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ABSTRACT Attacks on computer networks have increased significantly in recent days, due in part to the
availability of sophisticated tools for launching such attacks as well as the thriving underground cyber-
crime economy to support it. Over the past several years, researchers in academia and industry used
machine learning (ML) techniques to design and implement Intrusion Detection Systems (IDSes) for
computer networks. Many of these researchers used datasets collected by various organizations to train
ML classifiers for detecting intrusions. In many of the datasets used in training ML classifiers in such
systems, data are imbalanced (i.e., not all classes had equal number of samples). ML classifiers trained with
such imbalanced datasets may produce unsatisfactory results. Traditionally, researchers used over-sampling
and under-sampling for balancing data in datasets to overcome this problem. In this work, in addition to
random over-sampling, we also used a synthetic data generation method, called Conditional Generative
Adversarial Network (CTGAN), to balance data and study their effect on the performance of various widely
used ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic
samples to balance intrusion detection datasets. Based on extensive experiments using widely used datasets
NSL-KDD and UNSW-NB15, we found that training ML classifiers on datasets balanced with synthetic
samples generated by CTGAN increased their prediction accuracy by up to 8% and improved their MCC
score by up to 13%, compared to training the same ML classifiers over imbalanced datasets. We also show
that this approach consistently performs better than some of the recently proposed state-of-the-art IDSes
on both datasets. Our experiments also demonstrate that the accuracy of some ML classifiers trained over
datasets balanced with random over-sampling decline compared to the same ML classifiers trained over
original imbalanced dataset.

21

22

INDEX TERMS Cyber security, conditional generative adversarial network (CTGAN), data imbalance
problem, intrusion detection, machine learning, over-sampling, under-sampling.

I. INTRODUCTION23

There has been significant increase in the number of intru-24

sions into computer networks over the past few years due25

in part to the availability of sophisticated tools to launch26

such attacks as well as a thriving underground economy to27

support such attacks [19]. According to a 2017 report [35],28

data breaches cost an average of $141 per record. It is esti-29

mated that 60% of small businesses that suffer a data breach30

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

will cease operations within six months. Symantec’s Internet 31

Security Threat Report for 2017 indicated that the number 32

and intensity of attacks were significantly higher than those 33

in previous years [30]. Traditional tools such as firewalls can 34

not cope with these sophisticated attacks. 35

To prevent/detect network intrusions, hardware and soft- 36

ware tools can be installed to continuously monitor the 37

network. James Anderson published a report on the need 38

for detecting network intrusions in computer systems [3] 39

in 1972 [6]. Since then, several intrusion detection systems 40

(IDSes) have been proposed and implemented. These systems 41
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FIGURE 1. ML classifiers trained on imbalanced datasets show poor performance – no matter what type of machine
learning classifier is employed. Augmenting minority classes in the training dataset with synthetic data can help in
overcoming the data imbalance issue and improve the performance of ML classifiers.

can be further classified as host-based, network-based, and42

hybrid [59]. System architectures for intrusion detection can43

be centralized, distributed, or hybrid, based on how intrusion/44

attack events are collected, processed, and acted upon.45

Certain approaches are superior to others based on factors46

such as cost, performance, and other metrics. These sys-47

tems can be further classified based on the techniques used48

for intrusion detection – signature-based or anomaly-based.49

A signature-based IDS detects attacks based on the signatures50

of previously known attacks. These IDSes cannot detect zero-51

day attacks. In contrast, anomaly-based IDSes are capable52

of detecting zero-day attacks by modeling users’ behaviors.53

In the training phase of an anomaly-based approach, legit-54

imate users’ behaviors are first collected and analyzed in55

order to build a model of legitimate users’ behavior. The56

model is then used to determine whether the current observed57

behavior is that of legitimate user or not. Some methods58

used for such classification are [59]: Statistical approach:59

classification is based on univariate, multivariate, or time-60

series models. Knowledge based approach: expert system61

is used to model legitimate behavior according to a set of62

rules. Machine learning based approach: automatically63

classified based on some clustering algorithms. However,64

anomaly-based IDSes often generate more false positives65

and signature-based IDSes generally generate more false66

negatives.67

ML based IDSes have been extensively studied in the68

literature. For example, followingML based approaches have69

been tested by various researchers for intrusion detection:70

Artificial Neural Networks, Association Rules and Fuzzy71

Association Rules, Bayesian Networks, Clustering, Decision72

Trees, Evolutionary Computation, Hidden Markov Models,73

Inductive Learning, Naïve Bayes, Sequential Pattern Mining,74

and Support Vector Machine [7], [8], [19], [53]. In many of75

the datasets used for training ML classifiers in such studies,76

datasets are not balanced. That is, number of samples in one 77

class surpasses the number of samples in another class [1]. 78

The classes that have a large number of samples are called 79

majority classes, while the classes that have a small number of 80

samples are called minority classes. The ratio of the number 81

of samples in a minority class to the number of samples in a 82

majority class may be as small as 1:100, or as large as 1:1000, 83

or even larger [12]. Figure 1 illustrates how imbalance in 84

datasets can affect the performance of ML classifiers. Many 85

of the researchers (i) ignored this problem, or (ii) balanced the 86

training dataset using over-sampling (randomly replicating 87

samples in minority classes) or under-sampling (randomly 88

eliminating samples in majority classes) techniques. Over- 89

sampling and under-sampling help in balancing data. How- 90

ever, since the new samples added under over-sampling are 91

exact copies of the original samples, it may lead to overfitting. 92

Similarly, since random samples are eliminated frommajority 93

classes in under-sampling, the dataset may become too simple 94

to build an effective model, resulting in underfitting problem. 95

In general, an overfit model has low bias and high variance, 96

while an underfit model has high bias and low variance. 97

In this paper, we studied the effect of balancing training 98

datasets on the performance of various ML classifiers; we 99

used (i) the most commonly used random over-sampling 100

method, and (ii) synthetic data generated using the Condi- 101

tional Generative Adversarial Network (CTGAN) [66] for 102

balancing training datasets. We compared the performance 103

of various ML classifiers (i) after training them on origi- 104

nal imbalanced data, (ii) after training them on the original 105

data balanced with over-sampling, (ii) after training them on 106

the original data, balanced with synthetic samples generated 107

using CTGAN [66]. CTGAN exploits a conditional gener- 108

ative adversarial network, learns from input data (i.e., both 109

discrete and continuous features), and generates high-fidelity 110

synthetic samples. It is important to emphasize that the new 111
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synthetic samples generated by CTGAN are not copies of the112

samples in the original dataset but look-alike instances. To the113

best of our knowledge, this is the first time CTGAN has been114

used to generate synthetic data for balancing data related to115

intrusion detection, even though it has been used for image116

data.117

We used the datasets NSL-KDD (Network Socket Layer-118

Knowledge Discovery in Database) [62] and UNSW-119

NB15 [41] in our experiments; these are some of the widely120

used datasets for studying intrusion detection in computer121

networks. We evaluated the performance of the following122

ML classifiers through extensive experiments: Decision Tree123

(DT), Support Vector Machine (SVM), Random Forest (RF),124

Naive Bayes (NB), Feed Forward Network (FNN), Long125

Short Term Memory (LSTM), and Convolutional Neural126

Network (CNN). Additionally, we compared our proposed127

approach against some of state-of-the-art IDSes, namely,128

CNN-BiLSTM [58] and PB-DID [71]; experimental results129

on both datasets demonstrate that our method performs better130

than CNN-BiLSTM and PB-DID.131

Our focus is on multi-class classification rather than binary132

classification – a more challenging problem setup. Multi-133

Class classification makes it possible to evaluate the perfor-134

mance of various classifiers with respect to different types of135

intrusions. Our experimental results show that on the NSL-136

KDD dataset, with training data balanced with synthetic data137

generated using CTGAN, prediction accuracy of some of the138

ML classifiers increased by as much as 8% and their MCC139

score improved by as much as 13%. Following is a summary140

of our contribution in this paper:141

• We show that, using improved algorithms for generating142

synthetic data for balancing the datasets used for training143

ML classifiers, could improve the performance of ML144

classifiers in detecting intrusions in computer networks145

more accurately.146

• We used CTGAN to generate synthetic samples to bal-147

ance the training datasets in NSL-KDD and UNSW-148

NB15. To the best of our knowledge, this is the first149

time CTGAN has been used to generate synthetic data150

for balancing data associated with intrusion detection.151

It is noteworthy to mention that CTGAN has been used152

for image augmentation in the literature.153

• We evaluated the performance of several widely used154

ML classifiers. Our evaluations show that ML clas-155

sifiers trained on training datasets of NSL-KDD and156

UNSW-NB15, balanced with synthetic samples gener-157

ated by CTGAN, performed better compared to their158

performance when trained on (i) the original imbal-159

anced training datasets, and (ii) the original training160

datasets balanced using random over-sampling. More-161

over, we also show that the proposed approach performs162

better than some of the state-of-the-art IDSes CNN-163

BiLSTM [58] and PB-DID [71].164

The rest of the paper is organized as follows. In Section II,165

we present our proposed approach as well as discuss the166

various ML classifiers used for evaluation. In Section III,167

we present our experimental setup and results. In Section IV, 168

we discuss related works, and Section V concludes the paper. 169

II. PROPOSED APPROACH AND CLASSIFICATION 170

METHODS USED 171

In this section, we discuss how we model data, preprocess 172

data, and use CTGAN to generate synthetic data to balance 173

data in the training datasets of NSL-KDD and UNSW-NB15. 174

Then, we discuss various ML classifiers that we used in our 175

experimental evaluation. 176

A. MODELING DATA 177

We modeled the input data as a two-dimensional matrix X = 178

(x1, x2, x3, · · · , xN ), where xi ∈ RD (1 ≤ i ≤ N ) is a 179

vector with D dimensional network feature space. Each xi 180

(1 ≤ i ≤ N ) is associated with a label yi and yi ∈ {1, · · · ,L}. 181

In our case, N is the number of samples in the dataset and 182

L is the number of distinct attack categories. The feature 183

vectors are mapped to labels by a function Y = f (x) that is 184

unknown. As part of supervised learning, the training dataset 185

was used to obtain an estimate of f . This estimated function 186

is referred to as f̂ (x). The goal is to make f̂ (x) as close as 187

possible to f (x). 188

B. PREPROCESSING OF DATA 189

We transformed all the categorical variables into numerical 190

variables during the preprocessing step. For this transforma- 191

tion, we used label encoding [24], [40]. During this process, 192

each label of a categorical feature is assigned a unique numer- 193

ical value in alphabetical order. Imagine a two-dimensional 194

matrix X containing column Ci. Column Ci contains four 195

categorical labels – tcp, smtp, ftp and http. These are different 196

types of protocols. Our label encoding assigns the values 1, 197

2, 3, and 4 to the labels ftp, http, smtp, and tcp, respectively, 198

in alphabetical order. 199

In the next step, we normalized the input data. In this study, 200

we used L2 normalization or Euclidean normalization [65]. 201

We used the same input matrix X and ith feature Ci. The 202

feature Ci is normalized using Equation 1. 203

Ci =
Ci
||Ci||2

(1) 204

where 205

||Ci||2 =

√√√√ K∑
k=1

c2ki , 206

and Ci = [c1i , c2i , c3i , · · · , cKi ], a vector of length K . ||Ci||2 207

is the L2 norm of the vector Ci. 208

C. SYNTHETIC DATA GENERATION USING CTGAN 209

TO BALANCE DATA 210

Data imbalance occurs when the number of samples in some 211

classes is significantly higher than those in other classes [12]. 212

Consequently, ML classifiers will be overwhelmed by the 213

majority classes (which have higher number of samples com- 214

pared to some of the other classes) and ignore the minority 215
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classes (which have fewer instances). In the literature several216

methods such as over-sampling, under-sampling, stratified217

sampling (SS), etc. [19], have been used to address the data218

imbalance problem, as we mentioned earlier.219

In addition to over-sampling, we used CTGAN [66] for220

generating synthetic data for balancing data. To generate221

synthetic tabular data from original tabular data, CTGAN222

uses a GAN-based (generative adversarial network) model.223

CTGAN introduces mode specific normalization, which224

allows it to deal with columns with complex distributions.225

This procedure consists of the following three steps.226

• Each continuous column Ci is identified by using a227

variational Gaussian mixture model (VGM) [60] to228

determine the number mode mi and fit it in a Gaussian229

mixture.230

• In order to compute the probability density for each231

mode, it computes the value of cij in column Ci for232

jth row.233

• Then, samples onemode using the calculated probability234

density and uses the sampled mode to normalize the235

value.236

A new row is resampled in such a way that all categories from237

the columns are equally distributed at the time of training238

so that it can be used to capture the actual distribution of239

data during testing. Let k be the value of the ith column Ci.240

Suppose r̂ is a generated sample, and the original value has241

to be matched with the generated samples r̂ in a way that242

the generator can be explained as the conditional distribution243

of rows, given that particular value at that particular column,244

where245

r̂ ∼ Pg(row|Ci = k). (2)246

One of the most important tasks for the conditional gen-247

erator is to learn the real distribution of data, i.e., Pg(row|248

Ci = k) = P(row|Ci = k). The following equation can be249

used to reconstruct the original distribution.250

P(row) =
∑
kεCi

Pg(row|Ci = k)P(Ci = k) (3)251

In order to achieve this, three methods were introduced:252

conditional vectors, generator losses, and sampling-based253

training. Two fully connected hidden layers were used in both254

the generator and discriminator of the network architecture255

in order to capture all possible correlations between columns.256

In the generator, batch normalization and relu activation func-257

tion are used.258

D. ML CLASSIFIERS259

In this subsection, we discuss various ML classification algo-260

rithms we evaluated in this paper.261

1) DECISION TREE (DT)262

In many applications, DT has been used to classify different263

types of data such as power quality disturbance, Parkinson’s264

disease, product review classification, etc. [2], [31], [51],265

[61], [72]. A DT is tree structure, in which each leaf node266

represents a class label and each internal node is a decision 267

node or a chance node [19]. DT constructs a tree by seg- 268

menting the feature space into several subregions. Hence, 269

tree is constructed by recursively binary splitting the feature 270

space [34]. Two splitting methods are usually used to split 271

the tree, namely, cross entropy and Gini index. We used Gini 272

index-based splitting [48]. Gini index can be calculated using 273

Equation 4. 274

Gini =
L∑
l=1

pl(1− pl) = 1−
L∑
l=1

p2l , (4) 275

where L is the number of classes and pl is the set of items in 276

class l ∈ {1, 2, 3, · · · ,L}. 277

2) SUPPORT VECTOR MACHINE (SVM) 278

SVM model is a renowned machine learning classifier that 279

can be used for both classification and regression tasks. It is, 280

however, primarily used for classification tasks [10], [11], 281

[63], [64]. SVM uses Statistical learning theory to find the 282

optimal hyperplane as a decision function in high dimen- 283

sional space [45]. We used supervised learning for classifi- 284

cation, and considered a input set with N vectors from the 285

d-dimensional feature space X . For each vector xi, there is 286

a target yi [5]. The goal of SVM is to identify an optimal 287

hyperplane that maximizes the separation margin. The data 288

are first mapped to a high dimensional feature space using 289

a kernel method, i.e., φ(X ). The optimal hyperplane can be 290

defined as 291

f (xi) = w · φ(xi)+ b (5) 292

Here f (x) represents the discriminant function, w is weight 293

vector and b is the bias. bminimizes a cost function. The cost 294

function can be expressed as 295

ψ(w, ξ ) =
1
2
||w||2 + C

N∑
i=1

ξi. (6) 296

Here ξi is a slack variable used for nonseparable data. The 297

constant C is a regularization parameter to control the shape 298

of the discriminant function. 299

3) Naïve BAYES (NB) 300

NB classifiers are a family of probabilistic classifiers based 301

on Bayes’ Theorem. NB classifiers, combined with kernel 302

density estimation, can achieve high accuracy levels. NB is 303

widely used by researchers to solve various classification 304

problems that arise in their research [14], [18], [23]. NB clas- 305

sifier is based on conditional probability [42]. The probability 306

of one attribute does not affect another attribute, given the 307

class label. Therefore, the presence of an attribute in a class is 308

unrelated to any other attribute. The Naive Bayes probability 309

is defined as 310

P(L|C) =
P(C|L)P(L)

P(C)
, (7) 311
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where L is the class variable and C is the feature set312

C1,C2,C3, · · · ,CQ. P(L|C), P(C|L), P(L), and P(C) are313

respectively the posterior probability, probability of feature314

set given class, prior probability of class, and prior probability315

of feature set.316

4) RANDOM FOREST (RF)317

Due to its simplicity and diversity, RF is also one of the318

most commonly used algorithms. Both regression and clas-319

sification can be performed using RF [21], [32], [49], [55].320

RF combines multiple decision trees to make more accurate321

and stable predictions. It builds a decision forest based on sev-322

eral decision trees, usually trained with the bagging method.323

A bagging method, based on the concept that combining324

different learning classifiers, increases overall performance.325

In our approach, we used the Gini Index (Equation 4) to326

determine how a node in a decision tree should be split.327

5) FEED-FORWARD NEURAL NETWORK (FNN)328

FNNs have been successfully used for pattern classification,329

clustering, regression, association, optimization, control, and330

forecasting [4], [9], [28], [67]. FNN contains one input layer,331

one output layer, and H number of hidden layers. Let Wh ∈332

RQ×P, and Wo ∈ RN×M be the weight matrices for hidden333

layer and output layer respectfully whereQ is number of input334

neurons, P is the number neurons in a hidden layer and M is335

the number of output neurons. Each row of these matrices336

represents a weight vector for a neuron. Now we can write337

the equation of output matrix of a hidden layer as:338

H = f (XWh + bh), (8)339

where X = {x1, x2, x3, · · · , xN } is the input matrix with N340

rows, bh is the bias matrix and f (.) is the activation function341

of the hidden layer.342

We can express the equation of the output layer as:343

Ŷ = g(HWo + bo), (9)344

where g(.) is the activation function of the output layer and345

bo is the bias matrix of the output layer.346

6) LONG SHORT TERM MEMORY (LSTM)347

Although LSTM is a recurrent neural network, it is bet-348

ter in terms of memory than traditional recurrent networks.349

By memorizing certain patterns, LSTM is able to perform350

relatively better [26], [43], [52], [68]. LSTM can have multi-351

ple hidden layers and as data passes through each layer, the352

relevant information is retained and the irrelevant information353

is discarded. An LSTM consists of an input gate it , an output354

gate ot , and a forget gate ft . The equations for the LSTM gates355

at time step t can be expressed as:356

it = g(Wi[ht−1, xt ]+ bi), (10)357

ft = g(Wf [ht−1, xt ]+ bf ), (11)358

and359

ot = g(Wo[ht−1, xt ]+ bo), (12)360

where g(.) is a activation function of a gate,Wx is the weight 361

of the corresponding gate, ht−1 is the output of the previous 362

LSTM block, x is the input vector at time t , and bx is the bias 363

for the respective gate. 364

7) CONVOLUTIONAL NEURAL NETWORK (CNN) 365

In addition to computer vision, CNNs have shown outstand- 366

ing performance in many other fields [17], [39], [50], [70]. 367

Convolutions are used in this neural network to transform 368

the input features into meaningful information, which is then 369

used to build the subsequent layers of neural network com- 370

putations. The convolutional layer is used to extract features 371

to perform linear operations, and is usually a combined con- 372

volution. In convolution, multiple kernels or filters are used. 373

A convolutional operation is usually defined as: 374

Ŷ = x × k + b. (13) 375

The kernel k has a dimension of n×m. The input and bias are 376

represented by x and b, respectively. The input and bias have 377

the same dimensions k . 378

III. EXPERIMENTAL RESULTS 379

In this section, we discuss evaluation criteria, metrics used, 380

datasets used, experimental setup, details about some of the 381

state-of-the-art competing methods, implementation details 382

of classifiers, and performance results of various classifiers. 383

A. EVALUATION CRITERIA AND METRICS USED 384

FOR EVALUATION 385

To evaluate the performance of various ML-classifiers, we 386

used the following quantitative metrics: (i) Accuracy (Acc), 387

(ii) Precision (Pre), (iii) Recall (Rec), and (iv) F1-score, 388

following the relevant literature [29], [44]. Recently, a more 389

robust metric, called The Matthews correlation coefficient 390

(MCC) [13], has been proposed. So, in addition to these 391

metrics (mentioned above and discussed in detail below), 392

we also used MCC in our evaluation. MCC is not affected 393

by the imbalance in datasets. MCC is based on a contingency 394

matrix method used to calculate the Pearson product-moment 395

correlation coefficient. Next, we describe in detail the metrics 396

mentioned above: 397

• Accuracy (Acc): Acc is the measure of how well the 398

algorithm correctly predicts the occurrence of an event. 399

That is, how well an event is predicted as normal or a 400

type of intrusion. 401

• Precision (Pre): Pre refers to how frequently the algo- 402

rithm correctly predicts the types of intrusions. 403

• Recall (Rec): Rec refers to the proportion of actual 404

intrusions that the algorithm predicted as intrusions. 405

• F1-Score: F1-Score is the reciprocal of the arithmetic 406

mean of Pre and Rec, which is the harmonic mean of 407

both variables. 408

The formulas for calculating these metrics are given in 409

Table 1. To calculate these metrics for various ML classifiers 410

studied in this paper, we counted the True positives (TP), 411
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True negatives (TN ), False positives (FP), and False neg-412

atives (FN ). In this work, all of our ML classifiers are413

multi-class.414

TABLE 1. Performance metrics and how they are computed.

B. DATASETS USED FOR EVALUATION415

We used the datasets NSL-KDD and UNSW-NB15, which416

are widely used datasets in the intrusion detection literature.417

Next, we discuss these datasets.418

1) NSL-KDD DATASET419

NSL-KDD dataset consists of training dataset (KDDTrain+)420

and two test datasets: KDDTest+ and KDDTest-21. They421

contain 41 features and it does not contain they do not dupli-422

cate records [62]. They have one normal class and four attack423

type classes.424

The four attack types [25] are:425

• Denial of Service (DoS) Attack: In this type of attack,426

the attacker blocks resources or services in a system or427

network through malicious means.428

• User to Root Attack (U2R): In this type of attack, the429

attacker uses a normal user account to gain access to430

the system and exploits vulnerabilities to take over the431

system.432

• Remote to Local (R2L) Attack: In this type of attack,433

an attacker sends data packets over the network to gain434

users’ access or root access to do unauthorized acts.435

• Probing Attack: In this type of attack, an attacker gath-436

ers information about potential vulnerabilities of target437

systems so that he/she can launch attacks later.438

It is important to highlight that there is significant differ-439

ence in the sizes of the samples of U2R and R2L classes in440

the training dataset. Table 2 shows distribution of samples441

for various attack types in the training and testing datasets.442

We can easily see that each of these datasets (training and test443

datasets) is imbalanced. Figures 2(a) and 2(b) show the partial444

T-Distributed Stochastic Neighboring Entities (T-SNE) pro-445

jections for the NSL-KDD testing datasets KDDTest+ and446

KDDTest-21, respectively. From these projections, we can447

see that large number of samples are of normal and DoS class448

types in each of these test datasets.449

2) UNSW-NB15 DATASET450

UNSW-NB15 [41] is the other dataset we used in our exper-451

iments. We obtained this dataset from the University of New452

South Wales. In the Cyber Range Lab of the Australian453

Centre for Cyber Security (ACCS), the authors of the dataset 454

generated a hybrid of the realistic modern normal activities 455

and the synthetic contemporary attack behaviors through the 456

use of the IXIA PerfectStorm tool [41]. It has 42 features and 457

includes nine types of attack classes and one normal class. 458

We describe these attack types below: 459

• Fuzzers attack: An attack in which the attacker 460

attempts to discover security holes in software, operating 461

systems, or networks by overloading them with large 462

amounts of random data in order to cause the software 463

to crash. 464

• Analysis attack: An intrusion method for infiltrat- 465

ing the Internet via ports (e.g., port scanning), emails 466

(e.g., spam), and web scripts (e.g., HTML files). 467

• DoS attack:NSL-KDD also has this type of attack class, 468

which we already described in Section III-B1. 469

• Backdoor attack: A way of bypassing normal authen- 470

tication and securing unauthorized high level access 471

(e.g., root access) and remain undetected. 472

• Exploit attack:A series of instructions that takes advan- 473

tage of a security flaw, bug, or vulnerability that is 474

caused by an unforeseen action taken by a host or net- 475

work. 476

• Generic attack: Employs a hash function to establish 477

a collision against every block cipher, regardless of the 478

configuration of the block cipher. 479

• Reconnaissance attack: Also known as probe, this is 480

an attack that gathers information about a computer 481

network in order to evade its security measures. 482

• Shellcode attack:A technique used by attackers to gain 483

control of the compromised system by manipulating a 484

small part of the code. 485

• Worm attack:A computer virus, in which the attacker’s 486

code replicates itself in order to spread to other comput- 487

ers. Sometimes, it uses a computer network to spread 488

itself by taking advantage of security flaws in the target 489

computer. 490

Table 3 shows the distribution of the above attack type sam- 491

ples in the training and testing datasets of UNSW-NB15. 492

UNSW-NB15 comeswith one training dataset and one testing 493

dataset. 494

C. EXPERIMENTAL SETUP 495

To evaluate the performance of variousML classifiers on each 496

of the two datasets NSL-KDD and UNSW-NB15, we con- 497

ducted the following three experiments. 498

• Experiment ORG: In this experiment, we used the 499

original training datasets of bothNSL-KDDandUNSW- 500

NB15 to train the ML classifiers and evaluated their 501

performance. 502

• Experiment RandomSamp: In this experiment, 503

we used random over-sampling [46] to balance the 504

training datasets of both NSL-KDD and UNSW-NB15 505

and trained the ML classifiers on the balanced training 506

datasets and evaluated their performance. 507
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TABLE 2. Data distribution in NSL-KDD training and testing datasets.

FIGURE 2. T-SNE projection of NSL-KDD test datasets.

TABLE 3. Data distribution in UNSW-NB15 training and testing datasets.

• Experiment CTGANSamp: In this experiment,508

we used the synthetic samples generated by CTGAN509

to balance the training datasets of both NSL-KDD and510

UNSW-NB15 and trained the ML classifiers on the bal-511

anced training datasets and evaluated their performance.512

Next, we describe the setup for each of the above three513

experiments.514

1) SETUP FOR EXPERIMENT ORG515

For experiment ORG, we used the original training datasets516

from both NSL-KDD and UNSW-NB15 to train the ML517

classifiers and studied their performance. The bar graph in518

Figure 3(a) shows the distribution of samples under vari-519

ous classes in the original training dataset of NSL-KDD.520

As shown in Table 2, the percentage of samples under normal521

and DoS class types of NSL-KDD training dataset are 53%522

and 36%, respectively. However, the percentage of samples523

under Probe, U2R, and R2L attack types are approximately524

9%, 0.04%, and 0.83% respectively. Similarly, Figure 4(a)525

shows the distribution of data for various attack classes in the526

training dataset of UNSW-NB15. As we can see fromTable 3,527

approximately 75% of the samples are in normal class type. 528

On the other hand, samples in Analysis, Backdoor, Shellcode, 529

and Worms attack classes are only 1.2%, 1.2%, 0.77%, and 530

0.09% respectively. So, training datasets of both NSL-KDD 531

and UNSW-NB15 are highly imbalanced. 532

2) SETUP FOR EXPERIMENT RandomSamp 533

For experiment RandomSamp, we balanced the original train- 534

ing datasets of both NSL-KDD and UNSW-NB15 using 535

random over-sampling technique and used the resulting bal- 536

anced datasets to train the ML classifiers and studied their 537

performance. Random over-sampling is a naive technique 538

for balancing distribution of data under various class types. 539

It involves duplicating samples randomly from minority 540

classes to balance the dataset. In this method, each mem- 541

ber of the population in a minority class stands an equal 542

chance of being selected for addition to the dataset. During 543

the entire sampling process, each subject is independently 544

selected from the other members of the population [54]. 545

Figure 3 (b), shows the distribution of data in the NSL-KDD 546

training dataset after balancing the dataset using random 547

over-sampling; there are approximately 67000 samples in 548

each class. After balancing UNSW-NB15 training dataset 549

using random over-sampling, each class had 37000 samples 550

as shown in Figure 4(b). 551

3) SETUP FOR EXPERIMENT CTGANSamp 552

For experiment CTGANSamp, we balanced the original 553

training datasets from both NSL-KDD and UNSW-NB15, 554

using synthetic data generated with CTGAN [66] and used 555

the resulting balanced datasets to train the ML classifiers and 556

studied their performance. In the original NSL-KDD training 557
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FIGURE 3. Data distribution in training datasets (generated from NSL-KDD training dataset) for the three experiments.

FIGURE 4. Data distribution in training datasets (generated from UNSWNB-15 training dataset) for the three experiments.

dataset, the total number of samples in normal class type is558

67343 and total number of samples in Probe Attack, DoS559

Attack, U2R Attack, and R2L Attack are 11656, 45927,560

52, and 995 respectively. Since the number of samples for561

normal class type is already high, we decided not to add more562

synthetic samples to that class type using CTGAN generated563

synthetic samples. As shown in Figure 3 (c), the distribution564

of samples after balancing data using synthetic samples gen-565

erated by CTGAN are 41149, 102589, 39483, and 55350 for566

the attack types Probe Attack, DoS Attack, U2R Attack,567

and R2L Attack, respectively. As we already observed, the568

original training dataset in UNSW-NB15 is highly imbal-569

anced. After balancing this training dataset with synthetic570

samples generated byCTGAN, the total number of samples in571

the attack classesAnalysis, Backdoor, DoS, exploit, Fuzzer,572

Generic, Normal, Reconnaissance, Shellcode, andWorms573

are respectively 10677, 10572, 14089, 16132, 18871, 37000,574

9946, 15378, and 10044, as shown in Figure 4(c).575

D. COMPETING METHODS576

To demonstrate the effectiveness of our proposed approach,577

we conducted extensive experiments using several578

ML-classifiers. Moreover, we also compared our approach579

with two recently proposed state-of-the-art models in the580

literature, namely, CNN-BiLSTM and PB-DID. Next, we dis-581

cuss these two competing new models.582

1) CNN-BiLSTM 583

CNN-BiLSTM [16] uses 1D-CNN layer with activation func- 584

tion relu and maxpooling of size five. It uses batch normal- 585

ization to prevent slower training times. In this model, two 586

Bi-LSTM layers have been arranged in a manner that doubles 587

the kernel size in each iteration. The first Bi-LSTM layer had 588

64 units and the second layer had 128 units. A fully con- 589

nected dense layer with softmax activation function was used 590

as the final layer. We used the open-source code provided 591

for CNN-BiLSTM [16] in our experiments for performance 592

comparison. 593

2) PB-DID 594

PB-DID [71] uses an auxiliary dataset that has common 595

features with the main dataset. Therefore, as in [71], we used 596

the two training datasets NSL-KDD and UNSW-NB15 (with 597

one as main and the other as auxiliary) to train PB-DID for 598

comparison because these two datasets have six common 599

features and two common class types, namely, normal and 600

DoS. So, to study the performance of PB-DID, we added 601

the samples from the training dataset of UNSW-NB15 that 602

are in these common class types to the NSL-KDD training 603

dataset. This merged dataset was used to train the model, and 604

the original testing sets of NSL-KDD were used to test the 605

model. A similar approach (added samples from NSL-KDD 606

to UNSW-NB15)was used to process theUNSW-NB15 train- 607

ing and testing datasets. Since PB-DID classifier relies on 608
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an additional dataset to compensate for the data imbalance609

issue, we did not conduct the experiments RandomSamp and610

CTGANSamp with PB-DID. We used the open-source code611

supplied for PB-DID [15] to conduct our experiments.612

E. IMPLEMENTATION DETAILS613

As we mentioned earlier, we evaluated the performance614

of various ML classifiers under three experiments, namely,615

ORG, RandomSamp and CTGANSamp; for each of these616

three experiments, we used the two datasets - NSL-KDD and617

UNSW-NB15. We evaluated the following ML classifiers:618

Decision Tree (DT), multinomial Naive Bayes (NB), Random619

Forest (RF), Support Vector Machine (SVM), Feed-Forward620

Neural Network (FNN), Long Short term Memory Net-621

work (LSTM), and Convolutional Neural Network (CNN).622

We implemented DT, NB, RF, and SVM algorithms using623

the scikit-learn python package version 1.1 [36]. We used the624

Gini index splitting criteria for DT and L1 regularization for625

SVM. When estimating an RF, we considered the number of626

trees in the forest to be 100. With respect to NB, we used627

alpha 1.0, as smoothing parameter.628

We also evaluated the following three neural networks:629

FNN, LSTM, and CNN.With FNN,we used three hidden lay-630

ers, each containing 50, 30, and 20 neurons respectively; and631

the output layer had five neurons. In the final layer, we used632

softmax function to do the final classification. We used relu633

as activation function, adam as optimizer, and categorical634

cross entropy as a loss function. In total, this network had635

5285 trainable parameters. We designed a two-layer LSTM.636

Each layer in the LSTM had 100 units. The activation func-637

tion, optimizer, loss function and final layer are same as638

in FNN. Since, our datasets consisted of one-dimensional639

sequence of data, we used a single one dimensional CNN640

(conv1D). We used 32 filters with kernel size of 3. We used641

maxpooling with a pool size of 2. Then, we used a dense642

hidden layer with 100 neurons and the final layer had five643

neurons. Like FNN and LSTM, we used the same activation644

function, optimizer, and loss function for CNN. Each of these645

networks had been trained for 100 epochs with early stop-646

ping. We implemented all three neural networks using ten-647

sorflow and Nvidia GPU driver version 455.32.00 with cuda648

version 11.1. We also evaluated the performance of state-of-649

the-art models CNN-BiLSTM [16] and PB-DID [71]. Next,650

we discuss the results from our experiments.651

F. RESULTS FROM OUR EXPERIMENTS652

1) PERFORMANCE COMPARISON BASED ON THE653

MCC SCORE654

For comparing the performance ofML classifiers,MCC score655

has been shown to be more robust compared to other metrics656

such as F1-score. This is a statistical technique used to eval-657

uate the performance of models. The higher the number, the658

better the model. So, in addition to the other metrics, we also659

used MCC score for evaluating the performance of various660

ML classifiers.661

In all three experiments (ORG, RandomSamp, and 662

CTGANSamp), we compared the performance of all the 663

classifiers based on their MCC scores. Tables 4 and 5, 664

contain the MCC scores of different classifiers for the test 665

sets KDDTest+ and KDDTest-21, respectively for the three 666

experiments ORG, RandomSamp and CTGANSamp. The 667

MCC scores of the ML-classifiers under CTGANSamp are 668

consistently higher than their MCC scores under ORG and 669

RandomSamp. Specifically, after ML classifiers were trained 670

on NSL-KDD training dataset, balanced with synthetic data 671

generated with CTGAN, they showed up to 4% improve- 672

ment in performance with respect to MCC score on the 673

dataset KDDTest+ and up to 7.52% improvement on the 674

dataset KDDTest-21. It is worth noting that when synthetic 675

data generated by CTGAN is used to balance the training 676

dataset, performance of state-of-the-art CNN-BiLSTM also 677

improved; the MCC score of CNN-BiLSTN on KDDTest+ 678

and KDDTest-21 improved by 2.7% and 3.32% respectively, 679

compared to its MCC scores when trained using original 680

training dataset. 681

The MCC scores of various ML classifiers on the dataset 682

UNSW-NB15 under all three experiments are presented in 683

Table 6. For this dataset also, the MCC score under the 684

experiment CTGANSamp is higher compared to their MC 685

scores under the other two experiments for all ML classifiers. 686

It is worth noting that the MCC score of the state-of-the-art 687

competitor PB-DID on the original dataset of UNSW-NB15 688

is 35%, is lower than MCC score of all the other classifiers 689

under CTGANSamp. Specifically, the MCC score for all 690

classifiers under the experiment CTGANSamp is up to 61% 691

higher than that of PB-DID, which signifies that the proposed 692

data balancing technique using synthetic data generated with 693

CTGAN, not only improves the performance for well estab- 694

lished ML classifiers but also improves the performance of 695

recently published state-of-the-art models such as PB-DID 696

and CNN-BiLSTM. 697

2) COMPARISON OF PERFORMANCE BASED ON 698

OTHER METRICS 699

In this subsection, we compare the performance of vari- 700

ous ML-classifiers with respect to the following metrics: 701

accuracy (Acc), precision (Pre), recall (Rec), and F1 score. 702

Table 7 and Table 8 how various classifiers perform under the 703

experiments ORG, RandomSamp, and CTGANSamp, tested 704

on KDDTest+ and KDDTest-21 respectively, with respect 705

to these metrics. The values shown in these tables for var- 706

ious metrics are weighted-average scores [19], [47]. These 707

scores clearly show that the performance improvement in 708

accuracy varied from 1% to 8% under CTGANSamp for both 709

datasets KDDTest+ and KDDTest-21.We also notice that the 710

performance of DT, LSTM, and CNN classifiers is consis- 711

tently better under CTGANSamp compared to their perfor- 712

mance under ORG and RandomSamp for both KDDTest+ 713

and KDDTest-21 datasets with respect to all of the the follow- 714

ing quantitative metrics: accuracy, precision, recall, and the 715

F1 scores. Similarly, we observe significant improvement in 716
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TABLE 4. MCC scores of all classifiers on the KDDTest+ test dataset under the three experiments ORG, RandomSamp and CTGANSamp.

TABLE 5. MCC scores of all classifiers on the test dataset KDDTest-21 under the three experiments ORG, RandomSamp and CTGANSamp.

TABLE 6. MCC scores of all classifiers on the UNSW-NB15 dataset under the three experiments ORG, RandomSamp and CTGANSamp.

recall score for all ML classifiers under CTGANSamp com-717

pared to their recall scores under ORG and RandomSamp.718

It is evident that the FN rate is low and the TP rate is high719

under CTGANSamp. We would also like to highlight that720

the accuracy of all the classifiers has been consistently better721

under CTGANSamp compared to their accuracy under ORG722

and RandomSamp.With respect to F1 score, all the classifiers723

either have better score or have competitive (e.g., within724

1.5 percentage point) score under CTGANSamp compared725

to their scores under ORG and RandomSamp. However, for726

SVM and NB, the precision scores under CTGANSamp are727

not as good as their precision scores under ORG or Random- 728

Samp. Additionally, the results also show that the accuracy 729

of some of the classifiers decreased under RandomSamp, 730

compared to their accuracy under ORG. Overall, it can be 731

conclusively claimed that all the classifiers show significant 732

improvement with respect to various metrics on both datasets 733

under CTGANSamp. Next, we discuss the results in more 734

detail. 735

As shown in Table 7, for dataset KDDTest+, accu- 736

racy of DT under ORG is 73.15%; it increases to 74.58% 737

under RandomSamp; it further increases to 75.22% under 738
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TABLE 7. Performance comparison of various ML classifiers on the test dataset KDDTest+ under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

TABLE 8. Performance comparison of various ML classifiers on the test dataset KDDTest-21 under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

TABLE 9. Performance comparison of various ML classifiers on UNSW-NB15 test dataset under the three experiments ORG, RandomSamp, and
CTGANSamp with respect to the metrics Acc, Pre, Rec and F1-score.

CTGANSamp. Similarly, for the dataset KDDTest-21, accu-739

racy of DT under ORG, RandomSamp, and CTGANSamp740

are 49.17%, 52.48%, and 54.23%, respectively, as shown in741

Table 8 for KDDTest-21. For KDDTest+, F1 scores of the742

classifiers DT, NB, LSTM, and CNN are significantly higher 743

under CTGANSamp compared to their F1 scores under ORG 744

and RandomSamp. For instance, NB achieved 55.92% F1 745

score under CTGANSamp, while its F1 score under ORG 746
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and RandomSamp are 52.54% and 49.37%, respectively.747

Table 7 shows that for KDDTest+, SVM, RF, and FNN, had748

better F1 scores under ORG and RandomSamp compared749

to their F1 scores under CTGANSamp. However, the dif-750

ference F1 score is small (e.g., difference in F1 scores of751

RF under ORG and CTGANSamp is only 0.01%). Table 8752

also shows that there is significant improvement in F1 scores753

for DT, RF, FNN, LSTM, and CNN under CTGANSamp754

compared to their F1 scores under ORG and RandomSamp.755

For the same dataset, SVM and NB, had slightly higher F1756

scores under RandomSamp compared to theirF1 scores under757

CTGANSamp; again, the difference is small (i.e. around 1%).758

Table 7 indicates that the accuracy of NB on KDDTest+759

under RandomSamp decreases by 16% compared to its accu-760

racy under ORG. This is because, performance of the NB761

classifier is determined by the distribution of samples in the762

training dataset; so, when duplicate samples are added to763

balance the training dataset, NB becomes more biased to764

some identical samples and hence achieved lower accuracy.765

Several other classifiers including SVM, RF, and LSTM also766

have lower accuracy score under RandomSamp compared to767

their accuracy under ORG as seen from Table 7. As shown768

in Table 8, the accuracy of RF and LSTM on the dataset769

KDDTest-21 decrease by 0.73% and 2.56%, respectively770

under RandomSamp compared to their accuracy under ORG.771

However, on both datasets KDDTest+ and KDDTest-21,772

accuracy of all classifiers is higher under CTGANSamp773

compared to their accuracy under both ORG and774

RandomSamp.775

Performance of the various machine learning classifiers776

on the dataset UNSW-NB15 under the three experiments777

(ORG, RandomSamp and CTGANSamp), with respect to778

various metrics, shown in Table 9, is similar to their perfor-779

mance on KDDTest+ and KDDTest-21; their performance780

under CTGANSamp is better compared to their perfor-781

mance under ORG and RandomSamp. In general, accuracy782

and recall are good performance indicators for the classi-783

fiers DT, RF, NB, FNN, LSTM, CNN, and CNN-BiLSTM.784

Accuracy of SVM under ORG is about 1% higher than785

its accuracy under CTGANSamp. Other than that, accuracy786

of all the other classifiers under CTGANSamp is higher787

than their accuracy under ORG as well as RandomSamp.788

Precision achieved by various classifiers on the dataset789

UNSW-NB15, under the three experiments, is similar to their790

precision on KDDTest+ and KDDTest-21. With respect to791

F1 score, all the classifiers performed reasonably well under792

CTGANSamp compared to their performance under ORG793

and RandomSamp.794

From Tables 7, 8, and 9, it is clear that the training data795

augmented with synthetic data generated by CTGAN for796

balancing data resulted in improvement in the accuracy of797

CNN-BiLSTM on the datasets KDDTest+, KDDTest-21 and798

UNSW-NB15 by 2%, 3%, and 5% respectively. We reiterate799

that we have not conducted RandomSamp and CTGANSamp800

experiments for PB-DID because PB-DID implementers801

employed an auxiliary dataset to address the data imbalance802

issue; thus established data augmentation techniques such as 803

over-sampling or under-sampling have not been utilized in 804

their experiments. 805

G. T-SNE PROJECTION OF SELECTED DATA SAMPLES 806

We randomly drew 300 samples from KDDTest+ and per- 807

formed T-SNE projection on the selected data samples for 808

qualitative analysis. Figure 5 shows the visualization of 809

T-SNE projection for all three experiments alongside ground 810

truth for the classifier CNN. Figure 5(a) shows the actual 811

classes (ground truth), Figure 5(b) shows the classifica- 812

tion under ORG, Figure 5(c) shows classification under 813

RandomSamp and Figure 5(d) shows classification under 814

CTGANSamp. In Figure 5, we drew five circles (i.e., one for 815

each class or cluster) shown in blue (I), green (II), black (III), 816

purple (IV), and red (V) colors. We can see that the classifi- 817

cation based on CTGANSamp is much closer to the ground 818

truth. 819

In the ground truth (Figure 5(a)), majority of the samples 820

inside the blue circle are of type DoS. ORG (Figure 5(b)) 821

performs very well in predicting DoS and its prediction is 822

in line with the ground truth. RandomSamp (Figure 5(c)), 823

on the other hand, predicts them all as normal. CTGAN 824

(Figure 5(d)) has incorrectly predicted some DoS samples 825

as normal, but overall it is able to detect most of the DoS 826

samples. The majority of the samples in the green circle of 827

ground truth are normal, and only a few are U2R, R2L, and 828

probe samples. ORG is not able to detect any of the U2R and 829

R2L samples in the green circle, and some of the normal sam- 830

ples are also labeled as probes. Among all the experiments, 831

RandomSamp performs the worst in predicting the samples in 832

the green circle correctly; RandomSamp labels many normal 833

samples as probes. CTGANSamp, on the other hand, predicts 834

all the normal samples along with the minority classes U2R 835

and R2L correctly. Inside the black circle of the ground 836

truth, majority of the samples are probes; however, ORG 837

and RandomSamp predict all these samples to be normal. 838

CTGANSamp’s prediction, on the other hand, is similar to the 839

ground truth. It is also the case with the purple and red circles; 840

CTGANSamp’s prediction results of samples in these two 841

circles are the same as ground truth. In contrast, both ORG 842

and RandomSamp fail to capture the actual truth of samples 843

in these two circles as well. 844

Finally, we also performed statistical significant test based 845

on the performance of the three experiments (ORG, Ran- 846

domSamp, and CTGANSamp) on the dataset KDDTest+. 847

P-values are presented in Table 10. We notice that the 848

P-values are consistently very small when we compare the 849

performance of CTGANSamp with ORG and RandomSamp. 850

On the other hand, when we compare the performance of 851

ORG with RandomSamp, the P-values are not always small 852

(for example, the P-value of RF is 0.91). This result also 853

signifies that ML classifiers show improvement when they 854

are trained with datasets balanced with synthetic samples 855

generated using CTGAN. 856
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FIGURE 5. Qualitative analysis of the CNN classifier under ORG, RandomSamp, and CTGANSamp on KDDTest+.

IV. RELATED WORKS857

In this section, we first discuss some intrusion detection858

techniques based on Machine Learning, presented in the lit-859

erature. Then, we discuss data augmentation techniques used860

in various applications.861

A. MACHINE LEARNING BASED INTRUSION DETECTION862

Machine Learning has been used extensively in designing863

and implementing IDSes. Ever et al. [20] used three machine864

learning classifiers, ANN, SVM, and DT in their study. The865

primary goal of this study was to determine the optimal866

machine learning technique. As part of their experiments,867

they used 60% and 70% of the dataset NSL-KDD for train-868

ing, and the rest of the dataset for testing. Based on their869

experiments, they showed that DT achieved better accuracy870

compared to the other two.871

A new approach to detect intrusion in computer networks872

was introduced by Gao et al. [22]. In order to address the873

data imbalance problem in NSL-KDD dataset, they proposed874

a MultiTree algorithm using DT of four levels, with the875

proportions of the types of classes adjusted accordingly. The876

authors introduced a model in which they ensembled DT, RF,877

K-NN, and DNN and used their adaptive voting algorithm to878

decide on classification.879

To build effective IDSes, in depth analysis of network880

data is mandatory, as the volume of network data increases.881

Due to the different types of protocols used on the Internet,882

we have diverse network data. Therefore, it is difficult to883

distinguish between normal network traffic and attack traffic.884

Shone et al. [56] studied the feasibility and sustainability of885

current approaches in network intrusion detection. Deep and886

shallow learning were combined in their model. For unsuper-887

vised feature learning, the authors applied two layers of non-888

symmetric deep auto-encoders (NDAE). Unlike conventional889

auto encoders, the NDAE contains no decoder. In order to890

perform the final classification of the network traffic into891

normal and attack, RF was used. Based on NSL-KDD and892

KDD99 datasets, the authors evaluated their model using five893

and thirteen layers of classification. To overcome the problem894

of over-fitting and under-fitting, they performed a 10-fold895

cross validation. Due to the imbalanced nature of the datasets, 896

the false alarm rate was high in some attack classes. 897

Yin et al. [69] presented a two-step approach for intrusion 898

detection based on deep learning. One hot encoding was used 899

to transform categorical data to numerical values during the 900

preprocessing stage. In the following step, min-max method 901

was used to normalize the dataset due to large variations 902

in the data distribution. To classify data, recurrent neural 903

networks (RNNs) with forward propagation and backward 904

propagation were used. In the forward propagation method, 905

output values were calculated, and the backward propagation 906

method calculated the error and updated the weights. Cross- 907

entropy was used to compute the difference between the 908

output values produced by forward propagation and the true 909

value. Using this methodology, both binary and multi-class 910

classification were performed. 911

Javaid et al. [27] introduced a deep learning technique 912

based on Auto Encoder (AE) for feature representation and 913

feature learning. They used softmax regression for clas- 914

sification. Additionally, in the preprocessing stage, they 915

transformed categorical features into continuous features and 916

normalized the whole dataset using min-max method. They 917

performed two types of evaluations. In order to do cross val- 918

idation, they used training data for both training and testing. 919

In the second approach, they used different datasets for testing 920

and training. 921

In all of the above works, NSL-KDD dataset was used. 922

As we saw, this dataset is imbalanced. However, none of the 923

authors addressed this issue. The purpose of our study is 924

to focus on the data imbalance problem and to investigate 925

how this impacts the overall performance of various machine 926

learning classifiers. 927

B. AUGMENTATION TECHNIQUES APPLIED TO 928

VARIOUS APPLICATIONS 929

Synthetic data generation or data augmentation has been 930

used in a variety of applications such as image classifica- 931

tion and natural language processing. Various augmentation 932

techniques have been proposed, primarily based on deep 933

learning models. In this subsection, we review some recent 934
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TABLE 10. Results of T-Test on the performance of various classifiers on KDDTest+ under ORG, RandomSamp, and CTGANSamp.

works on data augmentation and how this technique was935

applied in different areas of research.936

Shorten et al. [57] presented a critical survey on image data937

augmentation using deep learning techniques. They explored938

the use of data augmentation, a data-space approach to the939

problem of limited data. Additionally, they state that data940

augmentation encompasses a suite of techniques to augment941

the size and quality of training datasets in order to build better942

deep learning models. This survey discussed image augmen-943

tation algorithms including geometric transformations, color944

space augmentations, kernel filters, mixing images, random945

erasing, feature space augmentation, adversarial training,946

generative adversarial networks, neural style transfer, and947

meta-learning. A significant portion of the survey is devoted948

to the application of GANs for augmentation.949

Li et al. [33] proposed a novel deep learning technique for950

rotating machinery fault diagnosis. Generally, the following951

five data augmentation techniques were examined: additional952

Gaussian noise, masking noise, signal translation, amplitude953

shifting, and time stretching. Sample-based as well as dataset-954

based augmentation techniques were considered. They used955

two datasets to conduct their experiments, namely: Bearing956

Data Center of Case Western Reserve University (CWRU)957

and Intelligent Maintenance System (IMS). Their approach958

was able to achieve 99.9% accuracy.959

Zhou et al. [73] proposed a novel approach combining data960

augmentation and deep learning methods, which addresses961

the issue of a lack of training samples in deep learning962

when used to forecast emerging technologies. In order to963

construct a sample dataset, Gartner’s hype cycle and multiple964

patent features were utilized. As a second step, a generative965

adversarial network was used to create many synthetic sam-966

ples (i.e., data augmentation) in order to expand the sample967

dataset. Lastly, a deep neural network classifier was trained968

with the augmented dataset to forecast emerging technolo-969

gies, and it was able to accurately predict up to 77% of the970

emerging technologies in a given year. Based on patent data971

from 2000-2016, this approach was used to predict emerging972

technologies in Gartner’s hype cycles for 2017. A total of four973

out of six emerging technologies were accurately predicted,974

demonstrating the precision and accuracy of the proposed975

method. This article showed that deep learning now can be976

used to forecast emerging technologies with limited training977

samples.978

Hilda et al. [38] used the idea of gradient boosting-979

based ensembles, such as gradient boosting machine (GBM),980

extreme gradient boosting (XGBoost), LightGBM, and981

CatBoost. The goal of this paper is to assess the performance 982

of various imbalanced datasets usingmetrics such asMatthew 983

correlation coefficient (MCC), area under the receiver oper- 984

ating characteristic curve (AUC), and F1 score. In this article, 985

an example of anomaly detection in an industrial control 986

network is presented; more specifically, threat detection in a 987

cyber-physical smart grid is discussed. According to the test 988

results, CatBoost outperformed its competitors, regardless of 989

the imbalance ratio in the datasets. In [37], the same authors 990

also address the issue related to data imbalance. They have 991

developed a framework for comparing nine cost-sensitive 992

individual and ensemble models designed specifically to 993

deal with imbalanced data, including cost-sensitive C4.5, 994

roughly balanced bagging, random under-sampling bagging, 995

synthetic minority over-sampling bagging, random under- 996

sampling boosting, synthetic minority over-sampling boost- 997

ing, AdaC2, and EasyEnsemble. 998

Sinha et al. proposed a hierarchical model by combining 999

1D-CNN layers and Bi-LSTM layers [58]. CNN is used to 1000

identify spatial features of a dataset, while LSTM (essentially 1001

a subset of RNN) is used to identify long-term temporal 1002

patterns of the dataset, enabling a predictive model to be 1003

constructed. They performed both binary and multi class 1004

classification on two state-of-the-art datasets, i.e. NSL-KDD, 1005

and UNSW-NB15. Additionally, they used random over- 1006

sampling in order to balance the two datasets. It is important 1007

to note that in both datasets, they initially combined the 1008

training and testing sets. Later, they randomly divided the 1009

training and testing sets. In our experiments, we evaluated 1010

the performance of this approach. 1011

Zeeshan et al. [71] introduced an architecture based on 1012

Protocol Based Deep Intrusion Detection (PB-DID), in which 1013

the authors compared features of UNSW-NB15 and Bot-IoT 1014

data-sets based on flow and Transmission Control Protocol 1015

(TCP). It was then possible to classify Normal traffic, DoS 1016

traffic, and DDoS traffic uniquely by taking into account 1017

problems such as imbalance and overfitting. First they found 1018

the common features between the UNSW-NB15 dataset and 1019

the Bot-IoT dataset. For addressing the imbalance issue in the 1020

dataset, they combined both data-sets based on features that 1021

fall into the flow and TCP categories. Then, a deep neural 1022

network was used to classify them as normal, DoS, and DDoS 1023

attacks. During preprocessing, they combined training and 1024

testing datasets, and later separated them randomly as training 1025

and testing datasets. 1026

ML-classifiers trained with imbalanced datasets affect 1027

their performance. We utilized synthetic data generated 1028
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with CTGAN, to augment and balance well known training1029

datasets and studied its effect on the performance of various1030

well-known ML-classifiers.1031

V. CONCLUSION1032

Over the past several years, many researchers used Machine1033

Learning in designing and implementing IDSes. They used1034

different datasets for training ML classifiers. Most com-1035

monly used dataset are: NSL-KDD, UNSW-NB15. In many1036

of the datasets used for designing IDSes, data are imbal-1037

anced (i.e., not all classes have equal number of samples).1038

ML classifiers trained on such imbalanced datasets may pro-1039

duce unsatisfactory results which would affect accuracy in1040

predicting intrusions. Traditionally, researchers used over-1041

sampling and under-sampling techniques to balance data in1042

datasets, to overcome this problem. In this work, we used1043

over-sampling, and also used a synthetic data generation1044

method, called Conditional Generative Adversarial Network1045

(CTGAN) to balance data and study their effect on the per-1046

formance of various ML classifiers. To the best of our knowl-1047

edge, no one else has used CTGAN to generate synthetic1048

samples to balance training datasets designed for intrusion1049

detection in computer networks. Based on extensive experi-1050

ments with the widely used datasets NSL-KDD, and UNSW-1051

NB15, we found that training various ML classifiers on1052

data balanced with synthetic samples generated by CTGAN1053

increased not only prediction accuracy by as much as 8%,1054

but also performed well with respect to other metrics such1055

as recall, precision and F1 score. Moreover, their MCC score1056

increased by as much as 13%, compared to training the same1057

ML classifiers over imbalanced data. Our experiments also1058

show that the accuracy of some ML classifiers trained over1059

data balanced with random over-sampling declined compared1060

to the same ML classifiers trained over imbalanced data.1061

We also compared the performance of two recently pro-1062

posed models. They also perform much better under our new1063

approach for balancing data.1064
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