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Abstract A new method for constructing interpolating Loop subdivision surfaces is ptur"fd. The new method is an
extension of the progressive interpolation technique for B-sg\nes. Given a triangular ^op/U, ttr. idea is to iteratively
upgrade the vertices of M to generate a new conirol mesh V such that limit surface of $? would interpolat e M . It, ca1
be shovrn that the iterative process is convergent for Loop subdivision surfaces. Hence, ihe method is well-defined. The
new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any
topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes.
The meshes considered here can be open or closed.
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1 Introduction This makes interpolating subdivision schemes very sen-

sitive to irregularity in the given mesh. In addition, it
Subdivision surfaces ale becoming popular in many is difficult for this approach to interpolate normals or

a r e a s s u c h a s a n i m a t i o n , g e o m e t r i c m o d e I i n g a n d g a m e s d e r i v a t i v e s . >
because of their capability in representing any shape On the other hand, even though subdivision surfaces
with only one surface. A subdivision surface is gen- generated by approximating subdivision schemes do not
erated by repeatedly refining a control mesh to get a interpolate their control meshes, it is possible to use this
limit surface. Hence, a subdivision surface is deter- approach to generate a subdivision surface to interpo-
mined by the way the control mesh is refined, i.e., the late the vertices of a given mesh. One method, called
subdi'ui'sion scheme. A subdivision scheme is called an global optimization, does the work by building a global
'interpolati'ng scherne if the limit surface interpolates linear system with some fairness constraints to avoid
the given control mesh. Otherwise, it is called an ap- undesired undulations[7'8]. The solution to the global
prouimating scheme. Popular subdivision schemes such Iinear system is a control mesh whose Iimit surface in-
as Catmull-Clark schemelll, Doo-Sabin t.lt"rnsl2l, and terpolates the vertices ofthe given mesh. Because of its
Loop schemsl3J are approximating schemes while the gloial property, this method generates smooth interpo-
Butterfly schemelal, the.,improved Buttedy schemel5] lating subdivision surfaces that resemble the shape of
and the Kobbelt scheme[6] a.re interpolating schemes. , the jiven meshes well. But, for the same rea.son, it is

\ An interpolating subdivision scheme generates new difficult for this method to handle meshes with a large
vertices by performing local affine comblnations on number of vertice"- 

)
nearby vertices. This approach is simple and easy to To avoid the computational cost of solving a Iarge
implement. Because of its local property, it can handle system of Iinear equations, several other methods have
meshes with a la"rge number of vertices. However, since been proposed. A two-phase subdivision method that
no vertex is ever moved once it is computed, any dis- works for meshes of any size was presented by Zheng
tortion in the early stage ofthe subdivision will persist. and Cai for Catmull-Clark schemJel. A method prol '1
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posed by Lai and Cheng!10lf。 r Catmul⒈ Clark subd⒈

visi° n scheme a△ oids the need of s° lving a system ° f

by quasi-interpolating the given meshlrll. However, a
method that has the advantages of both a local method

the given mesh is obtained. It can be proved that the
iterative interpolation process is convergent for Loop

niqlle to open meshes is considered in Sec1ion4 Im-

:嚣揩‰窍I邑翼器J裂蒈荐i戌:拶俨 whσe

2 Progressive Interpolation Using Loop
Subdivision Surfaces for Closed Meshes

The concept of Loop subdivision surface based pro-
gress'iue interpolatrion for closed meshes can be de-
scribed as follows.

Given a closed 3D triangular mesh M : M0. To
interpolate the vertices of M0 with a Loop subdivi-
sion surface, one needs to find a closed control mesh
.&1 whose Loop surface passes through all the vertices
of Mo. Instpld of finding the relationship between the
vertices of ,VI and the vertices of M0 directly, we use
an iterative process to do the job.

First, we consider the Loop surface ,90 of M0. For r|
each vertex VD of Mo, vr'e compute the disiance(6-e-/
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tween this vertex and its limit point V! on ,90,

V t : V o  +  D o .

Dk:vo  -vL .
(1)

y∞ =仇 y+(1-画
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and a global method is not available vet. The set of all the new vertices is called M1. We then
In this paper a new method for constructine u consider the Loop surface ,51 of Ml and repeat the

smooth Loop subdivision surface that interpolates ihe same process.

vertices of a given triangutar *"J i, ;;;;;;"iil 
In 

.general, 
if ye is the new location of V0 after k

new method is an extension of the progressive interoo_ iterations of the above process and Me is the set of all
larion rechnique for B-splinesil2liit- fi;l;;r;-;;l; the- new Vk's, then we consider the Loop surface Si
atively upgrade the locations ofthe eiven mesh vertices of Mx. We first compute.the distance between V0 and
until a control mesh whose fmit ."rfr." 

-itrt"tl"frt"r 
the ljmit point V\ of Vk on Sk

Mre七 hen add this distance乇 oy凡 t。 get y朽
+l as follom·

s:
1he meth° d is weⅡ-definedsubdo`ision surfaces Hence,

for L° 。p subdl访 sion,sllrfaces The lim此 of the iter【 itive           y幻
艹
=v幻 +D乃

        ⑿ )intσ polati° n process has tlle form° f a gl° bal method

ca1led n犭丙+1
But七 he Contr° l points of the limi乇 surface ca⒒ be c° m~    The se乇

of new vertices is

puted using a l° cal appr。 ach Therefore,the ne、 v tech-      This pr°
cess generates a seqtlence of c° ntrol rneshes

nlque enloys the advan1ages of b° 1h a l° cal meth。 d    J犭 凡
and a sequence ofc° rresponding Loop surfaces S幻

and a global meth° d,ie,i乇 can handle meshes° f any    s人
 c。 nVerges to an interpolating surfat· e of.l/fO if1he

distance bet丙 veen s凡 and f,r° c。 rn`erges to zero Ther⒐

size and any1°
pol° gy、 ȟⅡ e generating sm° oth interp° -

lathg sub山 △
·
l⒍ °n surhces that falthfull1· resemble the  f。

le the key1ask here谂 1o pr° ve that D幻 c° nxerges to
shape° f the龄 龟n meshes The meshes con⒍ dered here  zerO when钅

tends1o innnI1y Thls wⅡ l be d° ne in the

next sec11° n

can be open or closed

The rem峦 ning part of1he paper is arranged as fol~      N。
七e七 hat for each iteration in the ab`龟

process,the
Iows In section2,we present the concept ofprogressive    罕

;i、
Ι

°
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i°n。 f the limit point y匕 。f

surface, the limit point of a
interpolation f° r L° °p subdivisi° n surfaces 。 n closed

meshes In secti° n3,、 ě prove the com`ergence of this    c。
n乇 rol vertex y with valence厄 can be calculatod as

follow⒏ss Extension° f this1ech~iterative interp° lation pr° ce

侈n=

(3)

(3)
11-8×

 (軎
+(:+:c:鄂

Q=斋Σ~QⅡ
i : l

Q' are adjacent vertices of V. This computation in-
volves nearby vertices only. Hence the progressive in-
terpolation process is a local method and, consequently,
can handle meshes of any size.

Another point that should be pointed out is, even
though this is an iterative process, one does not have
to repeat each step strictly. By finding oui when the
distance between Mo and, Sh would be sma.ller than
the given tolerance, one can go directly from M0 to
Mk, skipping the testing steps in between.
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3 Convergence of the Iterative
fnterpolation process for Closed Meshes

The proof needs a fact about the eigenvalues of the
product of positive definite matrices. ihis fact is pre_
sented in the following lemma.

_2.--_____-\ , l:**u 
I . Eigenualues of the prod,uct of positi,ue

/n .o \ o.efinzte metnces ere positiue.

Y5)roVrnt pro-of of Lemma 1 follows immediately from rhe
ract that it p and, e are squaxe matrices of the same
dimension, then pe and ep have the same eigenvalues
(see, e.g., [r7], p.r ).

To prove the convergence of the iterative interpola_.
tion process for Loop subdivision surfaces, note that at
the (k + llst step, the difierence Dn*1 can be wdtten
as:

Dh+t _v0 _ vh+1
:Vo -  ( l3rLvk+1 +$-  p*)ek+t)

*49t9 eu+t is the average of the n adjacent vertices of
vh+r

q, . r t  _ t  io f * , .
"3.='

By applying (2) to Vk+t and each ef+1,

proper咖 咖
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and ,9 is a symmetric matrix of the followinE form:
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D is obviously positive definite. We will show that
the matrlx S is also positive definite, a kev Doint in [he ), ^o
convergence proof ,,\ ys!

Theorem l. The matria S is positiue dertnite. 
u 

Y* "-Proof. 'to prove S is positive definite, we have m F6 1
show the quadric form

f  (q ,xz , . . . , r ^ )  =  x rsx

is positive for any non-zero X : (q,r2,...,n^)r.

, Note that if vertices Vi and Vi are the enJpoints
of an edge e;3 in the mesh, then srj : sj, : 1 in the

￠
屮 =铹 +刊

珈 勹 老 w。 b八

we get

Dh+l -Vo -  @*Vk + (L -  B;ek)

-G砂+絷軎砌
=D狩 -(̀nD幻

+亠

ˉ
′乃

z1￡ 宅刃
)

嬲

r:nf:丨

J:刂:1∶摞 1.:∶Jhe n adJacentvertices°

f

ID壬
+1,D各 +1

where m is the number of vertices in the given matrix, I
is an identity matrix and .B is a matrix of the followins

The mal,rix .8 has the following properlles:

l !bZ > 0, and ! j_, b,,  _ r (hence, l lBl l_ = i) ;
z).rhere are ni + I posil,ive elements in l,he i_th row, { I I

and the positive elements in each row are equal exceDt 
',a

the clemenr on the diagonal l inqz, ^ "?e
3)/n bij -- 0 , r,hen 6;i : qfr/ ; 

':

_ 
Properr,ies 

, t.), and 2) follbw immediately from t he
formula of D*+r in (3). property 3) is true because
if a verlex Vi is an adjacent vertex to y, then y.
is obviously an adjacent vertex to V;. Due to thesi
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matrix S. Hence, it is easy to see that

I  Wt,  12, . . .  1  In  )  :  L2r  i r j  f  D : !?  r?
e i j  i - l  

_

where e;, in the first termjy'
r'---#\ ranges through att edges of rhe given mesh. On the

other ha"nd, if we use 17. to represent a face with ver-
lices V6 V i and V," in the mesh, then since an edge in
a closed triangula.r mesh is shared by exartly two faces,
the following relationship holds:

l { " r+r1 + r , )2 : l4r i r i  + ln6r2u
∴j' 讠=1

where /rjr on the left hand side ranges through all faces
ofthe given mesh. The last term in the above equation
follows from the fact that a vertex with valence n is
shared by n faces of the mesh. ,(An

Hence. /(r1, ,n2, . . . , rn ) can be $piessed as

s -  1 ,
f l : r t , n , . . . . r n )  -  

)  . ; ( " r  -  . r i  +  r " ) 2
r,j、

+蘑:(芋缡钫

￡ oop s乜 bd饣 vls讠 o阮 s乜 rrGce诒 c。厄vet乡 e勿 侈

Proo∫  The iteratlse pr° cess is c° nvergent if and

only if abs° lu七 e△
·
alue of the eigenvalues of the matrix

P = r~B are all less than 1, ° r all eigenvalues入
b

1≤ 讠 ≤ m,of B aJe0<λ 犭 ≤ 1

1      1

Ξ      Ξ

-

(b)
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Since llB]l- : 1, we have )r ( 1. On the other
hand, since I is the product of two positive definite
matrices D and S, following Lemma 1, all its eigen-
values must be positive. Hence, the iterative process is
convergent.

4 Extension to Open Meshes

Loop subdivision surface based progressive interpo-
lation technique can be used for open meshes as well.
Actually the same advantages hold for open meshes too.
Before we present Loop subdivision surface based pro-
gressive interpolation technique for open meshes, we
need to review subdivision rules for the boundaries of
an open mesh first.

Two kinds of boundary rules have been presented
for Loop subdivision in the literaLurelrs-211. In Lhjs t*,t?
papcr. we follow the rules presented in [r'f-?.if.-Tt6€-'" 

' r

rules, together with the Loop subdivision schemes, gen-
erate a smooth surface that is C1 continuous at the
tsuldadssf4sf- tt I l]

For these rules to work, the vertices on the bound-
ary are divided into two categoriesi reguler uertices and
ertraord,inary uerti,ces. A, boundary vertex is called a
regular vertex if its valence is 4, as the one shown in
Fig.1(a). Otherwise, a boundary vertex is called a.n ex-
traordilary vertex,

For each existing boundary vertex, a new vertex is
computed as a linea,r combination of the existing ver-
tex and its two neighbors with weights Z/4,718 aI,Ld
1/8, respectively. This vertex formula applies to both
regular vertices and extraordinary vertices.

For each boundary edge, a new edge vertex is gen-
erated in two ways. lI rhe endpoints of the edge are
both regular or both extra.ordinary, then the new ver-
tex is just the average of the endpoints. If one of them
is regular and the other one is extraordinaxy, then the
new vertex is a linear combination of the regula;r vertex
and the extraordinary vertex with weights 5/8 and 3/8,
respectively, as in Fig.1(c).

瞥)σ;

-

吉 萼 营 青 器 青 青 菁 斋 斋 箭 斋 斋 篙 斋
—  —  ⋯  ⋯  -

(0             (gl     o 【ll)            O

5               3

8              8

-

(c)

3       1

4      8

′   夕
卞 。

1      4      1

6      6      6

-

C)

<伽 召
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讪

regular vertices a.nd rectan€ile points are extraordinary"vLrtices. 
'l rl
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Lirnit points are computed using two formulas, one

for regular vertices and one for extraordinury lr"rtia"a,
as in Figs. 1(e) and 1(f). These formulas require both
neighbors to be regula.r vertices. On boundaries of the
initial mesh, one vertex could have either reaular or ex_
traordinary vert,ices. There are loraljy 6 dif lerent con_
figurations. For each configuration, we can get a new
limit point formula by combining r,he bounda-rv subdi_
vision rules with the standard limit points. These 6
limit point formulas are shown in Figs. 1(e)-1(j).

Note that boundary subdivision involves oniv the
boundary vertices. Therefore interpolation can be per-
formed for boundary vertices ffrst, Once we have all
the boundary vertices, interpolation of interior vertices
is then performed without making any changes to the
boundary vertices. The final mesh will interp;late both
l"he boundary vertices and the interior vertices exactly.
Interpolation of the boundary vertices is done usins our
progressivc interpolation technique. The converqlnce
of the interpolation is guaranteed. A mesh s6uld"hays
several disconnected closed boundaries, such a.s 6 in the
pipe model in Fig.3(a). For earh closed boundary, a lin_
ear system of equations can be built based on the Iimit
point formulas for boundary vertrces.

,<\ 4 v3 - EVe.
/1V/

Since f,er"y row is from one of the 6 limit poinr, for_
mulas, then E must, be a strictly diagonally dominant
matrix which mea\s \=1.r*, e6i ( ei1. The eigenval_
ues ,\i of E satisfu l); j ( 1 for Xi=. e;1 : 1. Thus
the eigenr.ralues of .Earein(0, 1]. TIie advantage ofour
technique is very desirable. No matter how manv dis_
connected boundaries there are, interpolation is done
for all boundaries at the same time just through the
local geometric operations. It avoids explicitly ;lving
several linear equations separately.

Interpolation of interior vertices also uses the pro_
gressive interpolation technique. Its converqence is also
provable. Let V : VaUVt be the verrex set of the ini_
tial mesh M, where Vp and V1 are the set of bounda.ry
vertices and interior vertices. respectively. If we adi
one extra vertex q Lo M and connects every boundary
vertices with q, we get an closed mesh M, with vertex
s e t W t : V U q .

Ap'plying the vertex limit point formula (3) to inte_
rior vertices, we get a linear equation:

Vr*:WV :WrVt  *  WnVn.

V[ is a submatrix of I,Iz consisting of lV1] columns of
Vtrl corresponding to the interior vertices. trI/6 is a sim_
ila.r submatrix corresponding to the boundarv vertices.

, ,  -+ tn
matrix 9Y. 

i'- ?-
For (his new closed mesh Mt, it 1s okay to apply

the progressive interpolation technique developed in ihl
previous sections. Therefore, the following equations
hold.

Th·at is,
嗲
=F纵

n
√

\ :

5 Results V

- 
Ttre progressive interpolation process is implemented

fbr Loop subdivision surfaces on a Windows olat_
lorm using OpenC L as the supporting graphics system.
Quite a few cases have been tested, Some of the closed
cases (a hog, a rabbit, a tiger, a statue, a boy, a turtle
and a bird) are presented in Fig.2. AII the data sets are
normalized, so that the bounding box of each data set
is a unit cube. For each closed case, the given mesh and
the constructed interpolating Loop surface are shown.
The sizes of the data meshes, numbers of iterations Der_
formed, maximum and average errors of t,hese cases are
collected in Table 1.

0f of Max Error Ave Error
Vertices Iterations
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Open mesh examples are shown in Fig.3. The per_
formance is about the same as the closed mesh exam-
ples. For instance, for the face model (299 vertices)
shown in Fig.3(c). it takes l0 iterations to reach an er_
ror of 0.000 998 516 for boundary vertex interpolation
and also 10 iterations to reach an error of 0.000 g96 32g
for interior vertex interpolation by the new pogressive
interpolation technique.

Ifi is similar to B for closed It can be decom-
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