivityof adja
ent voxels 
an be easily 
onstru
ted and the interse
tion 
urve 
an be easily iden-ti�ed. Be
ause Boolean operations are performed subpat
h by subpat
h in 2D parameterspa
e, our method 
an handle solids with arbitrary topology. There are no spe
ial 
ases ordegenerated 
ases to take 
are of. Therefore our method is robust. Most importantly, error
ontrol is possible in our method. To make the Boolean results more a

urate, a

ording toour error estimation formula, a se
ondary lo
al voxelization 
an be performed for ea
h pairof interse
ting subpat
hes.



6.2 Ba
kground & Related Work6.2.1 Subdivision Surfa
esGiven a 
ontrol mesh, a subdivision surfa
e is generated by iteratively re�ning (subdividing)the 
ontrol mesh to form new and �ner 
ontrol meshes. The re�ned 
ontrol meshes 
onvergeto a limit surfa
e 
alled a subdivision surfa
e. So a subdivision surfa
e is determined by thegiven 
ontrol mesh and the mesh re�ning (subdivision) pro
ess. Popular subdivision surfa
esin
lude Catmull-Clark subdivision surfa
es (CCSSs) [1℄, Doo-Sabin subdivision surfa
es [13℄and Loop subdivision surfa
es [3℄. All these subdivision s
hemes 
an be 
onsidered as analgorithmi
 generalization of 
lassi
al spline te
hniques enabling 
ontrol meshes with arbi-trary topology [1, 3, 13℄. They provide easy a

ess to globally smooth surfa
es of arbitraryshape by iteratively applying simple re�nement rules to the given 
ontrol mesh. A sequen
eof meshes generated by this pro
ess qui
kly 
onverges to a smooth limit surfa
e. For mostpra
ti
al appli
ations, the re�ned meshes are already suÆ
iently 
lose to the smooth limitafter only a few re�nement steps.Subdivision surfa
es by far are the most general surfa
e representation s
heme. Theyin
lude non-uniform B-spline and NURBS surfa
es as spe
ial 
ases [20℄. In this 
hapterwe only 
onsider performing Boolean operations on free-form solids represented by CCSSs.However, our approa
h 
an be used for any subdivision s
heme whose parametrization isavailable.6.2.2 VoxelizationLike 2D pixelization, voxelization of surfa
es [95, 96℄ is a powerful te
hnique for representingand modeling 
omplex 3D obje
ts. This is proved by many su

essful appli
ations of volumegraphi
s te
hniques in resear
h work reported re
ently. For example, voxelization 
an be usedfor visualization of 
omplex obje
ts or s
enes [62, 94, 112℄. It 
an also be used for measuringintegral properties of solids, su
h as mass, volume and surfa
e area. Most importantly, it 
anbe used for interse
tion 
urve 
al
ulation and, 
onsequently, Boolean operations [62, 110℄.For example, in [110℄, a series of Boolean operations are performed on obje
ts representedby a CSG tree.A good voxelization should meet three requirements in the voxelization pro
ess: separa-bility, a

ura
y, and minimality [95, 96℄. The �rst requirement demands analogy betweenthe 
ontinuous spa
e and the dis
rete spa
e to be preserved and the resulting voxelization tobe not penetratable sin
e the given solid is 
losed and 
ontinuous. The se
ond requirementensures that the resulting voxelization is the most a

urate dis
rete representation of thegiven solid a

ording to some appropriate error metri
. The third requirement requires thevoxelization does not 
ontain voxels that, if removed, make no di�eren
e in terms of sepa-rability and a

ura
y. The mathemati
al de�nitions of these requirements 
an be found in[95, 96℄.Note that a voxelization pro
ess does not render the voxels but merely generates adatabase of the dis
rete digitization of the 
ontinuous obje
t [95℄. Some previous voxeliza-



tion methods use quad-trees to store the voxelization result [111℄. This approa
h 
an savememory spa
e but might sa
ri�
e in time when used for appli
ations su
h as Boolean opera-tions or interse
tion 
urves determination. Nevertheless, with 
heap and giga-byte memory
hips be
oming available, storage requirement is no longer a major issue in the design of avoxelization algorithm. People 
are more about the eÆ
ien
y of the algorithm. Our newmethod stores the voxelization result dire
tly in a Cubi
 Frame Bu�er [95℄ for fast operationpurpose.6.2.3 Boolean Operations on Free-Form SolidsPerforming Boolean operations is a 
lassi
 problem in geometri
 modeling. Many approa
heshave been reported in the literature, su
h as [7, 69, 97, 103, 107, 109, 110, 111℄, to namea few. Currently most solid modelers 
an support Boolean operations on solids 
omposedof polyhedral models or quadri
 surfa
es (like spheres, 
ylinders et
.). Over the last fewyears, modeling using free-form surfa
es has be
ome indispensable throughout the 
ommer-
ial CAD/CAM industry. However, the major bottlene
k is in performing robust, eÆ
ientand a

urate Boolean operations on free-form obje
ts. The topology of a surfa
e pat
h be-
ome quite 
ompli
ated when a number of Boolean operations are performed and �ndinga 
onvenient representation for these topologies has been a major 
hallenge. As a result,some solid modelers [97℄ use polyhedral approximation to these surfa
es and apply Booleanoperations on these approximate polyhedral obje
ts. Although this approa
hes seem simple,there are always some spe
ial 
ases or degenerated 
ases [99℄ that are diÆ
ult to take 
are of.Some modelers use point (or surfel) based approa
hes [111℄ to perform Boolean operationsand quite good results are obtained. However, error 
ontrol is diÆ
ult in su
h approa
hes.Zorin et
. proposed a method [7℄ to perform approximate Boolean operations on free-formsolids represented by subdivision surfa
es. The main 
ontribution of their method is the al-gorithms that are able to generate a 
ontrol mesh for a multiresolution surfa
e approximatingthe Boolean results.Most of the re
ent work in the literature on Boolean operations of 
urved models arefo
used on 
omputing the surfa
e interse
tion [98, 100, 102, 104, 106, 108℄. However, thealgebrai
 degree of the resulting 
urve 
an typi
ally be very high (up to 324 for a pairof bi
ubi
 B�ezier surfa
es) [97℄ and the genus is also non-zero. Hen
e it is very diÆ
ult torepresent the interse
tion 
urve analyti
ally and the 
urrent methods are aimed at 
omputingapproximations to the interse
tion 
urve.6.3 Performing Boolean Operations on Free-Form SolidsBe
ause we perform Boolean Operations on Free-Form Solids by voxelizing these solids,Boolean operations performed on three or more obje
ts 
an be regarded as a series of Booleanoperations performed on two obje
ts. Therefore, here we only need to 
onsider Booleanoperations performed on two free-form solids A and B. As a result, only two 
ubi
 framebu�ers are needed in the whole pro
ess, one for ea
h obje
t. The results of Boolean operations




an share a 
ubi
 frame bu�er with any of them. On
e voxelization is done (See 
hapter4), a volume 
ooding (see 
hapter 4) must be performed to mark the voxels lo
ated insidea given solid. After all these steps, there are three types of voxels in ea
h 
ubi
 frame bu�er:(1) inside voxels, (2) boundary voxels and (3) outside voxels.Several possible Boolean operations may be spe
i�ed by the users. However, the essentialpro
ess is almost the same. Here we illustrate the pro
ess by assuming the given Booleanoperation is to �nd the interse
tion of two solid obje
ts.With voxelization, it is a
tually quite simple to get the resulting voxels for a Booleanoperation. For example, the voxels left after an interse
tion operation are those lo
ated insideor on the boundary of both obje
ts. The diÆ
ult part is how to represent the resulting partproperly and a

urately. Traditionally the results of Boolean operations are representedjust with voxels. The main disadvantage of this method is the results 
annot be s
aledseamlessly be
ause of the nature of dis
retization. In the following, we present an approa
hthat represents the �nal result with a 
ontinuous geometri
 representation.6.3.1 Boolean Operations based on Re
ursive Parameter Spa
eSubdivision and VoxelizationFor a subpat
h of S(u; v) of solid A de�ned on [u1; u2℄� [v1; v2℄, we voxelize it one more timeusing the method dis
ussed in Chapter 4. However, this time we do not write the voxelsinto A's 
ubi
 frame bu�er, but look up the voxel values in both solid A and solid B's 
ubi
frame bu�ers. Re
all that we are performing an interse
tion operation of A and B. If all thevoxel values of the whole subpat
h in both 
ubi
 frame bu�er are not outside, then this is asubpat
h to keep. Subpat
hes of this type are 
alled K-subpat
hes (subpat
hes to be kept).If the voxel values of this subpat
h are all outside in both A and B's 
ubi
 frame bu�er, thenthis is a subpat
h to dis
ard. Subpat
hes of this type are 
alled D-subpat
hes (subpat
hesto be dis
arded). Otherwise, i.e., if some of the voxel values are inside, boundary and someof the voxel values are outside, then this is a pat
h with some part to keep and some partto dis
ard. Subpat
hes whose voxel values 
ontain all of inside, boundary and outside are
alled I-subpat
hes (interse
ting subpat
hes). For example, the re
tangles shown in Fig. 6.1(a) are the parameter spa
es of the resulting subpat
hes when the re
ursive voxelizationpro
ess stops and the dashed polyline is part of the interse
tion 
urve of the two given solidsin this pat
h's 2D parameter spa
e. We 
an see that subpat
h A1A2A4A3 in Fig. 6.1 (a)is an I-subpat
h. Note here all the marked (dark 
ir
les) adja
ent points, when evaluatedand voxelized, will be mapped to either the same voxel or adja
ent voxels (see Chapter4). For example, there does not exist any voxel between voxels 
orresponding to parameterpoints A1 and A3. Therefore, even though the interse
tion 
urve does not pass throughA1 or A3, the voxel 
orresponding to the interse
tion point I1 will fall into the 
losest voxel
orresponding to parameter pointA1 or A3. In this 
ase, it falls into the voxel 
orrespondingto A1An interse
ting voxel is a voxel whose voxel value is boundary in both 
ubi
 frame bu�ers.Hen
e it is very easy to �nd all the interse
ting voxels, whi
h 
ompose the interse
tion 
urve
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(b)Figure 6.1: Performing Boolean operations on 2D parameter spa
e.(but at this moment we do not know how to 
onne
t these interse
ting voxels yet and will beexplained shortly). For example, in Fig. 6.1(a), parameter points A1 and B7 are interse
tingvoxels. On
e all the interse
ting voxels are identi�ed, a 
ontinuous geometri
 representationfor the Boolean operation result 
an be generated as follows.K-subpat
hes and D-subpat
hes are easy to handle. They are either kept (for K-subpat
hes)or dis
arded (for D-subpat
hes) totally. For example, in Fig. 6.1(b), A4A5A7A6 is a K-subpat
h, hen
e A4A5A7A6 will be output wholly in the tessellation or rendering pro
ess.For an I-subpat
h, one 
an determine whi
h part of the subpat
h to keep by traversing allthe marked points atta
hed to this subpat
h. For example, for the subpat
h B0B1B2B3B7in Fig. 6.1(a), after a traverse of the marked verti
es, it is easy to see that the part to keep isthe triangle B2B3B7. Hen
e B2B3B7 will be used in the tessellation and rendering pro
essand other region of the subpat
h B0B1B2B3B7 in Fig. 6.1(a) will be dis
arded. Note herethe interse
tion point I2, after voxelization, maps to the voxel B7. In Fig. 6.1(b) the shadedpart is the result after performing the Boolean operation in the 2D parameter spa
e. On
ewe have the result of the Boolean operation in 2D parameter spa
e, the 3D result 
an beeasily obtained by dire
tly evaluating and tessellating these shaded polygons. Note here weobtain not only the polygons, but also their 
onne
tivity. Hen
e a mesh stru
ture 
an bea
hieved in the above pro
ess. It is the mesh stru
ture that we 
an 
onsider as a one-pie
erepresentation of the results of Boolean operations. In this stage, we have a 
ontinuousgeometri
 representation (the mesh) as well as a dis
rete voxel based representation (the
ubi
 frame bu�er) for our resulting shape of Boolean operations. Be
ause now we haveboth representations, a 
onne
ted interse
tion 
urve 
an be easily 
onstru
ted as well bypi
king boundary voxels (from the dis
rete voxel based representation) and traversing themesh stru
ture (information of the 
ontinuous geometri
 representation). For example, inFigure 6.1, the interse
tion 
urve (inside this pat
h) is A1A4A6B2B7B8.The above voxelization pro
ess and Boolean operations guarantee that shared boundaryor vertex of pat
hes or subpat
hes will be 
hopped, kept or dis
arded in exa
tly the sameway no matter on whi
h pat
h the operation is performed. Therefore, in our approa
h,



Boolean operations of free-form obje
ts represented by CCSSs 
an be performed on thebasis of individual pat
hes.6.3.2 Cra
k PreventionDue to the fa
t that adja
ent pat
hes might be tessellated by quadrilaterals 
orresponding tosubpat
hes from di�erent levels of the midpoint subdivision pro
ess mentioned in the abovese
tion, 
ra
ks 
ould o

ur between adja
ent pat
hes or subpat
hes. For instan
e, in Figure7.3, the left pat
h A1A2A5A6 is approximated by one quadrilateral but the right pat
h isapproximated by 7 quadrilaterals. Consider the boundary shared by the left pat
h and theright pat
h. On the left side, that boundary is a line segment de�ned by two verti
es : A2and A5. But on the right side, the boundary is a polyline de�ned by four verti
es : A2, C4,B4, and A5. They would not 
oin
ide unless C4 and B4 lie on the line segment de�ned byA2 and A5. But that usually is not the 
ase. Hen
e, 
ra
ks would appear between the leftpat
h and the right pat
h.Fortunately Cra
ks 
an be eliminated simply by repla
ing ea
h boundary of a pat
h orsubpat
h with the one that 
ontains all the evaluated points for that boundary. For exam-ple, in Figure 7.3, all the dotted lines should be repla
ed with the 
orresponding polylines.In parti
ular, boundary A2A5 of pat
h A1A2A5A6 should be repla
ed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is repla
ed with polygon A1A2C4B4A5A6in the tessellation pro
ess. For rendering purpose this is �ne be
ause graphi
s systems likeOpenGL 
an handle polygons with non-
o-planar verti
es and polygons with any number ofsides. However, it should be pointed out that through a simple zigzag te
hnique, triangu-lation of those polygons is a
tually a simple and very fast pro
ess. More details about the
ra
k prevention problem are presented in Chapter 6.Cra
ks 
ould also o

ur if solids A and B are not 
onne
ted properly in the interse
tingarea. For example in Fig. 6.1 (a), interse
tion point I1 after evaluation and voxelization fallsto voxel 
orresponding to 2D parameter pointA1 of solid A. If I1 falls to voxel 
orrespondingto 2D parameter point �A1 of solid B, then after evaluation, SA(A1) might not equal SB( �A1)exa
tly. Hen
e 
ra
k o

urs. To eliminate this kind of 
ra
ks, we 
annot use the exa
t 3Dpositions evaluated from 2D parameter points for interse
tion point. Instead we use the
enter of the 
orresponding voxel as the interse
tion point. In this way, solids A and Bwill have exa
tly the same interse
tion positions and interse
tion 
urve as well. As a result,solids A and B 
an be 
onne
ted seamlessly. Note that for K-subpat
hes, their verti
eswill be evaluated dire
tly from parameter points. Only interse
tion points of partially keptI-subpat
hes are approximated by the 
enters of their 
orresponding voxels.6.4 Lo
al VoxelizationThe voxelization pro
ess presented in the above se
tion is 
alled a global voxelization, be
auseit is performed for the entire obje
t spa
e. After all the Boolean operations are performed,a �ne s
ale voxelization, 
alled a lo
al voxelization, will also be performed. The goal of the



lo
al voxelization is to improve the a

ura
y of the I-subpat
hes. For example, in Fig. 6.1(a),A1A2A4 is used to approximate the area of the I-subpat
h A1A2A4A3 that should be kept.The a

ura
y of this approximation depends on the resolution of the global 
ubi
 framebu�er, whi
h is always not high enough be
ause of limited memory resour
e. However,we 
an do a se
ondary voxelization, whi
h has lower resolution, but is only applied to avery small portion of the obje
t spa
e. As a result high a

ura
y still 
an be a
hieved atinterse
ting area.The pro
ess and the approa
h used for a lo
al voxelization are the same as a globalvoxelization. The only di�eren
e is that they are applied to di�erent size of the obje
tspa
e. In order to perform lo
al voxelization, information about whi
h subpat
hes of solidA interse
ting with whi
h subpat
hes of solid B must be known �rst. This information isvery diÆ
ult to obtain in previous voxelization based methods. Fortunately, in our method,it 
an be readily obtained when performing the Boolean operations, as mentioned in Se
tion6.3.1. If we mark these interse
ting subpat
hes of solids A and B during the keep-or-dis
ardtest pro
ess, we would know exa
tly whi
h subpat
hes of solid A interse
t whi
h subpat
hesof solid B. On
e all interse
ting subpat
hes are known, lo
al voxelization 
an be dire
tlyperformed for ea
h pair of interse
ting subpat
hes. For example, suppose subpat
h p1 ofobje
t A interse
ts subpat
hes q1 and q2 of obje
t B, then a lo
al voxelization is performedon these 3 subpat
hes only. Their interse
tion 
urve is used to repla
e the interse
tion 
urveobtained using the global voxelization pro
ess. The lo
al voxelization pro
ess is appliedto every pair of interse
ting subpat
hes of solids A and B. Consequently, more a

urateinterse
tion 
urve 
ould be 
omputed. For instan
e, in Fig. 6.1(a), the interse
tion 
urveA4A1 will be repla
ed with V1V2 � � �Vk, k = 10, if Vi, i = 1 � � � 10 are the new interse
tingvoxels in the 
orresponding lo
al 
ubi
 frame bu�ers and polygon A1A2A4V1V2 � � �Vk willbe used in the tessellation and rendering pro
ess. Similar to global voxelization, only twolo
al 
ubi
 frame bu�ers are needed for lo
al voxelization. The lo
al 
ubi
 frame bu�ers 
anbe reused for ea
h new pair of interse
ting subpat
hes. Hen
e lo
al voxelization does notrequire a lot of memory.6.5 Error ControlGiven an �, the purpose of error 
ontrol is to make sure the error of the resulting solid afterperforming Boolean operations using our method is less than � to the one hundred per
enta

urate result. There are two kinds of error that might o

ur when our method is appliedto perform Boolean operations among 
losed free-form solids represented by Catmull-Clarksubdivision surfa
es. They are dis
ussed as follows.The �rst one possible ina

ura
y possibly o

urring using our method is the approxi-mation of resulting solids with polygonal meshes. Be
ause all obtained resulting solids areapproximated with polygonal meshes, even although the approximating meshes are denseand are very 
lose to the true surfa
e, error inevitably o

urs. However, the error 
ausedby approximation of polygonal meshes 
an be a

urately measured [61, 69℄. Hen
e error
ontrol for this type of error is possible. The measurement of this kind of error is dis
ussed



in Chapter 6.Another sour
e that 
ould introdu
e error in the result of the Boolean operations is thevoxelization pro
ess. Both the global and the lo
al voxelization 
an 
ause ina

ura
y. Thekind of error 
aused by voxelization is easy to estimate if the resolutions of 
ubi
 framebu�ers are known. For example, if the 
ubi
 frame bu�er resolution is R1�R2�R3 and theobje
t spa
e is of size X1�X2�X3, then we 
an see that ea
h voxel is of size X1R1 � X2R2 � X2R3 .It is easy to see the maximal error of voxelization is half the size of a voxel. If we performlo
al voxelization for every pair of interse
ting subpat
hes, then global voxelization will not
ause any error. Here we 
an also see why lo
al voxelization 
an improve the a

ura
ydramati
ally. In lo
al voxelization, be
ause the size of the subpat
hes being voxelized arevery small, even with a low resolution, the voxel size is still very small.Therefore the overall error 
aused by polygonalization and voxelization is the sum of theerrors 
aused by ea
h of them. To make error of the �nal Boolean operation results less thanthe given � everywhere, the test 
ondition in eq. (7.5) has to be 
hanged to the followingform: � pd ( �u; �v) +pd ( û; v̂) � �=2size of ea
h voxel � � (6.1)where (û; v̂) and (�u; �v) is de�ned the same way as in eq. (7.5). The �rst equation in eq.(6.1) ensures the pat
h (or subpat
h) and its approximating polygon are both lo
ated insidetwo quadrilaterals that are �=2 away. The se
ond equation in eq. (6.1) ensures the error
aused by voxelization is not bigger than �=2. Hen
e the total error in the whole pro
ess isguaranteed to be less than �.6.6 Test ResultsThe proposed approa
h has been implemented in C++ using OpenGL as the supportinggraphi
s system on the Windows platform. Quite a few examples have been tested with themethod des
ribed here. All the examples have extra-ordinary verti
es. Some of the testedresults are shown in Figures 6.2. The resolution of global voxelization is 512� 512� 512 forall the test examples, and the error for all of them is set to 10�3. The size of ea
h example isnormalized to [0; 1℄ before voxelization and Boolean operations are performed. Resolutionsof the lo
al voxelization pro
ess depend on error toleran
e and the given meshes. Hen
eresolution of lo
al voxelization is di�erent for ea
h of the examples shown in Figures 6.2.For example, resolution of lo
al voxelization used for Figures 6.2(k) and 6.2(l) is 8� 8� 8,while for Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) the resolution used for lo
al voxelization is32�32�32. Although resolutions used for lo
al voxelization are di�erent, the overall error isthe same in the �nal results. From eq. (6.1) we 
an see this di�eren
e is be
ause interse
tingsubpat
hes in Figures 6.2(g), 6.2(h), 6.2(i) and 6.2(j) have bigger size than Figures 6.2(k)and 6.2(l).In Figure 6.2, all the Di�eren
e and Interse
tion operations are performed on solidspositioned exa
tly the same as in the Union operation so that we 
an easily tell if results ofthe Boolean operations are 
orre
t within the given error toleran
e. For example, Figures



(a) Union (b) Di�eren
e (
) Union (d) Di�er-en
e

(e) Union (f) Di�eren
e (g) Union

(h) Union (i) Interse
tion (j) Di�eren
e

(k) Union (l) Di�eren
eFigure 6.2: Boolean Operations Performed on Solids Represented by CCSSs.



6.2(j) and 6.2(g) are results of Di�eren
e operation and Union operation, respe
tively, onsolids pla
ed in the same positions. Similarly, Figures 6.2(i) 
orresponds to 6.2(h), 6.2(b)
orresponds to 6.2(a), 6.2(d) 
orresponds to 6.2(
), 6.2(f) 
orresponds to 6.2(e) and 6.2(l)
orresponds to 6.2(k).6.7 SummaryA new method for performing robust and error 
ontrollable Boolean operations on free-formsolids represented with CCSSs is presented. The resulting solids after Boolean operationsare represented with a 
ontinuous geometri
 representation, that is, our results after Booleanoperations are one-pie
e representations of solid obje
ts. They are represented with topo-logi
ally 
orre
t mesh stru
ture. Test results show that this approa
h leads to good resultseven for 
ompli
ated solids with arbitrary topology.The new method has several spe
ial properties: First, Boolean operations 
an be per-formed on 2D parameter spa
es on the basis of individual pat
hes. There is no need totake 
are of spe
ial 
ases or degenerated 
ases. Hen
e the method is robust. Se
ond, al-though voxelization is performed to fa
ilitate Boolean operations, the result of a Booleanoperation in our method are still represented with a 
ontinuous geometri
 representation.Hen
e our Boolean operation results 
an be s
aled seamlessly and smoothly. Third, errorof Boolean operation results 
an be pre
isely estimated. A

ording to the error estimationformula, a se
ondary lo
al voxelization 
an be performed for interse
ting subpat
hes only.Hen
e higher a

ura
y 
an be a
hieved. Finally, although the new method is presented forCCSSs, the 
on
ept a
tually works for any subdivision s
heme whose limit surfa
es 
an beparameterized.



Chapter 7Adaptive Tessellation Te
hniques forCatmull-Clark Subdivision Surfa
esCatmull-Clark subdivision s
heme provides a powerful method for building smooth and 
om-plex surfa
es. But the number of fa
es in the uniformly re�ned meshes in
reases exponentiallywith respe
t to subdivision depth. Adaptive tessellation redu
es the number of fa
es neededto yield a smooth approximation to the limit surfa
e and, 
onsequently, makes the renderingpro
ess more eÆ
ient.In this 
hapter, we present a new adaptive tessellation method for general Catmull-Clark subdivision surfa
es. The new adaptive tessellation method 
an be used to pre
iselymeasure error 
aused by polygonal approximation. For example the error 
ontrol in ourBoolean operation pro
ess presented in Chapter 5 employs this method. The new adaptivetessellation method also 
an be used for signi�
antly redu
ing fa
e number of dense mesheswith a

urate error estimation. As a result our one-pie
e representation obtained from eitherinterpolation (See Chapter 2) or performing Boolean operations (See Chapter 5), 
an besubstantially simpli�ed using the new adaptive tessellation method.Di�erent from previous 
ontrol mesh re�nement based approa
hes, whi
h generate ap-proximate meshes that usually do not interpolate the limit surfa
e, the new method is basedon dire
t evaluation of the limit surfa
e to generate an ins
ribed polyhedron of the limitsurfa
e. With expli
it evaluation of general Catmull-Clark subdivision surfa
es be
omingavailable, the new adaptive tessellation method 
an pre
isely measure error for every pointof the limit surfa
e. Hen
e, it has 
omplete 
ontrol of the a

ura
y of the tessellation result.Cra
ks are avoided by using a re
ursive 
olor marking pro
ess to ensure that adja
ent pat
hesor subpat
hes use the same limit surfa
e points in the 
onstru
tion of the shared boundary.The new method performs limit surfa
e evaluation only at points that are needed for the�nal rendering pro
ess. Therefore it is very fast and memory eÆ
ient. The new methodis presented for the general Catmull-Clark subdivision s
heme. But it 
an be used for anysubdivision s
heme that has an expli
it evaluation method for its limit surfa
e.The stru
ture of this 
hapter is arranged as follows: We give a brief introdu
tion in theSe
tion 1. Some previous works related to this one is given in Se
tion 2. A des
ription of107



the basi
 idea of our adaptive tessellation te
hnique is given in Se
tion 3. The issue of 
ra
kelimination is dis
ussed in Se
tion 4. Two settings of pat
h 
atness are dis
ussed in Se
tion5. Algorithms of our te
hnique are presented in Se
tion 6. Test results are shown in Se
tion7. The 
on
luding remarks are given in Se
tion 8.7.1 Introdu
tionSubdivision based evaluation pro
ess of a subdivision surfa
e relies on performing repeatedsubdivision of the 
ontrol mesh until the re�ned mesh is 
lose enough to the limit surfa
e(within some given toleran
e). It is then possible to push the 
ontrol points (mesh verti
es)to their limit positions. But the number of fa
es in the uniformly re�ned meshes in
reasesexponentially with the re
ursive steps of subdivision. See Figure 1.9(b) for an example wherethe 
ontrol mesh of a Gargoyle is uniformly subdivided only twi
e and yet the resultingmesh is already quite dense. Hen
e, a good method for redu
ing the number of fa
es in there�ned mesh while keeping the pre
ision of the approximation is ne
essary. For instan
e, inFigure 1.9(
), 1.9(d), and 1.9(e), the same model is adaptively subdivided 4, 3 and 2 times,respe
tively. The resulting meshes have a higher or similar pre
ision while the number offa
ets in the resulting meshes is mu
h less than the uniform 
ase. Su
h a method is importantfor both rendering and �nite-element mesh generation. The 
riterion for rendering, however,is di�erent from the 
riterion for �nite-element mesh generation. In the �rst 
ase, the numberof sides of the mesh fa
es 
ould be di�erent while, in the se
ond 
ase, the mesh fa
es areeither all triangles or all quadrilaterals. Figure 1.9(f) shows a triangulated result of Figure1.9(e).Resear
h work for redu
ing the number of fa
es in a mesh has been done in severaldire
tions. Mesh simpli�
ation [34℄ is the most popular one over the past de
ade. It aims atremoving some of the overly sampled verti
es in a mesh and produ
es approximate mesheswith various levels of detail. Another main method for redu
ing the number of fa
es in amesh, 
alled adaptive tessellation, is to apply adaptive or lo
al re�nement s
hemes to areasspe
i�ed by a user or determined by an appli
ation. The resulting mesh should be 
ra
k-freeand have the same limit surfa
e as the uniformly re�ned mesh.There are two possible approa
hes for adaptive tessellation of subdivision surfa
es. Oneis a mesh re�nement based approa
h. It approximates the limit surfa
e by adaptively re�ningthe 
ontrol mesh of the surfa
e. The resulting mesh usually does not interpolate points ofthe limit surfa
e. The other one is a surfa
e evaluation based approa
h. This approa
happroximates the limit surfa
e by generating an ins
ribed polyhedron of the limit surfa
e,with verti
es of the polyhedron taken (evaluated) adaptively from the limit surfa
e. Themesh re�nement based approa
h needs a subdivision s
heme, su
h as the Catmull-Clarkmethod or the Doo-Sabin method, to re�ne the input mesh. Most methods proposed inthe literature for adaptive tessellation of subdivision surfa
es belong to this 
ategory. These
ond approa
h needs a parametrization/evaluation method for the limit surfa
e. With theavailability of dire
t evaluation methods of subdivision surfa
es re
ently [22, 23, 25, 63℄, these
ond approa
h 
ould be more appealing for adaptive tessellation of subdivision surfa
e



be
ause of its simpli
ity in nature. Currently there is only one paper published in this
ategory [125℄. This paper works for parametrization that reprodu
es linear fun
tions [44℄.For more general parameterizations [22, 23, 25, 63℄, it does not work well.In this 
hapter we will present a surfa
e evaluation based approa
h for adaptive tessel-lation of subdivision surfa
es. Our method is di�erent from [125℄ in that our method workswith any parametrization method and has a pre
ise error estimate. The new approa
h is pre-sented for the general Catmull-Clark subdivision surfa
es [1℄, but it 
an be easily extendedto work for any subdivision surfa
e that has an exa
t evaluation method for its limit surfa
e.7.2 Previous WorkA number of adaptive tessellation methods for subdivision surfa
es have been proposed[45, 35, 36, 125, 40, 41℄. Most of them are mesh re�nement based, i.e., approximating thelimit surfa
e by adaptively re�ning the 
ontrol mesh. This approa
h requires the assignmentof a subdivision depth to ea
h region of the surfa
e �rst. In [45℄, a subdivision depthis 
al
ulated for ea
h pat
h of the given Catmull-Clark surfa
e with respe
t to a givenerror toleran
e �. In [35℄, a subdivision depth is estimated for ea
h vertex of the givenCatmull-Clark surfa
e by 
onsidering fa
tors su
h as 
urvature, visibility, membership to thesilhouette, and proje
ted size of the pat
h. The approa
h used in [45℄ is error 
ontrollable.An error 
ontrollable approa
h for Loop surfa
e is proposed in [125℄, whi
h 
al
ulates asubdivision depth for ea
h pat
h of a Loop surfa
e by estimating the distan
e between twobounding linear fun
tions for ea
h 
omponent of the 3D representation.Several other adaptive tessellation s
hemes have been presented as well [41, 40, 36℄. In[36℄, two methods of adaptive tessellation for triangular meshes are proposed. The adaptivetessellation pro
ess for ea
h pat
h is based on angles between its normal and normals ofadja
ent fa
es. A set of new error metri
s tailored to the parti
ular needs of surfa
es withsharp 
reases is introdu
ed in [40℄.In addition to various adaptive tessellation s
hemes, there are also appli
ations of thesete
hniques. D. Rose et al. used adaptive tessellation method to render terrain [43℄ andK. M�uller et al. 
ombined ray tra
ing with adaptive subdivision surfa
es to generate somerealisti
 s
enes [39℄. Adaptive tessellation is su
h an important te
hnique that an API hasbeen designed for its general usage [42℄. A
tually hardware implementation of this te
hniquehas been reported re
ently as well [38℄.A problem with the mesh-re�nement-based, adaptive tessellation te
hniques is the so
alled gap-prevention requirement. Be
ause the number of new verti
es generated on ea
hboundary of the 
ontrol mesh depends on the subdivision depth, gaps (or, 
ra
ks) 
ouldo

ur between the 
ontrol meshes of adja
ent pat
hes if these pat
hes are assigned di�erentsubdivision depths. Hen
e, ea
h mesh-re�nement-based adaptive tessellation method needssome spe
ial me
hanism to eliminate gaps. This is usually done by performing additionalsubdivision or splitting steps on the pat
h with lower subdivision depth. As a result, manyunne
essary polygons are generated in the tessellation pro
ess. In this paper, we will adap-tively tessellate a subdivision surfa
e by taking points from the limit surfa
e to form an



ins
ribed polyhedron of the limit surfa
e, instead of re�ning the 
ontrol mesh. Our methodsimpli�es the pro
ess of gap dete
ting and elimination. It does not need to perform extra orunne
essary evaluations either.7.3 Basi
 Idea

(a) Cir
ums
ribed (b) Ins
ribedFigure 7.1: Ins
ribed and Cir
ums
ribed Approximation.
7.3.1 Ins
ribed ApproximationOne way to approximate a 
urve (surfa
e) is to use its 
ontrol polygon (mesh) as the ap-proximating polyline (polyhedron). For instan
e, in Figure 7.1(a), at the top are a 
ubi
B�ezier 
urve and its 
ontrol polygon. For a better approximation, we 
an re�ne the 
ontrolpolygon using midpoint subdivision. The solid polyline at the bottom of Fig. 7.1(a) is theapproximating 
ontrol polygon after one re�nement. This method relies on performing it-erative re�nement of the 
ontrol polygon or 
ontrol mesh to approximate the limit 
urve orsurfa
e. Be
ause this method approximates the limit shape from 
ontrol polygon or 
ontrolmesh \outside" the limit shape, we 
all this method 
ir
ums
ribed approximation.Another possible method is ins
ribed approximation. Instead of approximating the limit
urve (surfa
e) by performing subdivision on its 
ontrol polygon (mesh), one 
an approximatethe limit 
urve (surfa
e) by ins
ribed polygons (polyhedra) whose verti
es are taken from thelimit 
urve (surfa
e) dire
tly. The easiest approa
h to get verti
es of the ins
ribed polygons(polyhedra) is to perform uniform midpoint subdivision on the parameter spa
e and usethe evaluated verti
es of the resulting subsegments (subpat
hes) as verti
es of the ins
ribedpolylines (polyhedra). For instan
e, in Figure 7.1(b), at the top are a 
ubi
 B�ezier 
urveand its approximating polygon with verti
es evaluated at parameter points 0, 1/2 and 1.Similarly, the solid polygon at the bottom of Figure 7.1(b) is an approximating polygonwith verti
es evaluated at �ve parameter points.



Be
ause ins
ribed approximation uses points dire
tly lo
ated on the limit 
urve or surfa
e,in most 
ases, it has faster 
onvergent rate than the 
ir
ums
ribed approximation. As one
an see 
learly from Fig. 7.1 that the ins
ribed polygon at the bottom of Fig. 7.1(b) is 
loserto the limit 
urve than the 
ir
ums
ribed polygon shown at the bottom of Fig. 7.1(a) eventhough the ins
ribed polygon a
tually has less segments than the 
ir
ums
ribed polygon.Ins
ribed approximation requires expli
it evaluation of a CCSS Pat
h. Several approa
hes[22, 23, 25, 63℄ have been presented for exa
t evaluation of an extraordinary pat
h at anyparameter point (u; v). In our implementation, we follow the parametrization te
hnique pre-sented in [63℄, be
ause this method is numeri
ally stable, employs less eigen basis fun
tions,and 
an be used for the evaluation of 3D position and normal ve
tor of any point in the limitsurfa
e exa
tly and expli
itly. Some most related results of [63℄ are presented in Chapter2. However, the problem with both Ins
ribed or 
ir
ums
ribed approximation approa
hesis that, with uniform subdivision, no matter it is performed on the 
ontrol mesh or theparameter spa
e, one would get unne
essarily small and dense polygons for surfa
e pat
hesthat are already 
at enough and, 
onsequently, slow down the rendering pro
ess. To speedup the rendering pro
ess, a 
at surfa
e pat
h should not be tessellated as densely as asurfa
e pat
h with big 
urvature. The adaptive tessellation pro
ess of a surfa
e pat
h shouldbe performed based on the 
atness of the pat
h. This leads to our adaptive ins
ribedapproximation.7.3.2 Adaptive Ins
ribed ApproximationFor a pat
h of S(u; v) de�ned on u1 � u � u2 and v1 � v � v2, we try to approximateit with the quadrilateral formed by its four verti
es V1 = S(u1; v1), V2 = S(u2; v1), V3 =S(u2; v2) and V4 = S(u1; v2). If the distan
e (to be de�ned below) between the pat
h andits 
orresponding quadrilateral is small enough (to be de�ned below), then the pat
h is
onsidered 
at enough and will be (for now) repla
ed with the 
orresponding quadrilateralin the tessellation pro
ess. Otherwise, we perform a midpoint subdivision on the parameterspa
e by setting u12 = u1 + u22 and v12 = v1 + v22to get four subpat
hes: [u1; u12℄ � [v1; v12℄, [u12; u2℄� [v1; v12℄, [u12; u2℄ � [v12; v2℄, [u1; u12℄ �[v12; v2℄, and repeat the 
atness testing pro
ess on ea
h of the subpat
hes. The pro
ess isre
ursively repeated until the distan
e between all the subpat
hes and their 
orrespondingquadrilaterals are small enough. The verti
es of the resulting subpat
hes are then used asverti
es of the ins
ribed polyhedron of the limit surfa
e. For instan
e, if the four re
tanglesin Figure 7.2(a) are the parameter spa
es of four adja
ent pat
hes of S(u; v), and if there
tangles shown in Figure 7.2(b) are the parameter spa
es of the resulting subpat
hes whenthe above 
atness testing pro
ess stops, then the limit surfa
e will be evaluated at thepoints marked with small solid 
ir
les to form verti
es of the ins
ribed polyhedron of thelimit surfa
e.
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(b)(a)Figure 7.2: Basi
 idea of the 
onstru
tion of an ins
ribed polyhedron.In the above 
atness testing pro
ess, to measure the di�eren
e between a pat
h (orsubpat
h) and its 
orresponding quadrilateral, we need to parameterize the quadrilateral aswell. The quadrilateral 
an be parameterized as follows:Q(u; v) = v2 � vv2 � v1 ( u2 � uu2 � u1V1 + u� u1u2 � u1V2) + v � v1v2 � v1 ( u2 � uu2 � u1V4 + u� u1u2 � u1V3) (7.1)where u1 � u � u2, v1 � v � v2. The di�eren
e between the pat
h (or subpat
h) and the
orresponding quadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2 = (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T (7.2)where k � k is the se
ond norm andAT is the transpose ofA. The distan
e between the pat
h(or subpat
h) and the 
orresponding quadrilateral is the maximum of all the di�eren
es:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄ g:To measure the distan
e between a pat
h (or subpat
h) and the 
orresponding quadrilateral,we only need to measure the norms of all lo
al minima and maxima of d(u; v). Note thatQ(u; v) and S(u; v) are both C1-
ontinuous, and d(V1), d(V2), d(V3) and d(V4) are equal to0. Therefore, by Mean Value Theorem, the lo
al minima and maxima must lie either inside[u1; u2℄� [v1; v2℄ or on the four boundary 
urves. In other words, they must satisfy at leastone of the following three 
onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u2 8<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v2 8<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2) (7.3)For a pat
h (or subpat
h) that is not adja
ent to an extraordinary point (i.e., (u1; v1) 6=(0; 0)), m is �xed and known (m(u; v) = minfdlog 12ue; dlog 12 veg). Hen
e Eq. (7.3) 
anbe solved expli
itly. With the valid solutions, we 
an �nd the di�eren
e for ea
h of them



using Eq. (7.2). Suppose the one with the biggest di�eren
e is (û; v̂). Then (û; v̂) is alsothe point with the biggest distan
e between the pat
h (or subpat
h) and its 
orrespondingquadrilateral. We 
onsider the pat
h (or subpat
h) to be 
at enough ifD =pd ( û; v̂) � � (7.4)where � is a given error toleran
e. In su
h a 
ase, the pat
h (or subpat
h) is repla
ed withthe 
orresponding quadrilateral in the tessellation pro
ess. If a pat
h (or subpat
h) is not
at enough yet, i.e., if Eq. (7.4) does not hold, we perform a midpoint subdivision on thepat
h (or subpat
h) to get four new subpat
hes and repeat the 
atness testing pro
ess forea
h of the new subpat
hes. This pro
ess is re
ursively repeated until all the subpat
hessatisfy Eq. (7.4).For a pat
h (or subpat
h) that is adja
ent to an extraordinary point (i.e. (u1; v1) = (0; 0)in Eq. (7.3)), m is not �xed and m tends to 1 (see Figure 2.2). As a result, Eq. (7.3)
an not be solved expli
itly. One way to resolve this problem is to use nonlinear numeri
almethod to solve these equations. But numeri
al approa
h 
annot guarantee the error is lessthan � everywhere. For pre
ise error 
ontrol, a better 
hoi
e is needed. In the following, analternative method is given for that purpose.Eq. (2.7) shows that S(u; v) and Q(u; v) both 
onverge to S(0; 0) when (u; v) ! (0; 0).Hen
e, for any given error toleran
e �, there exists an integerm� su
h that ifm � m�, then thedistan
e between S(u; v) and S(0; 0) is smaller than �=2 for any (u; v) 2 [0; 1=2m℄� [0; 1=2m℄,and so is the distan
e between Q(u; v) and S(0; 0). Consequently, when (u; v) 2 [0; 1=2m℄�[0; 1=2m℄, the distan
e between S(u; v) and Q(u; v) is smaller than �. The value of m�, inmost of the 
ases, is a relatively small number and 
an be expli
itly 
al
ulated. In nextsubse
tion, we will show how to 
al
ulate m�.For other regions of the unit square with dlog 12 u2e � m < m� (see Figure 2.2), eq.(7.3) 
an be used dire
tly to �nd the di�eren
e between S(u; v) and Q(u; v) for any �xedm 2 (dlog 12 u2e; m�). Therefore, by 
ombining all these di�eren
es, we have the distan
ebetween the given extra-ordinary pat
h (or subpat
h) and the 
orresponding quadrilateral.If this distan
e is smaller than �, we 
onsider the given extra-ordinary pat
h (or subpat
h) tobe 
at, and use the distan
e quadrilateral to repla
e the extra-ordinary pat
h (or subpat
h)in the tessellation pro
ess. Otherwise, repeatedly subdivide the pat
h (or subpat
h) andperform 
atness testing on the resulting subpat
hes until all the subpat
hes satisfy Eq.(7.4).7.3.3 Cal
ulating m�For a given � > 0, an integer k� will �rst be 
omputed so that if k is bigger than k�, thenthe subpat
h of S(u; v) with 0 � u; v � 1=2k is 
ontained in a sphere with 
enter S(0; 0) anddiameter � (
alled an �-sphere). A subpat
h is 
ontained in an �-sphere if all points of thesubpat
h are �=2 away from S(0; 0).To �nd su
h k�, we need a few properties from [63℄. Re
all that an extra-ordinary pat
h



S(u; v) 
an be expressed as S(u; v) = n+5Xj=0 �b;j(u; v) �Gwhere �b;j are eigen basis fun
tions de�ned in [63℄ and G is the ve
tor of 
ontrol points ofS. The eigen basis fun
tions satisfy the s
aling relation [22, 63℄, i.e.,�b;j(u=2k; v=2k) = �kj�b;j(u; v)for any positive integer k, where �j are eigen values of the Catmull-Clark subdivision matrix[63℄. The eigen values are indexed so that1 = �n+1 > �2 � �i > 0where 0 � i � n + 5 and i 6= n + 1. Also re
all that �b;j(0; 0) = 0 when j 6= n + 1, and�b;n+1(u; v) is a 
onstant ve
tor, its value is independent of (u; v) [63℄. Hen
e,(�b;n+1(u; v)� �b;n+1(u0; v0)) �Gr = 0for any (u; v) and (u0; v0) where r 2 fx; y; zg and Gr is the x-, y- or z-
omponent of G.Hen
e for any 1=2 � u � 1 or 1=2 � v � 1, and for any k we havejSr(u=2k; v=2k)� Sr(0; 0)j = jPn+5j=0 (�kj�b;j(u; v)� �b;j(0; 0)) �Grj�Pj 6=n+1 �kj j(�b;j(u; v) �Grj < �k2Pj 6=n+1 j(�b;j(u; v) �GrjSimilarly, the three 
onditions in Eq. (7.3) 
an be used to �nd the maxima of j(�b;j(u; v) �Grjfor any j. Note that be
ause here (u; v) =2 [0; 1=2℄� [0; 1=2℄, the 
orresponding m is equal to1 (See �gure 2.2). Hen
e we 
an easily �nd the maximum in its domain f(u; v)j1=2 � u �1 or 1=2 � v � 1g. Let the maximum of j(�b;j(u; v) �Grj be Frj and Fr =Pj 6=n+1 Frj. Then,for any k > 0 we have jSr(u=2k; v=2k)� Sr(0; 0)j � �k2Fr:Therefore if (�k2Fx)2 + (�k2Fy)2 + (�k2Fz)2 � (�=2)2, we havek S(u=2k; v=2k)� S(0; 0) k� �=2:If we de�ne k� as follows k� = dlog�2 �2pF 2x + F 2y + F 2z ethen it is easy to see that when k � k�, the subpat
h S(u; v) with (u; v) 2 [0; 1=2k℄� [0; 1=2k℄is inside an �-sphere whose 
enter is S(0; 0).In addition, S(0; 0) is a �xed point and has an expli
it expression for any pat
h (see eq.2.7), and Q(u; v) also has an expli
it parametrization (See eq. (7.1)). Hen
e, similarly, byusing the method of Eq. (7.3), it is easy to �nd an integer ek�, su
h that for any given � > 0,



when k � ek�, we have k Q(u; v)� S(0; 0) k� �=2, where (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄. On
ewe have k� and ek�, simply set m� as the maximum of k� and ek�.m� = maxfk�;ek�gWith this m�, it is easy to see that when m � m�, we have k S(u; v)�Q(u; v) k� �, where(u; v) 2 [0; 1=2m℄� [0; 1=2m℄.7.4 Cra
k Elimination
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Figure 7.3: Cra
k elimination.Due to the fa
t that adja
ent pat
hes might be approximated by quadrilaterals 
orre-sponding to subpat
hes from di�erent levels of the midpoint subdivision pro
ess, 
ra
ks 
ouldo

ur between adja
ent pat
hes. For instan
e, in Figure 7.3, the left pat
h A1A2A5A6 isapproximated by one quadrilateral but the right pat
h is approximated by 7 quadrilaterals.Consider the boundary shared by the left pat
h and the right pat
h. On the left side, thatboundary is a line segment de�ned by two verti
es : A2 and A5. But on the right side,the boundary is a polyline de�ned by four verti
es : A2, C4, B4, and A5. They would not
oin
ide unless C4 and B4 lie on the line segment de�ned by A2 and A5. But that usuallyis not the 
ase. Hen
e, 
ra
ks would appear between the left pat
h and the right pat
h.Fortunately Cra
ks 
an be eliminated simply by repla
ing ea
h boundary of a pat
h orsubpat
h with the one that 
ontains all the evaluated points for that boundary. For exam-ple, in Figure 7.3, all the dashed lines should be repla
ed with the 
orresponding polylines.In parti
ular, boundary A2A5 of pat
h A1A2A5A6 should be repla
ed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is repla
ed with polygon A1A2C4B4A5A6in the tessellation pro
ess. For rendering purpose this is �ne be
ause graphi
s systems likeOpenGL 
an handle polygons with non-
o-planar verti
es and polygons with any number ofsides. However, it should be pointed out that through a simple zigzag te
hnique, triangula-tion of those polygons is a
tually a simple and very fast pro
ess.



A potential problem with this pro
ess is the new polygons generated by the 
ra
k elimina-tion algorithm might not satisfy the 
atness requirement. To ensure the 
atness requirementis satis�ed everywhere when the above 
ra
k elimination method is used, we need to 
hangethe test 
ondition in Eq. (7.4) to the following one:pd ( �u; �v) +pd ( û; v̂) � � (7.5)where (û; v̂) and (�u; �v) are solutions of Eq. (7.3) and they satisfy the following 
onditions:� Among all the solutions of Eq. (7.3) that are lo
ated on one side of Q(u; v), i.e.solutions that satisfy (Q� S) � ((V1 �V3)� (V2 �V4)) � 0, d(û; v̂) is the biggest. Ifthere does not exist any solution su
h that this 
ondition holds, then d(û; v̂) is set to0;� Among all the solutions of Eq. (7.3) that are lo
ated on the other side of Q(u; v), i.e.solutions that satisfy (Q� S) � ((V1 �V3)� (V2 �V4)) < 0, d(�u; �v) is the biggest. Ifthere does not exist any solution su
h this 
ondtion holds, then d(�u; �v) is set to 0.From the de�nition of (û; v̂) and (�u; �v), we 
an see that satisfying Eq. (7.5) means that thepat
h being tested is lo
ated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limit surfa
e. Hen
e, for instan
e, in Fig. 7.3,points A2;C4;B4 and A5 of pat
h A2A3A4A5 are also points of pat
h A1A2A5A6. Withthe new test 
ondition in Eq. (7.5), we know that a pat
h or subpat
h is 
at enough if it islo
ated between two quadrilaterals that are � away. Be
ause boundary pointsA2;C4;B4 andA5 are on the limit surfa
e, they must be lo
ated between two quadrilaterals that are � away.So is the polygon A1A2C4B4A5A6. Now the pat
h (or subpat
h) and its approximatingpolygon are both lo
ated inside two quadrilaterals that are � away. Hen
e the overall errorbetween the pat
h (or subpat
h) and its approximating polygon is guaranteed to be smallerthan �.In previous methods for adaptive tessellation of subdivision surfa
es [45, 35, 36, 40℄, themost diÆ
ult part is 
ra
k prevention. Yet in our method, this part be
omes the simplestpart to handle and implement. The resulting surfa
e is error 
ontrollable and guaranteed tobe 
ra
k free.7.5 Degree of FlatnessJust like numeri
al errors have two di�erent settings, the 
atness of a pat
h, whi
h 
an beviewed as a numeri
al error from the approximation point of view, has two di�erent aspe
tsas well, depending on if the 
atness is 
onsidered in the absolute sense or relative sense.The 
atness of a pat
h is 
alled the absolute 
atness (AF) if the pat
h is not transformed inany way. In that 
ase, the value of � in Eq. (7.4) and (7.5) is set to whatever pre
ision the
atness of the pat
h is supposed to meet. AF should be 
onsidered for operations that workon physi
al size of an obje
t su
h as ma
hining or prototyping.



For operations that do not work on the physi
al size of an obje
t, su
h as the renderingpro
ess, we need a 
atness that does not depends on the physi
al size of a pat
h. Su
h a
atness must be AÆne transformation invariant to be a 
onstant for any transformed versionof the pat
h. Su
h a 
atness is 
alled the relative 
atness of the pat
h. More spe
i�
ally, ifQ is the 
orresponding quadrilateral of pat
h S, the relative 
atness (RF) of S with respe
tto Q is de�ned as follows: RF = dmaxfD1; D2gwhere d is the maximal distan
e from S to Q, and D1; D2 are lengths of the diagonal linesof Q. It is easy to see that RF de�ned this way is AÆne transformation invariant. Note thatwhen D1 and D2 are �xed, smaller RE means smaller d. Hen
e, RE indeed measures the
atness of a pat
h. The di�eren
e between RF and AF is that RF measures the 
atness of apat
h in a global sense while AF measures 
atness of a pat
h in a lo
al sense. Therefore, RFis more suitable for operations that have data sets of various sizes but with a 
onstant sizedisplay area su
h as the rendering pro
ess. Using RF is also good for adaptive tessellationpro
ess be
ause it has the advantage of keeping the number of polygons low in the tessellationpro
ess.7.6 Algorithms of Adaptive TessellationIn this se
tion, we dis
uss the important steps of the adaptive tessellation pro
ess and presentthe 
orresponding algorithms.7.6.1 Global Index IDCurrently, all the subdivision surfa
e parametrization and evaluation te
hniques are pat
hbased [22, 25, 63℄. Hen
e, no matter whi
h method is used in the adaptive tessellation pro
ess,a pat
h 
annot see verti
es evaluated by other pat
hes from its own (lo
al) stru
ture eventhough the verti
es are on its own boundary. For example, in Figure 7.3, verti
es C4 and B4are on the shared boundary of pat
hes A1A2A5A6 and A2A3A4A5. But pat
h A1A2A5A6
an not see these verti
es from its own stru
ture be
ause these verti
es are not evaluated bythis pat
h. To make adja
ent pat
hes visible to ea
h other and to make subsequent 
ra
kelimination work easier, one should assign a global index ID to ea
h evaluated vertex so that� all the evaluated verti
es with the same 3D position have the same index ID;� the index ID's are sorted in v and then in u, i.e., if (ui; vi) � (uj; vj), then IDi � IDj,unless IDi or IDj has been used in previous pat
h evaluation.With a global index ID, it is easy to do 
ra
k prevention even with a pat
h based approa
h.A
tually, subsequent pro
essing 
an all be done with a pat
h based approa
h and still per-formed eÆ
iently. For example, in Figure 7.3, pat
h A1A2A5A6 
an see both C4 and B4even though they are not evaluated by this pat
h. In the subsequent rendering pro
ess, the



pat
h simply output all the marked verti
es (to be de�ned below) on its boundary that it
an see to form a polygon for the rendering purpose, i.e., A1A2C4B4A5A6.7.6.2 Adaptive MarkingThe purpose of adaptive marking is to mark those points in uv spa
e where the limit surfa
eshould be evaluated. With the help of the global index ID, this step 
an be done on anindividual pat
h basis. Initially, all (u; v) points are marked white. If surfa
e evaluationshould be performed at a point and the resulting vertex is needed in the tessellation pro
ess,then that point is marked in bla
k. This pro
ess 
an be easily implemented as a re
ursivefun
tion. A pseudo 
ode for this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBla
k(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the parameter spa
e of pat
h P. Fun
tion`Evaluate' evaluates limit surfa
e at the four 
orners of pat
h or subpat
h P de�ned on[u1; u2℄� [v1; v2℄. Fun
tion `FlatEnough' uses the method given in se
tion 7.3 and Eq. (7.4)to tell if a pat
h or subpat
h is 
at enough. Fun
tion `MarkBla
k' marks the four 
orners ofpat
h or subpat
h P de�ned on [u1; u2℄� [v1; v2℄ in bla
k. All the marked 
orner points willbe used in the tessellation pro
ess.7.6.3 Adaptive Rendering a Single Pat
hThe purpose of this step is to render the limit surfa
e with as few polygons as possible,while preventing the o

urren
e of any 
ra
ks. Note that the limit surfa
e will be evaluatedonly at the points marked in bla
k, and the resulting verti
es are the only verti
es that willbe used in the rendering pro
ess. To avoid 
ra
ks, ea
h marked points must be renderedproperly. Hen
e spe
ial 
are must be taken on adja
ent pat
hes or subpat
hes. With thehelp of adaptive marking, this pro
ess 
an easily be implemented as a re
ursive fun
tion aswell. A pseudo 
ode for this step is given below.



(a) Uniform (b) Adaptive (
) Adaptive

(d) Adaptive (e) Triangulated (f) Uniform

(g) Adaptive (h) Adaptive (i) Adaptive (j) AdaptiveFigure 7.4: Adaptive rendering on surfa
es with arbitrary topology.



(a) Uniform (b) Adaptive (
) Adaptive (d) Adaptive

(e) Adaptive (f) Triangulated (g) Uniform (h) Adaptive

(i) Adaptive (j) Adaptive (k) AdaptiveFigure 7.5: Adaptive rendering on surfa
es with arbitrary topology (Continued).



AdaptiveRendering(P, u1, u2, v1, v2)1. if (NoMarkedPointInside(P, u1, u2, v1, v2))2. RenderPolygon(P, u1, u2, v1, v2)3. else4. u12 = (u1 + u2)=25. v12 = (v1 + v2)=26. AdaptiveRendering(P, u1, u12, v1, v12)7. AdaptiveRendering(P, u12, u2, v1, v12)8. AdaptiveRendering(P, u12, u2, v12, v2)9. AdaptiveRendering(P, u1, u12, v12, v2)This routine adaptively renders marked points in pat
h or subpat
h P. Fun
tion `No-MarkedPointInside' tests if none of the points inside [u1; u2℄�[v1; v2℄, ex
luding the boundarypoints, are marked. If all the interior points are in white (i.e. not marked), it returns TRUE.Fun
tion `RenderPolygon' is de�ned as follows.RenderPolygon(P, u1, u2, v1, v2)1. glBegin(RenderModel)2. Output all the marked points between3. (u1; v1)! (u2; v1)4. (u2; v1)! (u2; v2)5. (u2; v2)! (u1; v2)6. (u1; v2)! (u1; v1)7. glEnd()7.6.4 Adaptive Rendering a CCSSThe overall algorithm for rendering a general CCSS is given below. The algorithm takes the
ontrol mesh of the surfa
e as input.CCSSAdaptiveRendering(Mesh M)1. for ea
h fa
e P in M2. AdaptiveMarking(P,0,1,0,1)3. for ea
h fa
e P in M4. AdaptiveRendering(P,0,1,0,1)7.7 Implementation and Test ResultsThe proposed approa
h has been implemented in C++ using OpenGL as the supportinggraphi
s system on the Windows platform. Quite a few examples have been tested with the



method des
ribed here. Some of the tested results are shown in Figures 1.9, 7.4 and 7.5. Wealso summarize those tested results in Table 7.1. The 
olumn underneath AjUjT in Table7.1 indi
ates the type of tessellation te
hnique (Adaptive, Uniform or Triangulated afteradaptive tessellation) used in the rendering pro
ess. For instan
e, Fig. 1.9(b) is generatedusing uniform subdivision, while Figs. 1.9(
), 1.9(d), 1.9(e) are tessellated with the adaptivete
hnique presented in this paper, and Fig. 1.9(f) is the triangulated result of Fig. 1.9(e).Also Fig. 7.4(e) and Fig. 7.5(f) are the triangulated results of Fig. 7.4(d) and Fig. 7.5(e),respe
tively. The term A/U ratio means the ratio of number of polygons in an adaptivelytessellated CCSS to its 
ounter part in a uniformly tessellated CCSS with the same a

ura
y.The term Depth means the number of iterative uniform subdivisions that have to be per-formed on the 
ontrol mesh of a CCSS to satisfy the error requirement. From Table 7.1 we
an see that all the adaptively tessellated CCSS's have relatively low A/U ratios. This showsthe proposed method 
an indeed signi�
antly redu
e the number of fa
es in the resultingmesh while satisfying the given error requirement.The `Error' 
olumn in Table 7.1 represents absolute error. We 
an easily see that, forthe same model, the smaller the error, the lower the A/U ratio. For example, Fig. 7.4(b)has lower A/U ratio than Fig. 7.4(
) and Fig. 7.4(d) be
ause the former has smallererror toleran
e than the last two. However, for the same model, if the di�eren
e of twoerror toleran
es is not big enough, the resulting adaptive tessellation would have the samesubdivision depth (see information on Figs. 7.4(g) and 7.4(h) or Figs. 7.5(b) and 7.5(
) inTable 7.1). As a result, the one with smaller error toleran
e would have higher A/U ratio,be
ause the 
orresponding uniformly subdivided meshes are the same. Another interestingfa
t is that Fig. 7.5(a) uses mu
h more polygons than Fig. 7.5(b) does, while the formeris less a

urate than the latter. This shows the presented adaptive tessellation method is
apable of providing a higher a

ura
y with less polygons.From Table 7.1 we 
an easily see that for di�erent models the absolute errors di�ervery mu
h. Therefore, for di�erent models, 
omparing their absolute errors might not makeany pra
ti
al sense be
ause absolute error is not aÆne transformation invariant. In themean while, from Table 7.1, we 
an see that RF is a mu
h better and more understandablemeasurement for users to spe
ify the error requirement in the adaptive tessellation pro
ess.From Table 7.1, we 
an also see that triangulated tessellations usually have higher A/Uratio, be
ause triangulation in
reases the number of polygons by at lease 2 times. Hen
etriangulation will slow down the rendering pro
ess while it does not improve a

ura
y. Fromthe view point of rendering, triangulation is not really ne
essary. But for some spe
ialappli
ations, su
h as Finite Element Analysis, triangulation is indispensable. As mentionedabove, performing triangulation on the resulting mesh of our adaptive tessellation pro
ess isstraightforward and fast.The proposed adaptive tessellation method is good for models that have large 
at ornearly 
at regions in its limit surfa
e and would save signi�
ant amount of time in the �nalrendering pro
ess, but may not have low A/U ratios when it is applied to surfa
es withextraordinary 
urvature distribution or surfa
es with very dense 
ontrol meshes. One maindisadvantage of all the 
urrent adaptive tessellation methods (in
luding the method proposed



here) is that they only eliminate polygons inside a pat
h. They do not take the whole surfa
einto 
onsideration. For instan
e, all the 
at sides of the ro
ker arm model in Fig. 7.5 arealready 
at enough, yet a lot of polygons are still generated there.7.8 SummaryA surfa
e-evaluation-based adaptive tessellation method for general Catmull-Clark subdivi-sion surfa
es is presented. The new method only evaluates those limit surfa
e points thatare needed in the �nal rendering pro
ess. On the other hand, while previous methods usea signi�
ant amount of e�ort to prevent the o

urren
e of 
ra
ks between adja
ent pat
hes,it takes almost no e�ort for the new method to eliminate 
ra
ks in the resulting ins
ribedpolyhedron of the limit surfa
e. Hen
e the new method is both 
omputation eÆ
ient andmemory eÆ
ient.The new ins
ribed approximation based adaptive tessellation method 
an be used tomeasure error 
aused by polygonal approximation. It also 
an be used for substantiallyredu
ing fa
e number of dense meshes with pre
ise error estimation.



Table 7.1: Experiment data of Figs. 1.9, 7.4 and 7.5Figure Obje
t AjUjT polygons A/U Ratio Depth Error RFFig. 1.9(b) Gargoyle U 16384 100.00% 2 0.0055 12%Fig. 1.9(
) Gargoyle A 14311 5.46% 4 0.0030 6%Fig. 1.9(d) Gargoyle A 5224 7.97% 3 0.0045 9%Fig. 1.9(e) Gargoyle A 2500 15.26% 2 0.0055 12%Fig. 1.9(f) Gargoyle T 6139 37.47% 2 0.0055 12%Fig. 7.4(a) Bunny U 65536 100.00% 3 0.0008 3%Fig. 7.4(b) Bunny A 32894 12.55% 4 0.0001 1%Fig. 7.4(
) Bunny A 9181 14.01% 3 0.0008 3%Fig. 7.4(d) Bunny A 3412 20.82% 2 0.0010 5%Fig. 7.4(e) Bunny T 7697 46.98% 2 0.0010 5%Fig. 7.4(f) Venus U 65536 100.00% 2 0.00095 8%Fig. 7.4(g) Venus A 29830 2.84% 4 0.00015 3%Fig. 7.4(h) Venus A 21841 2.08% 4 0.00035 4%Fig. 7.4(i) Venus A 9763 3.72% 3 0.00060 6%Fig. 7.4(j) Venus A 6178 9.43% 2 0.00095 8%Fig. 7.5(a) Ro
kerarm U 90624 100.00% 4 1.2 3%Fig. 7.5(b) Ro
kerarm A 36045 9.94% 5 0.85 1%Fig. 7.5(
) Ro
kerarm A 10950 3.02% 5 1.0 2%Fig. 7.5(d) Ro
kerarm A 5787 6.39% 4 1.2 3%Fig. 7.5(e) Ro
kerarm A 2901 12.80% 3 1.5 5%Fig. 7.5(f) Ro
kerarm T 6917 30.53% 3 1.5 5%Fig. 7.5(g) Beethoven U 65536 100.00% 2 0.041 10%Fig. 7.5(h) Beethoven A 20893 1.99% 4 0.006 4%Fig. 7.5(i) Beethoven A 15622 1.48% 4 0.026 6%Fig. 7.5(j) Beethoven A 7741 2.95% 3 0.035 8%Fig. 7.5(k) Beethoven A 5230 7.99% 2 0.041 10%
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