Algorithm pipeline

Abstract:

We propose a novel method for detecting horizontal vanishing points and the zenith vanishing point in man-made environments. The dominant trend in existing methods is to first find candidate vanishing points, then remove outliers by enforcing mutual orthogonality. Our method reverses this process: we propose a set of horizon line candidates and score each based on the vanishing points it contains. A key element of our approach is the use of global image context, extracted with a deep convolutional network, to constrain the set of candidates under consideration. Our method does not make a Manhattan-world assumption and can operate effectively on scenes with only a single horizontal vanishing point. We evaluate our approach on three benchmark datasets and achieve state-of-the-art performance on each. In addition, our approach is significantly faster than the previous best method.

Resources:

pdf   code   slides   poster

Citation:

Zhai, M., Workman, S., & Jacobs, N. (2016). Detecting Vanishing Points using Global Image Context in a Non-Manhattan World. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). bibtex