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Abstract—Intent detector is a central component of any task-
oriented conversational system. The goal of the intent detector
is to identify the user’s goal by classifying natural language
utterances. In recent years, research has focused on supervised
intent detection models. Supervised learning approaches cannot
accommodate unseen intents, which may emerge after the system
has been deployed — the more practically relevant setting, known
as zero-shot intent detection. The existing zero-shot learning
approaches split a dataset into seen and unseen intents for
training and evaluations without taking the sensitivity of the
data collection process into account. That is, humans tend to
use repeated vocabulary and compose sentences with similar
compositional structures. We argue that the source-to-target
relationship learning objective of zero-shot approaches under
typical data split procedure renders the zero-shot models prone
to misclassifications when target intents are divergent from source
intents. To this end, we propose INTEND, a zero-shot INTENt
Detection methodology that leverages contrastive transfer learning
and employs a zero-shot learning paradigm in its true sense. First,
in contrast to partitioning the training and testing sets from the
same dataset, we demonstrate that selecting training and testing
sets from two different datasets, allows for rigorous zero-shot
intent detection evaluations. Second, our employed contrastive
learning goal encourages the system to focus on learning a generic
similarity function, rather than on commonly encountered patterns
in the training set. We conduct extensive experimental evaluations
using four public intent detection datasets for up to 150 unseen
classes. Our experimental results show that INTEND consistently
outperforms state-of-the-art zero-shot techniques by a substantial
margin. Furthermore, our approach achieves significantly better
performance than few-shot intent detection models.

I. INTRODUCTION

Identifying users’ intent from natural language utterances

is a crucial step for conversational systems. For example, a

conversational system can be issued a command, “Set up
a reminder for grocery on April, 30 at 3pm”. Accurately

recognizing the user’s intent (i.e., “SetUpReminder” in this

example) enables the system to execute the necessary steps

to set the reminder. In a supervised setting [1], [2], [3], a

model can be trained on labeled training data, leading to

high performance on the intent detection task. However, the

challenge arises when new unseen intents emerge in the oper-

ational lifespan of a conversational system. Emerging intents

necessitate their flexible accommodation without sacrificing

the system’s performance on the critical task. The supervised

learning models fall short of providing the robust absorption

of nascent intents. Since supervised models tend to learn a

Fig. 1: (a) The typical train and test splits for zero-shot intent

detection models. (b) Existing zero-shot intent detection models

show poor performance when confronted with divergent unseen

intent labels at inference time. (c) The proposed, contrastive

learning-based approach, provides the model with robust zero-

shot adaptations for unseen intents.

probability distribution over intent labels, they are unable to

integrate new intents without (re-)training the model on the

(new) labeled dataset. Moreover, acquiring labeled training data

for each new intent is laborious and expensive which motivates

the zero-shot intent detection task [4].

Recently, several zero-shot (and few-shot) learning ap-

proaches have been devised with promising results [5], [6], [7].

A common zero-shot setting designates a fraction of classes

in a dataset as unseen, while instances from the remaining

classes are used for training. A model trained in this setting

captures distribution-specific features from seen intents and,
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generally, performs well on unseen intents. Figure 1 (a) presents

a scenario, where a dataset is split into seen and unseen intent

classes. The seen intent class label “Play Music” has high

similarity with an unseen class label “Add To Playlist”, which

enables the zero-shot model to perform well on the unseen

classes after being trained using the examples of seen classes.

However, such models are not robust when encountered with

divergent unseen classes from the seen classes. For example,

Figure 1 (b) shows a scenario where seen and unseen classes

are drawn from two different datasets. Naturally, intent classes

along with the domain, vocabulary, and sentence structure,

among other features, in both datasets, have a high probability

to be diverse, posing a challenge for zero-shot models in this

true zero-shot setting. The seen classes, “Play Music” and

“Add To Playlist” have low similarity with unseen classes,

“Reminders” and “Alarms”, and existing zero-shot models

are shown to demonstrate poor performance in this setting.

Intuitively, if the dataset is homogeneous and exhibits low KL

divergence between seen and unseen class distributions (e.g.,

Figure 1 (a)), the model could use the learned features for

accurate inference. However, such guarantees are unlikely to

exist in the real world where data exhibits high KL divergence

and new intents may appear with a weaker affinity for already

learned features (i.e., less similarity with seen utterances). We

argue that the misclassifications in zero-shot models (e.g.,

Figure 1 (b)) are caused by the learning objective of these

techniques – the source-to-target relationships.

In this work, we propose a robust zero-shot setting to

address the misclassification issue inherent in typical zero-

shot settings. First, we propose that the train and test datasets

should be fully distinct, having different distributions, with

a disjoint (or even overlapping) set of intents (as shown in

Figure 1 (b) and (c)). This is a more challenging, practically

relevant, and close-to real-world setting. To the best of our

knowledge, this is the first work to propose conducting zero-

shot intent detection experiments in this setting. Second, instead

of a source-to-target relationship-based objective, a contrastive

learning objective is adapted. The contrastive learning is self-

supervised as well as task-independent, thus forcing the model

to learn a generic embedding space (i.e., irrespective of seen

or unseen class labels) where similar utterance and intent

pairs are close to each other and dissimilar ones are far from

one another. Third, language models trained on large-scale

datasets, such as Sentence-BERT [8], are employed to capture

contextual correspondences between utterances and intents.

These models have millions of parameters and thus have

the capability to generate rich representations even for new

unseen class labels. Since datasets (train and test) are supposed

to have heterogeneous distributions, the proposed zero-shot

intent detection model minimizes the model’s predisposition

to converge to observed classes, directing the learning process

more towards generalization.

Figure 1 presents an overview of the proposed zero-shot

intent detection approach. Assume our train dataset is S and

our test dataset is T . The goal is to transfer generic features

from S to T . It is to be noted that S and T do not necessarily

have to have a disjoint set of intents The model is trained on S
in a contrastive fashion, with N negative examples per positive

instance, and validated on T with contrastive sampling. This

training strategy imposes convergence criteria on the model’s

training with respect to test dataset T that accommodates new

intents in the dataset T . Because of the contrastive training

objective, our model integrates newly emerging intents in a

flexible manner without jeopardizing the system’s robustness.

Specifically, using the dataset S, our training goal is to learn

positive and negative associations between utterances and

intents. It is important to mention that gradient updates are

never performed on the dataset T . We show empirically that

our learning objective instructs the model to learn general

patterns that are then applied to the target dataset T .

We use four public intent detection benchmarks to demon-

strate the effectiveness of our proposed approach. We conduct

experimental evaluations in the (true) zero-shot settings and

the results show that our proposed zero-shot intent detection

model, INTEND, outperforms state-of-the-art models in a wide

range of experiments. Furthermore, we conduct experiments

using a few-shot setting and results demonstrate that our

model’s quantitative performance is better or competitive with

several state-of-the-art large models, such as DNNC [9] and

DialoGLUE (ConvBERT-DG) [10].

Our contributions are summarized as follows:

• We effectively couple pre-trained language models with

contrastive transfer learning for zero-shot intent detection.
• We show that INTEND accommodates newly emerging

intents with high F1 score and outperforms state-of-the-art

models in zero-shot and few-shot intent detection settings.
• We also present a distribution divergence analysis between

training and testing datasets to demonstrate a rigorous zero-

shot evaluation setting.

II. PRELIMINARIES

A. Problem Formulation

Suppose we have the training and testing datasets denoted by

S = (Xs, Is) and T = (Xt, It), respectively, where Xs and

Xt denote the set of training and test utterances, respectively.

Similarly, Is and It represent the set of training and test intents,

respectively. We further define Xs = {X s
1 ,X s

2 , . . . ,X s
n} and

Is =
{Is1 , Is2 , . . . , Isp

}
where n is the number of utterances and

p denotes the number of intents in training dataset S. Similarly,

utterance/intent pairs for test dataset T can be defined as

Xt = {X t
1 ,X t

2 , . . . ,X t
m} and It =

{It1, It2, . . . , Itq
}

where q
and m denote the number of intents and utterances, respectively.

N̄ s
i represents the set of negative samples for a positive sample

X s
i consisting of negative utterance/intent pairs of the form

(X s
i , ĪsK) where ĪsK represent an intent not related to X s

i and K
is the number of negative samples. Having a model trained on

training dataset S, our objective is to classify a test utterance X t
i

belonging to the test dataset T . We emphasize that Is∩ It = φ
is not a requirement for our approach to work. This setting is

referred to as generalized zero-shot intent detection.
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Fig. 2: The training and inference procedures along with the end-to-end architecture of our proposed framework.

B. Unsupervised Representation Learning

The unsupervised representation learning approaches have

revolutionalized the field of natural language processing (NLP).

Given the abundance of textual data, the unsupervised learning

techniques [11], [12], [13], [14], [15], [16] allowed for the

development of pre-trained language models. In this work,

we use pre-trained language models and fine-tune them for

capturing generic patterns that can effectively be transferred

to the test dataset. We learn sentence level representations

using a variation of Sentence-BERT [8] that uses MPNet [15]

instead of BERT [13]. MPNet [15] builds upon the strengths

of BERT [13] and XLNet [14], addresses their issues, and

outperforms them on various NLP tasks. In the following, we

provide a brief overview of both modeling approaches.

Masked Language Model (MLM). BERT [13] employs trans-

former architecture [17] and MLM for learning bidirectional

representations. Consider x = {x1, x2, x3, . . . , xn} is a given

sequence, where 15% tokens are masked (i.e., replaced with

[MASK] token). Let us represent the masked tokens with M
and set of masked tokens by xM, where x\M is the sequence

after masking. MLM objective can be written as:

logP
(
xM|x\M; θ

) ≈
∑

m∈M
logP (xm|s\M; θ) (1)

Permuted Language Model (PML). XLNET [14] proposes

PLM technique in order to utilize the power of bidirectional

context and autoregressive modeling. Consider an input se-

quence x = {x1, x2, x3, . . . , xn}. Let us suppose that the set

Zn represents all the n! permutations of the input sequence.

Let zn ∈ Z be one of the permutations and the current token

to be predicted is located at index t, then z<t are the first t−1
tokens. As a concrete example, let us say zn = {1, 3, 5, 2, 4};
if t = 4 then zt = 2, xzt = x2 and z<t = {1, 3, 5}. Keeping

this notation in view, PLM formulation is given below:

logP (x; θ) = Ez∈Zn

n∑

t=c+1

logP (xzt |xz<t; θ) (2)

where c represents non-predicted tokens. xz<=t

III. OUR APPROACH

Our proposed framework, INTEND, employs a variant of

Sentence-BERT [8] that uses pre-trained MPNet [15] as the

backbone model and further fine-tunes it with a contrastive

learning strategy to achieve zero-shot generalization. An End-

to-end training and inference pipeline of INTEND is presented

in Figure 2. Given a test utterance X t
i , our goal is to assign

an intent from an unseen set of intents It to the utterance.

It is important to recall that the model is trained only using

examples from training dataset S = (Xs, Is). In the following,

we first explain the crucial building blocks of INTEND, then

provide details about contrastive learning.

A. Building Blocks
MPNet. Even though BERT is a powerful model, it suffers by

not considering the masked token dependencies. On the other

hand, XLNet captures bidirectional contexts by considering all

permutations of factorization order, but it does not consider

the full position information of a sentence and thus suffers

from pretrain-finetune discrepancy. MPNet [15] leverages the

best of MLM (i.e., BERT) and PLM (i.e., XLNet) modeling by

proposing a unified view and by addressing their limitations. For

a given sequence x = {x1, x2, x3, x3, x4, x5} where tokens

x2 and x4 are masked. This sequence is permuted to get

x = {x1, x3, x5, x2, x4} with the masked tokens at the end of

the sequence. Since transformer architecture is independent of

input order as long as tokens and their positions are correctly

associated [15], the objective of MLM can be rewritten as:

Ez∈Zn

n∑

t=c+1

logP (xzt |xz<=c,Mz>c
, ; θ) (3)

In our given permuted sequence n = 5, c = 3, to be

predicted tokens are xz>c and Mz>c
are the masked tokens. We

can notice that MLM’s unified view formulation and PLM’s

formulation from Equation 2 are similar. Finally, MPNet’s

formulation can be given as follows:

Ez∈Zn

n∑

t=c+1

logP (xzt |xz<t,Mz>c
, ; θ) (4)

The pre-trained MPNet is fine-tuned on over 1 billion

sentence pairs using a multitude of datasets, including Reddit

Comments [18], S2ORC [19], Wiki Answers [20], PAQ [21],
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Fig. 3: Modified Sentence-BERT with MPNet.

MS MARCO [22], and GooAQ [23], among others. The MPNet

is fine-tuned using a sentence pair similarity objective, which

calculates cosine similarity between sentence pairs in a batch

and compares it to true pairing using cross-entropy loss. We

further fine-tune the MPNet for zero-shot intent detection task

using a contrastive learning strategy.

Sentence-BERT. The design of Sentence-BERT is geared

towards solving the computational overhead issues involved

in sentence pair regression task, encountered while using

BERT[13] and RoBERTa[24] like architectures. The Sentence-

BERT overcomes this overhead by employing siamese and

triplet loss [25]. In this work, we employ the Sentence-

BERT model jointly with MPNet for our contrastive learning-

based training. We integrate MPNet into Sentece-BERT for

calculating sentence embeddings. Figure 3 depicts the employed

Sentence-BERT architecture with integrated MPNet.

B. Contrastive Learning.
To facilitate robust zero-shot intent detection, we fine-

tune the MPNet model with a contrastive objective. We

leverage negative sampling to capture the utterance-to-intent

correspondence. By randomly choosing K negative samples per

positive sample, the model’s goal is to learn the positive and

negative association between utterance and intent pairs. We use

the contrastive loss for guiding the training process. Our training

approach provides the added advantage of steering the network

away from learning the dataset-specific patterns and forces the

model to learn more generic transferable associations between

utterance and intent tokens. In the following, we provide further

details about the training process.

Negative Sampling. Given a training example (X s
i , Isi ) ∈

(Xs×Is), we sample K negative samples for (X s
i , Isi ) denoted

by N̄ s
i =

{
(X s

i , Īs1), (X s
i , Īs2), (X s

i , Īs3), . . . , (X s
i , ĪsK)

} ∈
Xi × Ii\Isi .
Input Embeddings. Let Fθ denote our embedding model and

(X s
i , Isi ) be a training example. We get the embeddings Us

i

and Vs
i for X s

i and Isi , respectively, using:

Us
i = Fθ(X s

i ) (5)

Vs
i = Fθ(Isi ) (6)

where θ represents the model parameters.

Objective Function. We employ contrastive objective function

for learning the sentence level embeddings. Consider that we

are given a positive training example (X s
i , Isi ) with a label of

1. Similarly, a negative training example (X s
i , Īsi ) has a label 0.

The contrastive learning objective is to pull the positive sample

(X s
i , Isi ) closer together in the embedding space, while the

negative sample (X s
i , Īsi ) is pushed away. Having calculated

the embeddings for the training example (X s
i , Isi ) as Us

i and

Vs
i , the loss function is given below:

Li = − log
exp (Us

i .Vs
i /τ)

exp
(Us

i .V̄s
i /τ

) (7)

where V̄s
i represents the embedding of the negative sample’s

corresponding intent.

Generalization to New Unseen Intents. The ability to

generalize to new unseen intents can be attributed to the

contrastive objective of our proposed design. Our objective

function is focused on learning the association between

utterances and intent in such a way that utterance/intents

pairs with high affinity are pulled together, while those

not bearing much attraction are pushed away in the high

dimensional manifold. Along the same lines, our approach

lets the model learn a scoring function that assigns a score

value between 0 and 1 to utterances/intent pairs. By doing

that, the model’s objective is refined towards learning generic

features, rather than learning the dataset-specific distribution

and their corresponding characteristics. Since the model’s

learned features are more token-oriented rather than dataset’s

distribution-oriented, the model learns the ability to distinguish

the relationship between a nascent intent and corresponding

utterance which may emerge in the future after the system’s

deployment.

C. Implementation Detail
Our model has a hidden size of 768 and the maximum

allowed tokens are 384. We employ cosine similarity for

evaluation between predicted and real labels. We use a learning

rate of 2e−5 with AdamW optimizer. We trained our model

for 1 epoch with a batch size of 4. Our optimization scheduler

is WarmupLinear with 100 warmup steps. We only employ

200 update steps per epoch with a contrastive loss function.

We trained our model on NVIDIA GeForce RTX 3090 24 GB

graphics card. For few-shot experiments, we use 2000 update

steps per epoch. We train for only 1 epoch. We use negative

sampling for contrastive learning by using various ratios of

positive to negative samples depending upon the cardinality of

the dataset. For example, SNIPS has 7 classes, so we have the

leverage of using 6 classes for composing negative pairs with

1 positive class. On similar lines, HWU64, BANKING77, and

CLINC150 have a 1:20 negative sampling ratio for training.

For our few-shot experiments, we employed a 1:2 positive-to-

negative sampling ratio for SNIPS, HWU64, and BANKING77,

whereas a 1:20 negative sampling ratio is used for CLINC150.

IV. EXPERIMENTAL SETUP

For both zero-shot and few-shot intent detection tasks, we

use the F1 score as our main evaluation metric.

A. Datasets
We employ four public benchmarks for intent detection.

Table II presents important statistics about the datasets.

(i) CLINC150 [26] has 150 in-domain intent classes across

10 domains. Dataset also offers out of scope utterances.
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TABLE I: Comparison in the zero-shot setting with the competing methods. The top row shows the test datasets. 2nd row

shows the training datasets. For example, when CLINC150, HWU64, and SNIPS are the training datasets, BANKING77 is the

test dataset.

Test Dataset −→ BANKING77 CLINC150 HWU64 SNIPS
Method ↓ Train Dataset −→ CLINC150 HWU64 SNIPS BANKING77 HWU64 SNIPS CLINC150 BANKING77 SNIPS CLINC150 BANKING77 HWU64

DeViSE 0.001 0.001 0.04 0.001 0.002 0.062 0.005 0.001 0.086 0.002 0.001 0.002
Zero-shot DNN 0.509 0.509 0.509 0.587 0.587 0.587 0.426 0.426 0.426 0.682 0.682 0.682
albert-base-v2 0.001 0.002 0.231 0.504 0.493 0.310 0.001 0.001 0.272 0.669 0.553 0.751
albert-large-v2 0.001 0.001 0.013 0.512 0.001 0.001 0.001 0.001 0.341 0.035 0.035 0.035
roberta-base 0.488 0.323 0.273 0.001 0.001 0.376 0.001 0.441 0.297 0.737 0.504 0.744
roberta-large 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.035 0.050 0.035

bert-base-uncased 0.490 0.253 0.400 0.538 0.524 0.388 0.463 0.406 0.368 0.801 0.773 0.857
GPT2 0.047 0.035 0.005 0.261 0.088 0.010 0.138 0.126 0.059 0.340 0.29 0.162
T5 0.140 0.011 0.029 0.303 0.066 0.110 0.275 0.266 0.118 0.663 0.367 0.382

INTEND (This work) 0.605 0.604 0.605 0.687 0.69 0.687 0.531 0.528 0.527 0.795 0.795 0.797

TABLE II: Datasets statstics.
Dataset Samples Vocab. Avg. Length Intents
CLINC150 22.5K 7.2K 8.30 150
BANKING77 13K 4.5K 11.69 77
HWU64 11.1K 4.8K 6.56 64
SNIPS 14.4K 12.1K 9.00 7

(ii) BANKING77 [27] contains 13083 utterances across 77

intents belonging to a single domain. (iii) HWU64 [28] covers

21 domains with 64 intents. (iv) SNIPS [29] is a natural

language understanding benchmark with 14.4k utterances

spanned across 7 intents.

B. Competing Models

All the competing models have been trained and evaluated

using the same setup as INTEND.

1) Zero-shot Methods: (i) DeVise [30] strives to find the

compatibility between utterance/intent pair through a trainable

linear projection. (ii) Zero-shot DNN [4] is designed to calculate

the score between utterance and intent, and the highest affinity

score is selected for prediction. (iii) albert-base-v2 [31] is an

MLM pre-trained on English. (iv) albert-large-v2 [31] uses

the same learning objectives as albert-base-v2. Contrasting

differences are in configuration where albert-large-v2 employs

16 attention heads, 1024 hidden dimensions, and 24 repeating

layers consisting of 17M parameters. (v) roberta-base [24]

employs MLM objective and trained on 160 GB of text data.

(vi) roberta-large [24] is the larger version of roberta-base

trained with self-supervised learning and MLM objective on

English corpus from various sources e.g., BookCorpus, CC-
News. (vii) bert-base-uncased [13] is an uncased language

model trained with MLM objective. It is trained on BookCorpus
and English Wikipedia. Vocabulary size is 30,000 and all text

is lowercased and tokenized with WordPiece. (viii) GPT2 [32]

employs causal language modeling (CLM) objective. GPT2

is trained in an autoregressive manner.(ix) t5-large [12] is an

encoder-decoder architecture pre-trained on various text-to-text

unsupervised and supervised tasks.

2) Few-shot Methods: (i) GPT3 API from OpenAI has

also been employed for few-shot intent detection comparison

purposes. (ii) DNNC (Discriminative nearest neighbor classifi-
cation) [9] with deep self-attention is also one of our baselines

for few-shot intent detection comparison. In this work, BERT-

style pairwise encoding is used to train a binary classifier

for best-matched training example estimation for user input.

(iii) DialoGLUE (ConvBERT-DG) [10] is a pre-trained model

which is built on top of BERT [13] in order to mitigate its

insufficiency when processing dialogue data. ConvBERT is

trained on a large-scale open-domain dialogue corpus with 700

million conversations. ConvBERT-DG is a ConvBERT, but it is

trained on full DialoGLUE [10] data in a supervised manner.

C. Data Splits

All the models are trained on the full training dataset

S with all the utterance/intent pairs merged together from

train/validation/test sets while keeping the test dataset T
separate for evaluation. We split the test dataset T into

validation and testing such that validation contains 25% of

the data while the rest of the data is kept aside for testing. We

employ stratified sampling for splitting validation and test sets.

V. RESULTS

A. Quantitative Analysis

Comparison with Zero-shot Models. Table I presents the

F1 score of all the models on a wide range of training and

testing configurations. Our proposed INTEND outperforms all

the competing models on all the configurations (with a few

exceptions where it shows highly competitive performance)

by a large margin. Specifically, when our testing dataset

was BANKING77, INTEND is at least 10 percentage points

more accurate than the second-best model(s) trained using

CLINC150, HWU64, or SNIPS. Similar results can be observed

when the evaluation datasets are CLINC150 and HWU64

where the minimum performance gap between INTEND and

the second best model is 10 percentage points. We notice

that all the baseline zero-shot intent detection models suffer

to capture generic transferable patterns, resulting in poor F1

scores. We attribute this to the baseline models’ tendency

to overfit the training datasets. On the other hand, INTEND
outperforms all the competing methods consistently and obtains

a high F1 score. It is important to note that our proposed

approach consistently demonstrates its ability to transfer the

generic learned patterns to the test dataset irrespective of

training datasets. It can be noticed that when the training

dataset is CLINC150, HWU64, or SNIPS, and the evaluation

dataset is BANKING77, INTEND’s performance shows little

to no variance that demonstrates its robustness to learn the

transferable generic patterns. Similar observations can be

noted for other experimental configurations. We argue that

the variant of Sentence-BERT with MPNet in tandem trained

53

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on May 18,2023 at 18:09:28 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Comparison in the few-shot setting with competing methods. The results of baselines and our method are presented

for different number (1-5) of training examples. Our model consistenly outperforms on 1-shot and 2-shot settings.
Dataset −→ CLINC150 BANKING77 HWU64 SNIPS

Shots ↓ Method −→ DNNC
DialoGLUE

(ConvBERT-DG)
INTEND DNNC

DialoGLUE
(ConvBERT-DG)

INTEND DNNC
DialoGLUE

(ConvBERT-DG)
INTEND DNNC

DialoGLUE
(ConvBERT-DG)

INTEND

1-shot 0.052 0.501 0.818 0.072 0.174 0.671 0.087 0.354 0.613 0.079 0.037 0.904
2-shot 0.689 0.793 0.837 0.514 0.438 0.690 0.469 0.632 0.672 0.053 0.037 0.927

with contrastive learning objective demonstrates the strong

tendency of capturing generic dataset characteristics which are

free from the underlying distribution of the training dataset.

While on the other hand, we have several strong baseline

models as well as pre-trained language models that follow

state-of-the-art transformers architecture like autoencoding

based, autoregressive based, and encoder/decoder (i.e., T5),

but almost all the models suffer from a tendency to overfit

to the training dataset when evaluated on a different test

dataset. Similar performance gains for INTEND are observed

in comparison with specialized zero-shot methods, where

INTEND outperforms all the competing methods.

We also notice that the larger the model, the higher the

overfitting tendency. For example, albert-large-v2 and roberta-

large both show poor performance when employed for feature

transfer from CLINC150 to BANKING77. SNIPS is a relatively

simpler dataset with only 7 intents. It is also interesting to note

that one of the baseline models (i.e., bert-base-uncased) shows

good learning capability when the evaluation dataset is SNIPS,

but at the same time, it fails to perform well on difficult datasets

like BANKING77. Except for two configurations, our model

outperforms all the models in all zero-shot experiments and

demonstrates its zero-shot generalizable learning capabilities

in comparison with strong baselines. In one of those settings,

our model remains very competitive (i.e., 0.795 vs 0.801). To

summarize the zero-shot setting experiments, we demonstrate

that the exceptional generic learning capabilities of our model

in a wide range of zero-shot experimental configurations.

Comparison with Few-shot Models. We also compared our

model with the best-performing few-shot models, like [10] and

[9]. We evaluate both the baselines and our proposed model

on 1-shot and 2-shot settings. Table III summarizes the results

for few-shot experiments. We report that our proposed model

shows strong learning capability in 1-shot and 2-shot settings

and consistently outperforms the competing baselines. When a

few labeled training examples are available for training, our

model remains competitive with the baselines. In fact, INTEND
is still the best model among all the competitors, though the

performance margin is generally smaller on challenging datasets

(e.g., 4 percentage points for CLINC150 and HWU64). Keeping

in view the true essence of zero-shot settings, our objective is

to evaluate the various competing systems under “zero-shot” or

“closer to zero-shot” settings. We argue that zero-shot models

should achieve appreciable and consistent improvements with

a minimum number of training shots. Focusing on 1-shot and

2-shot results, it can be noticed that our proposed model, when

presented with 1-2 shots, achieves notable improvement in

comparison with the system’s zero-shot performances on that

dataset. For example, let us focus on our model’s performance

TABLE IV: GPT3 API Results: F1 score on various datasets

based upon single-shot prompt and 10-shot evaluation
BANKING77 CLINC150 HWU64 SNIPS

F1 0.51 0.59 0.43 0.68

on CLINC150 both in zero-shot and few-shot setups. In the

zero-shot setting, our model manages to get an F1 score of 0.69

when pre-trained on HWU64. Under 1-shot setting, F1 score

jumps from 0.69 to 0.818 which amounts to 18.5 percentage

points improvement with just a single shot. Hence, we argue

that our system remains true to the realistic zero-shot and

few-shot settings, either with no data or bare minimum data.

Comparative Study with GPT-3. We also employ GPT-3 API

for getting a comparative insight into our proposed strategy. We

provide GPT-3 Q&A module with a prompt and corresponding

text and label pairs. For example, we provided one utterance

and label pair per class (i.e., equivalent of 1-shot setting) along

with our designed prompt. We, then, tested GPT-3 with 10
utterances per class for each and recorded F1 score. Results

are summarized in IV. Let’s focus on BANKING77 results for

comparison. F1 score achieved by GPT-3 on BANKING77 is

0.51 while INTEND manages 0.605 in zero-shot setting and

0.671 in the 1-shot experiment. Similarly, INTEND exhibits

better performance on other benchmarks (see Table I and IV).

The performance gains in case of INTEND can be attributed

to our proposed contrastive learning objective.

B. Qualitative Analysis
It is a central requirement for zero-shot intent detection

systems to accommodate new intents which may emerge in the

future once the system is deployed. Our system is designed with

this very requirement in mind, when scarcity of data becomes an

issue and little to no training data is available. Similarly, closer

to real-world zero-shot situations, our system demonstrates the

ability to adapt to the requirement with minimum dependency

upon the training data for accommodating new intents.

Distributional Divergence Analysis. We also present a

comparative divergence analysis of training and testing datasets

to demonstrate that the traditional zero-shot learning evaluation

setup that splits a single dataset into seen and unseen sets

to conducts experiments is not rigorous. Figure 4(a) presents

the distributions of BANKING77 dataset when it is split into

seen and unseen sets. We observe that the distributions of

the seen (i.e., used for training) and unseen (i.e., used for

evaluation) splits are very close to each other with a small KL

divergence score of 0.13. We observed similar KL divergence

scores when any dataset is split into seen and unseen sets.

This result signifies that the training and testing distributions

in the traditional zero-shot experimental setup are very close

and do not allow for true zero-shot evaluations, when training

and testing distributions are divergent. Figure 4(b) and 4(c)
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(a) Seen/Unseen Splits from same dataset:
BANKING77; (KL=0.13).

(b) Distribution Plot for CLINC150 and
BANKING77; (KL=1.02).

(c) Distribution Plot for SNIPS and BANK-
ING77; (KL=1.38)

Fig. 4: KL Divergence analysis highlights that if one dataset is split into seen and unseen sets (i.e., traditional zero-shot

evaluation setting), the distributions for both sets show significantly low divergence. On the other hand, two different datasets

generally have high KL divergence that facilitates rigorous (or true) zero-shot evaluations (best viewed in color).

present distributional plots for CLINC150 and BANKING77

(i.e., KL=1.02), and SNIPS and BANKING77 (i.e., KL=1.38).

A comparatively, high KL divergence score can be noticed when

the distributions of two different datasets are compared, thus

facilitating true zero-shot evaluations. Based on our evaluation

results, we notice that almost all the zero-shot intent models

fail to perform well in this rigorous evaluation setting. However,

our proposed method outperforms all the competing baselines

in feature transfer task between two different datasets, i.e.,

when training and testing distributions are far from each other

(see Table I). We argue that INTEND’s better performance can

be attributed to our contrastive learning design, in which we

focus on the transferable generic feature learning.

We argue that highly divergent training and testing datasets

are the most relevant and close to real-world scenarios for zero-

shot intent detection systems. So, the zero-shot intent detection

models should have the ability to accommodate such divergent

intents. It can be noted that INTEND shows excellent feature

transfer capability from SNIPS to CLINC150 (F1=0.68). With

this result, we believe that INTEND exhibits a strong tendency

to accommodate newly emerging divergent intents. Similarly,

INTEND exhibits a high F1 score (0.531) for HWU64 when

trained on CLINC150. KL-divergence between CLINC150

and HWU64 is 1.14 which provides further evidence for

high feature transfer capability of INTEND in case of newly

emerging unseen intents.

VI. RELATED WORK

Supervised Methods. An attention-based neural network for

joint intent detection and slot filling is proposed in [1]. They

also investigate different strategies to incorporate alignment

information in the encoder-decoder framework and suggest

introducing attention to alignment based RNN-models. A

convolutional neural networks-based joint intent detection and

slot-filling model is presented in [3]. They propose a neural

version of the triangular CRF model for modeling intents and

sequences jointly. The authors in [33] build upon the previous

intent detection and slot-filling works, which consider these

tasks separately. They propose to consider the cross-impact of

these two tasks together and propose a bi-model-based RNN

semantic frame parsing network and attempt to solve these

two tasks jointly. Authors in [34] propose a non-autoregressive

model for jointly solving intent detection and slot-filling tasks.

In [35], authors propose to solve intent detection and slot filling

with a stack propagation strategy for effectively using the intent

information for slot filling task. All the works in the supervised

setting require a large amount of labeled training data for each

intent, whereas the focus of this work is to generalize to new

unseen intent labels with no training data.

Zero-shot Methods. Zero-shot intent detection is of particular

interest since it tackles mitigating the data scarcity issue.

The usage of label ontologies [36], [37], external knowledge

sources [6], outlier detection algorithm [38], [39], among others,

have been explored to facilitate zero-shot intent detection.

Moreover, mapping of intent and utterances to the same

embedding space [30], [4] and capsule neural networks [40]

have also been investigated. While these works show promising

results in the zero-shot setting, they evaluate the models by

splitting a single dataset into training and testing datasets – not

a rigorous experimental setup. In this work, we focus on the

more practically relevant and thorough zero-shot evaluations

when the distributions of seen and unseen intents are divergent.

CONCLUSION

We present a robust zero-shot intent detection strategy. Our

approach focuses on generic feature learning by employing

contrastive learning and leveraging the power of pre-trained

language models. We use a variant of Sentence-BERT which

is equipped with modern MPNet architecture. Prior works split

a single training dataset into seen and unseen intents that may

lead to misclassifications when the model is presented with

divergent emerging intents in the functional lifespan of the

system. We suggest keeping the training and testing datasets

totally different, having different distributions facilitates robust

zero-shot evaluations. Our proposed approach accommodates

new unseen divergent intents flawlessly.
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