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Summary

This is the summary of our work during the past two and half years (June 1, 2007 - Septem-

ber 30, 2009). Technical tasks finished during this period include: the construction of a

standard model, the construction of a occlusion model, the design of a mouth scan system,

mesh simplification technique, mesh interpolation technique, mesh curvature computation

technique, mesh segmentation technique, constraint based scaling, offset surface generation

technique, a square tube mirror based imaging system, and a feature based shape recon-

struction technique. Four generations of a prototype have been built.

We consider this grant a success. Our most important achievement is the development of

an imaging system and required geometric algorithms to support 3D shape reconstruction.

We also produced two MS students (Jiaxi Wang, graduated in March 2008, and Conglin

Huang, graduated in June, 2009), 8 journal papers and 6 conference paper. A PhD student

that has been supported by this grant (Mr. Fengtao Fan) will graduate at the end of next

year.
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1 Introduction

Current dental CAD/CAM systems can do 3D design of veneers, inlays/onlays, crowns/Cores,

bridges/frameworks [138]. A patient can go to a dentistry to get dental restoration service

such as the ones mentioned above in only one trip [138]. However, this is not possible if a (re-

movable) partial denture is needed, even though the current CAM technology can handle the

partial denture manufacturing process completely [96][123]. The problem is with the CAD

representation of the patient’s mouth required by the CAM system: such a representation

simply is not there. The problem is twofold.

(a)

(b)

(c)

Figure 1: Brontes’ product: (a) the 3D imaging system; (b) bolt-on camera; (c) system
illustration.

First, with current intraoral data acquiring devices, it is not easy to obtain enough

data for the construction of a complete CAD representation of a patient’s mouth. Current

intraoral data acquiring devices can be classified into three categories: video camera based,

X-ray based, and active wavefront sampling based. In the first case, the hand-held devices,

covering only one or two teech, are mainly used as a visualization or inspection tool. They

produce no 3D information required for CAD/CAM design. In the second case, by doing a

full X-ray scan (200 X-rays or more), the device can get quite good 3D information of all the

teeth and the jaws. But this approach does not provide good information on soft tissues such
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as the gums which are critical in the reconstruction of the patient’s mouth for partial denture

design. In the third case, the single-camera device can actually see in 3D. Brontes’ product

is the only product in this category [74] (see Figure 3 for the imaging system, the camera

and the system illustration of this product). However, like all the imaging systems, it can

only provide information on visible portions of an object, it can not provide informtation

on the portions of an object that it can not see. Therefore, dentists are still using the

impressing-taking approach to reproduce a patient’s mouth even though this approach has

problems such as: (1) the need of taking multiple impressions; (2) remakes and multiple

try-ins of the partial dentures due to poor quality of the impressions; (3) over extended or

under extended borders of the partial dentures; and (4) dimension instability due to alginate

shrinkage/expansion.

Second, there is not design support for compact, one-piece representation of the mouth of a

patient. CAD representations supported by current chairside CAD/CAM systems are either

mesh based or NURBS-based [145]. Mesh-based representations are expensive to maintain

and process because usually excessively large amount of vertices and faces are needed in

the representation to reach a required precision. On average, 20,000 vertices and faces are

needed in a single tooth representation in this approach [145]. The NURBS-based approach,

on the other hand, limited by the rectangular grid topology of its parameter space, can not

represent complicated shape with only one surface. Therefore, current chairside CAD/CAM

systems are hindered not only by insufficient data for the reconstruction of a mouth, but

also inefficient CAD modeling techniques in representing the mouth.

2 Objective

The goal of this project is to develop a device that is capable of reproducing the mouth

and occlusion of a patient. The device is composed of a Mouth Scan System (MSS), a flat-

panel liquid crystal display (LCD) monitor, a PC, and a set of reconstruction, modeling and

rendering programs (see Figure 2 for the design).
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Figure 2: Conceptual deisgn of an MSS.

A dentist uses the MSS, instead of the traditional impression taking approach, to get

(multiple-view) image data of the visible portions of the teeth and gums of the patient. The

image data then go through a triangulation, a feature detection and a registration processes

to get an as complete as possible representation of the teeth and gums of the patient. This

still incomplete representation is then combined with a standard model to reconstruct all the

existing teeth and gums of the patient. The reconstructed 3D computer model can be used

as a diagnostic aid for treatment planning or as a blue print for the design and manufacturing

of dental appliances, such as partial dentures. It can also be used for patient education and

identification purpose.

3 Technical Tasks

[Building a generic Model]: Because the intraoral data acquiring process can not get

complete data of the mouth, a standard model has to be used with the acquired data to

build a patient’s mouth and occlusion. This model should be able to provide information

efficiently and accurately enough for all subsequent comparison, matching and morphing

processes. Second, the data set received from the intraoral data acquiring process has to be

segmented into groups so that the points of each group are either from an individual tooth

or a gum. //
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[Tooth/Gum Matching]: For each resulting new data point group, we need to perform

a coarse-grained matching [69] process to identify the corresponding tooth (gum) in the

standard model. This process should be done using a feature-based approach to make it

efficient. So we need to know the features of each segmented data group, as well as the

features of each tooth and gum of the standard model [115]. We then perform a fine-grained

matching to identify the exact location of each segmented data set on the representation of

the standard model. //

[Tooth/Gum Morphing]: The next step is to modify the standard model so we can get a

representation for each tooth and gum of the patient. This process involves rigid motions,

scaling and deformation. Everything up to this point is point-based. After this step, we

need to perform a surface fitting process so a parametric representation can be obtained for

each tooth and gum of the patient.

Techniqeus that have to be developed here include feature detection, feature based match-

ing, subdivision surface based interpolation techniques, point based data segmentation, point

based 3D reconstruction, standard model construction, coarse-grained matching, fine-grained

matching, morphing of subdivision surfaces, constraint based deformation, offset and blending

subdivision surface generation, and subdivision surfaces intersection. The standard model,

the mouth model, and the occlusion of the patient will be represented by Catmull-Clark

subdivision surfaces.

4 Experimental Method

The techniques used in performing our tasks are illustrated in this section.

[Pointwise 3D Reconstruction] Pointwise 3D reconstruction starts with the intraoral

data acquisition process, to be performed by the Mouth Scan System (MSS). An MSS is

composed of an Axial Stereo Vision unit (see Figure 2 for the design of an Axial Stereo

Vision unit). The concept of axial stereo vision has been studied for a while [130][81][139].
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Figure 3: A square tube mirror based imaging system: generation 1.

But usually only an oridnary lens is used in the system. Our design of the MSS is novel

because it is the first time a square tube mirror is used in such a system (see Figure 3). In

order to retrieve 3D coordinates from 2D images, the images need to be calibrated. The

famous Tsai technique [146] is used here.

[Depth Reconstruction] It is possible to calculate the depth information using an tech-

nique called light attenuation sterro (LAS). However, this new technique could fail if direct

illumination is not strong enough to reach the back side of the teeth. With our novel ap-

proach of the MSS structure, one can compute the depth for a point in the central view of

an MSS image by using information obtained from the right view or left view (see Figure 4).

[Standard Model Construction] since point based representation is too expensive for

storage and processing, and information on individual teeth and gums is needed for the re-

construction process of teeth and gums of the patient, the best choice to build a standard

model is to create a parametric representation for each individual tooth and gum. This

is done by scanning individual teeth and gums, forming a 2-manifold mesh with a desired

combinatorial structure through triangulation of the unorganized point cloud, doing a sim-
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Figure 4: Depth computation for points in the central view of an MSS image.

plification process to reduce the complexity of the 2-manifold mesh, and then performing a

surface fitting process to get a parametric representation for each tooth and gum (Figure 5).

(a) (b) (c)

Figure 5: (a) Artificial ceramic teeth scanned for the standard model; (b) upper jaw teeth
of the standard model; (c) lower jaw teeth of the standard model.

The third step, mesh simplification, is necessary because the number of points generated

by the scanning process is very large (more than 20,000 points/faces generated for each

tooth), way beyond the capability of any of the current surface interpolation technologies.

A shape-preserving simplification technique [79] is used for this step, although a technique

published earlier can achieve the same goal as well [104]. Catmull-Clark subdivision surfaces

(CCSSs) is used for the fitting process [76].
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[Subdivision Surface based One-Surface Fitting] B-spline and NURBS surfaces have

been used extensively in fitting 3D data points [90][91]. But they can not fit data points with

arbitrary topology. A better approach is to use subdivision surfaces in the fitting porcess be-

cause it is possible to fit any data points with only one subidivion surface and, consequently,

no segmentation of the data set is required in the shape reconstruction process. Subdivision

surfaces include uniform B-spline surfaces, piecewise Bézier surfaces, non-uniform B-spline

surfaces and NURBS surfaces as special cases [134]. So they are the most general surface

representation scheme so far. Figure 6 is an example of this fitting process [48].

(a) (b) (c)

Figure 6: (a) Given data mesh M , (b) limit surface of M , (c) subdivision surface intgerpolates
M .

[Point based Data Segmentation] In this research, segmentation of 3D points sampled by

the intraoral data acquisition device will be done using a combination of edge-based approach

[115] and region-based approach [148]. First, this is possible because topological information

on the data sets is known, therefore seed surfaces can be defined for a region-based approach.

Second, this is necessary because the 3D data set received from the data acquisition process

does not contain many of the natural boundaries between adjacent teeth (the camera can

not see them), therefore an edge-based approach can not do the work completely by itself.

An edge detector designed as a convolution mask will be created first. The edge detector
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combines the functions of Gaussian smoothing and differential property estimation. Edge

detection is then a zero crossing search in the convoluted signal [77]. The information re-

ceived from the edge detector will be combined with all the boundaries of the gaps in the

data set to form the path in doing the segmentation.

[Mesh Matching] For each segmented data group, geometric features are identified using

a point-based approach [115], focusing on corners and ridges. For teeth and gums in the

standard model, the features are identified by examining the curvature of the subdivision

surface representation. Note that parametrization techniques for Catmull-Clark subdivision

surfaces are available [20][159][51]. Therefore, identifying features for objects represented by

Catmull-Clark subdivision surfaces is possible.

[Morphing of Standard Model] In general, due to change of curvature distribution after

a scaling process, it is not possible for the new surface S̄ to have exactly the same shape and

dimension as the unconstrainedly scaled surface while carrying all the original features. An

approximation method is used to construct S̄. In this work, the new surface is constructed

following the fix-and-stretch based approach [55].

[Constraint Based Deformation] An automatic shape shrinking/expanding method for

subdivision surfaces that would stop the shrinking/expanding process once some pre-set

conditions are met is needed and has been developed. In this case, the pre-set conditions

are locations of adjacent teeth, teeth on the opposite jaw, and information we received from

the segmented results of the incomplete representation of the teeth and gums.

The difference between this technique and the technique presented in [55] is that in this

case, the entire surface is scaled while, in the latter case, only certain portions of the surface

are scaled (see Figure ?? for details). Another difference is, in this case, the scaling is not

uniform even the entire surface is scaled.
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[Offset and Blending Subdivision Surface Generation] For a given subdivision surface

S, the work we need to do here is to create an offset surface S∗ for a specified portion of

the given surface. Our approach here is to use a combination of constrained scaling and

constrained translation to get a general offset surface generated and then use surface-surface

intersection to remove undesired portion of the surface. This approach is independent of the

topology of the base surface and, consequently, can be used for surfaces whose parameters

are not rectangular such as subdivision surfaces.

A blending surface is generated by mixing several base surfaces with appropriate weights

to form a new surface. The weight of each base surface is determined by a real-valued func-

tion called ”weightfunction” or ”blendingfunction”. The basic idea is to construct a rail

curve on both surfaces, using the surface-surface intersection technique shown below, then

build a general blending model. This is because the construction of a smoothing surface for

two intersecting surfaces requires the computation of the intersection curve in certain cases

only. The computed intersection curve does not have to be exact; a good approximation

would usually be enough. The construction of the rail curve and the blending area are per-

formed in parameter space to avoid unnecessary adjustment process. A blending technique

for the smoothing of a sharp corner shared by three faces is developed here too.

[Subdivision Surfaces Intersection] The intersection operation is performed in the pa-

rameter spaces of the subdivision surfaces, not in object space. A cubic frame buffer is

created for each closed subdivision surface (a solid: a tooth or a gum). The representation

of each tooth (gum) is voxelized first and then a volume flooding is performed to mark all

the voxels that are inside the given tooth (gum).

[Outcome Assessment] We use one metric in assessing the outcome of the innovation

research described above. We consider the outcome a good one if the relative error in each
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case is smaller than or equal to 3% of the dimemsion of a tooth. Measuring absolute error

does not make much sense here because the dimension of a tooth is already relatively small.

The reason for using 3% for the relative error bound is because it corresponds to half a pixel

in a resolution of 1280 × 960. This bound is used both for DMR and shape representation.

5 Results and Discussion

[Mouth Scan System] Our square tube mirror based imaging system has been improved

three times. Generations 2 through 4 are shown below.

Figure 7: A square tube mirror based imaging system: generation 2.

Figure 8: A square tube mirror based imaging system: generation 3.

The imaging system captures the scene from the real viewpoint of the camera as well as

eight virtual viewpoints produced by the mirror (see Figure 10). Hence, enough information
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Figure 9: A square tube mirror based imaging system: generation 4.

is provided for 3D shape reconstruction. The reconstructed 3D result is shown in Figure ??.

Figure 10: (a) An image with 9 different views of the scene produced by STMIS; (b) Recon-
structed depth map of the central view.

[Standard Model] A standard model is built by putting the teeth built our team into the

holes of the extended gums built by our team. Several views of the standard model are

shown in Figure 11. This is the best standard model we have seen so far.

[Occlusion Model] An occlusion model based on the standard model has been developed.

Examples of the occlusion model are shown in Figure 12.

[Teeth and Gum Matching] A curvature computing program has been built and tested

during this time. With this program, features of a patient’s teeth can be identified and

compared with the standard model to identify the correspondence between the input teeth

and teeth in our database. Teeth matching based on curvature distribution is currently been
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(a) Top-1 (b) Top-2

(c) Bottom-1 (d) Bottom-2

Figure 11: Standard model built by our team.

developed.

[Teeth and Gum Segmentation] A segmentation program has been developed. The teeth

and the gums of the standard model are segmented using this technique and the results are

shown in Figure 13. The original mesh is shown in Figure 11. Corrected We use different

colors for different teeth and gums to show the correctness of our results.

[Offset Surface Generation] An offset surface generation technique for Loop subdivision

surface has been developed.

[Outcome Assessment] We use one metric in assessing the outcome of the innovation re-

search described above. An outcome is considered a good one if the relative error in each case

is smaller than or equal to 3% of the dimemsion of a tooth. Measuring absolute error does

not make much sense here because the dimension of a tooth is already relatively small. The

reason for using 3% for the relative error bound is because it corresponds to half a pixel in

a resolution of 1280×960. This bound has been used for both DMR and shape representation.
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(a) Open-1 (b) Open-2

(c) Closed-1 (d) Closed-2

Figure 12: Occlusion model built by our team.

6 Commercialization Plan

In this section, we present our plans/steps towards commercialization and our strategy in

achieving it along with estimated timeline.

6.1 Plans towards Commercialization

Our short-term (year 1 to year 2) plan is to build STM lens that can be sold as a pair with

3D digital photo frame or document camera.

Our mid-term (year 3 to year 5) plan is to build STM camera that can be used as a 3D

web camera for desktop or laptop/notebook PC’s.

Our long-term (year 5 to year 10) plan is to build STM lens and camera for movie
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(a) Top-1 (b) Top-2

Figure 13: Results of segmenting the bottom teeth: (a) with gum; (b) without gum.

industry, health industry and auto industry.

6.2 Strategy for short-term goal

We are currently working with two companies to develop STM lens for our short-term goal.

These companies are:

• Young Optics, Inc.

• Mustek Systems Inc.

Our work with Young Optics is to develop STM lens that can be used in their document

camera that will be released in the last quarter of next year.

The document camera is aimed at class rooms of elementary schools, middle schools and

high schools of North America, Europe and North-East Asia.

The price range of a document camera is aimed at US$599. The STM lens (including an

embedded system) that will be used in the document camera to convert 2D images to 3D

images will be in the price range of US$100 to US$150.

Young Optics is expect to sell 100,000 to 200,000 units of their document camera a year

initially.

Our work with Mustek Systems is to develop STM lens (together with a software CD)

that can be used by low-end or mid-end digital cameras to generate 3D images for their 3D

digital photo frames to be released in the third quarter of next year.
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The price range of the (7”) 3D digital photo frames is between US$199 and US$299. The

price of the STM lens and the CD will be below US$100 to ensure the combined price of the

pair is acceptable to the consumers.

Currently the sales volume of 2D digital photo frames is 20,000,000 units a year. 3D

photo frames, with a higher unit price, will not be able to achieve such a sales volume in the

initial three or five years. Our estimate is to sell 200,000 to 300,000 units a year initially.

6.3 Strategy for mid-term goal

We will work with some potential comapany (most likely Young Optics) to develop STM

carema that can be used as a web camera for desktop and laptop/notebook PC’s. This is

our year 3 to year 5 plan.

This job is not easy, but will be very rewarding if successful. Currently, more than

20,000,000 PC’s are sold each year. it is estimated that by 2012, 47,000,000 units of PC will

be sold each year. Hence a product that can be used as a web camera by PC’s will have a

big sales volume. The price of an STM camera is expected to be below US$100.

6.4 Strategy for long-term goal

We are working with MacKay Memorial Hospital in Taiwan to develop STM lens for their

endocsopes. We don’t have any prototypes yet. So, we don’t have a concrete picture for this

part yet.

7 Conclusions

Technical tasks finished during the past 30-month period (6/1/07 - 9/30/09) include: the

construction of a standard model, the construction of a occlusion model, the construction

of a mouth scan system, mesh simplification technique, mesh interpolation technique, mesh

curvature computation technique, mesh segmentation technique, constraint based scaling,

offset surface generation technique, and feature based matching technique.
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We consider this grant a success. We not only have reached most of our research goals,

i.e., developing the necessary imaging system and required geometric algorithms to support

the reproduction of a patient’s mouth and occlusion, but also produced two MS (Ds. Jiaxi

Wang, graduated in March, 2008, and Conglin Huang, graduated in June, 2009), 8 journal

papers and 6 conference paper. A PhD student that has been supported by this grant (Mr.

Fengtao Fan) will graduate at the end of next year.
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[22] Peter Schröder, Denis Zorin, Subdivision for Modeling and Animation, SIGGRAPH’98
Course Notes, 1998.
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[122] Mörmann WH, Brandestini M, The fundamental inventive principles of CEREC
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