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ABSTRACT
Securing the Internet of Things is critical for its successful deploy-
ment in various industries. While Machine Learning techniques
have shown promise for intrusion detection in the Internet of
Things, existing methods require large amounts of labeled training
data; moreover, they encounter challenges with the presence of
extreme class imbalance, i.e., some classes are underrepresented in
the datasets used. Supervised methods rely on extensive labeled
data, which can be costly and time-consuming to obtain. Class im-
balance in datasets further exacerbates the challenge by skewing
the model’s learning process toward the majority classes, leading to
poor detection of attacks belonging to minority classes. This issue
is particularly pronounced in the Internet of Things environments
due to diverse devices and the varying frequency of intrusions tar-
geting them. To overcome these challenges, we present a Few-Shot
and Self-Supervised framework, called FS3, for detecting intrusions
in IoT networks. FS3 works in three phases. The first phase em-
ploys self-supervised learning to learn latent patterns and robust
representations from unlabeled data. The second phase introduces
Few-shot learning with contrastive training. Few-shot learning
enables the model to learn from a few labeled examples, thereby
eliminating the dependency on a large amount of labeled data. Con-
trastive Training addresses the class imbalance issue by improving
the discriminative power of the model. The third phase introduces a
novel K-Nearest neighbor algorithm that sub-samples the majority
class instances to further reduce imbalance and improve overall
performance. Experimental results based on three publicly available
benchmark datasets demonstrate the efficacy of FS3 in addressing
the challenges posed by the limited availability of labeled data as
well as class imbalance in datasets. Our proposed framework FS3,
utilizing only 20% of labeled data, outperforms fully supervised
state-of-the-art models by up to 42.39% and 43.95% with respect to
the metrics precision and 𝐹1 score, respectively.
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1 INTRODUCTION
Internet of Things (IoT) has become an integral part of our lives,
with billions of devices connected through wired and wireless net-
works. For example, the number of active IoT devices surpassed 10
billion in 2021. According to a report by Cisco [6], this number is
projected to increase to over 500 billion by 2030. The proliferation
of IoT devices has revolutionized various domains, ranging from
healthcare to transportation, by enabling seamless connectivity and
intelligent automation [11]. For instance, cell phones, thermostats,
and doorbell cameras have already made a significant impact on
various aspects of society, encompassing industry and everyday
life. However, the rapid expansion of IoT networks has led to a
significant increase in the attack surface for malicious actors, and
hence these networks are increasingly becoming attractive targets
for malicious actors. As a prime example, a series of distributed
denial of service (DDoS) attacks took place in the United States in
2016, exploiting the vulnerabilities of IoT devices through the Mirai
malware [7].

Intrusion detection systems (IDSes) are essential for protecting
IoT networks from attacks and play a pivotal role in safeguarding
IoT networks against unauthorized access, data breaches, and other
security threats. Traditional IDSes often rely on signature-based
approaches, which struggle to keep up with the evolving threat
landscape. Furthermore, IoT devices commonly employ special-
ized protocols and display unique traffic patterns. These inherent
characteristics capture the intricacies of IoT network traffic. As a
result, the utilization of Machine Learning (ML) has become preva-
lent in securing IoT devices as well as optimizing various other
aspects such as coordinating wireless devices for efficient spectrum
usage [24]. ML models have demonstrated promising results in
detecting anomalous patterns in network traffic and identifying
potential intrusions [54]. However, the effectiveness of these mod-
els heavily relies on the availability of large amounts of labeled
training data, which can be scarce to obtain in real-world IoT en-
vironments, especially for new attack vectors. Since annotating
large datasets with accurate labels is a resource-intensive and often
expensive task, especially in domains like cybersecurity, where ex-
pert knowledge is required. Additionally, datasets for IoT networks
are often characterized by class imbalance, since the occurrence of
intrusions targeting different device types and functionalities varies
significantly. Specifically, within any given time window, we often
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Figure 1: Overview of our proposed Few-Shot and Self-Supervised framework: FS3 that requires a small amount of labeled data.

observe two contrasting scenarios: either there is a significantly
higher number of intrusion attempts, or there is a significantly
smaller number of such events. This inherent variability in attack
occurrences is a fundamental characteristic of IoT network traffic.
Conversely, when there is a sudden surge in attacks (and the sys-
tem was trained using balanced data), it can lead to poor detection
systems. Our intent in focusing on class-imbalance datasets was
precisely to reflect these real-world fluctuations in IoT intrusion de-
tection. Notably, the ratio of the number of samples in the minority
classes to that of the majority classes can vary from 1:100 to 1:1000,
and beyond. Consequently, the minority classes representing these
intrusions are often underrepresented in the training data, leading
to biased model learning and suboptimal detection performance
for these critical threats.

The issue of imbalanced datasets is often overlooked or addressed
through oversampling and undersampling techniques, which can
lead to overfitting or underfitting problems. Overfitting arises from
the inclusion of exact replicas of original samples, while underfit-
ting occurs due to inadequate data samples by undersampling. To
avoid the overfitting problem that arises due to simple oversam-
pling, adding synthetic data generated to minority classes has been
proposed [12]. Furthermore, traditional loss functions, such as cross-
entropy loss, do not properly attend to minority class instances
during model training, since they perform averaged-gradient up-
dates. To deal with this challenge, methods employing specialized
loss function such as focal loss to allow dynamically scaled-gradient
updates has been used [13]. This results in down-weighing of easy
instances, thereby compelling the model to concentrate on difficult
misclassified examples. Nonetheless, all of these approaches are
fully supervised and require a huge amount of labeled training data.
Class imbalance in datasets is a frequent issue in machine learning,
arising when the distribution of samples in a dataset is skewed or
biased. This can result in a model bias during training, ultimately

affecting its performance adversely. Our objective is to reduce the
influence of class imbalance problems in deep learning classifiers
while also tackling the scarcity of large labeled training data in
real-world scenarios.

We address these issues in this paper and propose FS3, a novel
Few-Shot and Self-Supervised framework for intrusion detection in
IoT networks. An overview of our proposed framework FS3 is pre-
sented in Figure 1. FS3 overcomes the limitations of state-of-the-art
approaches by leveraging self-supervised learning (SSL), few-shot
learning (FSL) with contrastive training, and a novel sub-sampled
K-Nearest Neighbor (KNN) algorithm. In the first phase, FS3 em-
ploys SSL to extract latent patterns and robust representations from
unlabeled data. By capitalizing on the inherent structure of the data,
FS3 reduces the dependence on extensive labeling, alleviating the
burden of manual annotation. Specifically, we leverage attentive
interpretable tabular learning [3] and pre-train a tabular multilayer
perceptron (TabMLP) [58] as the backbone encoder that learns ro-
bust embeddings of the categorical as well as continuous features
using masking objective. The second phase introduces FSL with
contrastive training. By learning from a small number of labeled ex-
amples (e.g., 5-10 instances per class), the model becomes adaptable
to dynamic IoT environments, where acquiring extensive labeled
data for all possible intrusion scenarios is impractical. Our pro-
posed approach effectively uses IoT-specific features, making our
method well-suited for the detection of intrusions that are charac-
teristic of IoT environments. Specifically, we fine-tune the encoder
contrastively using the triplet loss function [61] to enhance the
model’s discriminative power, particularly for the minority classes.
Essentially, this loss function imposes a constraint on the model
to learn feature representations of the input samples in a manner
that promotes proximity among samples belonging to the same
class within the feature space, while ensuring greater separation
between samples belonging to different classes.
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Furthermore, FS3 introduces a novel sub-sampled KNN algo-
rithm in the third phase. This algorithm selectively sub-samples
instances from the majority class considering the distribution of
the training data, reducing the class imbalance and further en-
hancing the performance of the model. By intelligently weighting
the instances, FS3 achieves a more balanced representation of the
classes, leading to improved intrusion detection capabilities across
the entire spectrum of intrusion types. To optimize the process of
similarity search and enhance the speed of inference, we employ
Facebook AI Similarity Search (FAISS) [20] for storing the training
samples (i.e., 20% of the labeled data). One of the primary motiva-
tions behind using only 20% of the training data is to reduce the
labeling cost, which is a significant concern in many real-world
scenarios. By effectively utilizing a smaller portion of the data, our
approach addresses this practical constraint and can make machine-
learning solutions more accessible to organizations with limited
labeling resources. Specifically, using only 20% of the training data
our approach tries to emulate where the machine learning prac-
titioners have access to limited labeled training data. Similarly,
another important consideration is the reduction in training time.

To evaluate the effectiveness of FS3, we conducted extensive
experiments using three publicly available datasets from the IoT
domain, namely, WUSTL-EHMS [17], WUSTL-IIoT [63], and BoT-
IoT [23]. These datasets represent diverse IoT scenarios and en-
compass samples for wide range of attack classes. We compare the
performance of FS3with several state-of-the-art IDSes presented in
the literature – CNN-BiLSTM [45], PB-DID [59], and DBN-IDS [5].
Furthermore, we trained a range of strong baseline models that em-
ploy traditional cross-entropy loss function, dice loss function, and
random oversampling techniques. We evaluated both binary and
multi-class classification intrusion detection tasks. The experimen-
tal results demonstrate the superior performance of FS3with signifi-
cant improvements over the state-of-the-art as well as baseline mod-
els in a wide range of experimental setups. Notably, our proposed
framework FS3 outperforms fully supervised approaches by achiev-
ing up to 42.39% and 43.95% improvements with respect to precision
and 𝐹1 score, respectively, while utilizing only 20% of the labeled
data. It is also important to emphasize that our fine-tuning phase
(i.e., FSL) only used 5 and 10 labeled training examples per class.
These results highlight the remarkable efficacy of FS3 in addressing
the challenges posed by limited labeled data availability and data
imbalance in datasets, enabling more robust and accurate intrusion
detection in IoT networks. All the relevant code is available at:
github.com/MultifacetedIntrusionDetection/ID-FS3.

Contributions of this paper can be summarized as follows:

• We propose a novel few-shot and self-supervised framework
FS3 for intrusion detection in IoT networks – a highly critical
yet underexplored area.

• FS3 effectively leverages unlabeled data and enhances the
discriminative capacity of the model in scenarios wherein
limited labeled data is available.

• We evaluate FS3 on three diverse publicly available datasets
for both multi-class classification and binary classification
tasks and show that it outperforms fully supervised state-of-
the-art models with respect to precision and 𝐹1 score by a
large margin.

The remainder of the paper is organized as follows. In Section 2,
we provide an overview of the learning paradigms employed in
this paper. Section 3 introduces our proposed framework. The ex-
perimental setup is presented in Section 4 and the results of our
performance evaluation are discussed in Section 5. Section 6 dis-
cusses the related work and Section 7 concludes the paper.

2 PRELIMINARIES
Our proposed framework FS3 employs a number of learning paradigms.
In the following, we provide a brief overview of these paradigms.

2.1 Self-Supervised Learning
Self-supervised or unsupervised learning is a learning setting in
machine learning that involves training models on unlabeled data
without explicit guidance or supervision from human-labeled ex-
amples. In the context of deep learning, this learning approach
focuses on discovering patterns, structures, and representations
within the data without relying on predefined labels. Pretraining
models in the fields of Natural Language Processing (NLP) and
Computer Vision [19, 35, 36, 47] train deep learning models on
large-scale datasets with the objective of learning general-purpose
representations of the input data. These pre-trained models serve
as a foundation for various downstream tasks and can significantly
improve performance, especially when labeled data is limited. In
this work, we use TabNet [3] to perform unsupervised learning
using unlabeled IoT network traffic data. The model consists of an
encoder-decoder structure, where the encoder learns to capture
important features from the input data, and the decoder predicts
the masked or target variable based on the learned features. Tab-
Net leverages sparse instance-wise feature selection. The model
employs a sequential multi-step architecture, where each step con-
tributes to a portion of the decision-making process based on the se-
lected features. It incorporates nonlinear processing of the selected
features and the concept of ensembling through higher dimensions
and multiple steps. These design choices contribute to TabNet’s
ability to effectively learn from unlabeled data, capture complex
relationships, and improve overall performance in various tasks. In
TabNet, the same 𝐷-dimensional features 𝑓 ∈ R𝐵×𝐷 are passed to
each decision step, where 𝐵 represents the batch size. This ensures
that the model operates consistently on the input features across
all decision steps within a given batch. An encoder is used to do
the multi-step processing. TabNet incorporates a learnable mask,
denoted as𝑀 ∈ R𝐵×𝐷 , to enable a soft selection of salient features
in each step. By employing a sparse selection of the most impor-
tant features, TabNet ensures that the learning capacity of each
decision step is not wasted on irrelevant features. This approach
enhances the model’s parameter efficiency, allowing it to focus
on the most relevant information and optimize its performance.
Finally, A decoder is used to reconstruct the tabular features from
the encoded representations produced by the encoder. The decoder
component is responsible for transforming the encoded represen-
tations back into the original tabular feature space, enabling the
reconstruction of the input data. We choose to utilize TabNet due
to its self-supervised learning capabilities, which involve masking
a portion of the elements in the dataset. This approach allows the
model to gain an understanding of network traffic flow without
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Figure 2: Overview of few-shot learning using contrastive training with triplet loss.

relying on explicit labels. In the second phase of our framework, the
model is further trained contrastively, which enhances the discrim-
inative power of the model. Finally, we introduce a sub-sampled
KNN approach to make predictions and effectively detect intrusions
in IoT networks. By leveraging these features of TabNet, we aim to
improve the performance of our intrusion detection system.

2.2 Contrastive Training
Contrastive Training is a machine learning technique used for
training models in a way that enhances their ability to discriminate
between different instances or samples [53, 57]. It is commonly
applied in tasks such as representation learning, where the objective
is to learn a meaningful and compact representation of data. For
example, the contrastive loss function is designed to minimize the
distance between embeddings of positive pairs while maximizing
the distance between embeddings of negative pairs. The objective
is to update the weights of our embedding model (i.e., TabNet)
in a way that satisfies this condition after each pass through the
network.We use contrastive learning in such away that it can tackle
data imbalance effectively in the classifications task. In particular,
enabling the model to focus on the distinctive features of minority
class instances improves their representation learning process. In
our work instead of using the traditional contrastive loss function,
we use the triplet loss function.

2.3 FAISS and KNN
The FAISS library is designed to facilitate efficient similarity searches
and clustering of dense vectors. It offers a wide range of comparison
operations, including L2 distance, dot product, and cosine similarity.
By incorporating indexing structures like hierarchical navigable
small worlds (HNSW) [31] and navigating spreading-out graphs
(NSG) [15], FAISS enables highly effective searching even in col-
lections of billions of vectors. It is primarily implemented in C++
and relies on BLAS as its main dependency. Additionally, FAISS
supports GPU acceleration for faster inference, allowing for both
single and multi-GPU indexing using CUDA. Its Python interface
ensures compatibility with all major deep learning frameworks. We
utilize FAISS to index our training dataset (i.e., 20% of the total data)
in the third phase of our proposed framework. Then, we employ
our custom sub-sampled KNN classifier to make predictions, which
are specifically tailored for our task and perform better than the
classical KNN algorithm.

3 FS3: INTRUSION DETECTION FRAMEWORK
3.1 Task Formulation
We represent the input data as a two-dimensional matrix X =

(𝑥1, 𝑥2, 𝑥3, · · · , 𝑥𝑁 ), where 𝑥𝑖 ∈ R𝐷 (1 ≤ 𝑖 ≤ 𝑁 ) is a vector with
𝐷 dimensional feature space. Each 𝑥𝑖 is associated with a label 𝑦𝑖
(1 ≤ 𝑖 ≤ 𝑁 ), where 𝑦𝑖 ∈ {1, · · · ,𝐶}. Thus, we have an 𝑁 -sample
dataset with𝐶 distinct attack categories. The feature vector 𝑥𝑖 ∈ R𝐷
is mapped to a label 𝑦𝑖 ∈ {1, · · · ,𝐶} using a learnable function
𝑦 = f (𝑥). In the supervised learning setting, f is estimated using a
labeled training dataset. Unlike traditional classification tasks with
roughly equal number of instances in each class, our focus in this
work is to overcome the challenge of class imbalance issues. The
class imbalance phenomenon is prevalent in all IoT datasets. That
is, a few classes dominate the dataset with a significant number of
instances, while the remaining classes have only a few instances.
Furthermore, acquiring labeled data for each attack type is laborious
and expensive. To overcome the class imbalance in datasets and
minimize the labeling effort, we reformulate the task and assume
that we only have access to 𝐿 labeled training examples, where
𝐿 ≪ 𝑁 . In our experiments, we utilize 20% of the labeled data. Our
objective is to train a model using a subset of the original dataset
with 𝐿 labeled samples. Now 𝑥𝑖 ∈ R𝐷 (1 ≤ 𝑖 ≤ 𝐿) associated with
a label 𝑦𝑖 (1 ≤ 𝑖 ≤ 𝐿). Our framework also utilizes a few-shot
learning paradigm where we randomly sample 𝑆 labeled examples
from each class.

3.2 Phase 1: Self-Supervised Learning
We use TabNet [3] as the backbone model for self-supervised learn-
ing. Specifically, we used the masking objective to mask 20% of the
features in the input data. The remaining features are embedded
into a high-dimensional vector space and are used to reconstruct
the masked features. Figure 1 (left part) illustrates the SSL process.
We take the embeddings of the categorical features, along with the
numerical features, as inputs. These inputs are then fed through
a series of dense layers, which form the Multi-Layer Perceptron
(MLP). Each dense layer consists of multiple neurons or units and
applies a non-linear activation function to transform the input data.
The output of each layer is passed as the input to the next layer
until the final layer, which produces the desired output. During this
phase, a pre-trained encoder that has been trained using an unla-
beled dataset is produced. In our work, we incorporate two dense
layers with a dropout rate of 0.1%. The two dense layers have 200
and 100 neurons, respectively. The encoder utilizes an embedding
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dimension of 100 for two (WUSTL-IIoT and BoT-IoT) datasets, while
the third (WUSTL-EHMS) dataset utilizes an embedding dimension
of 70.

3.3 Phase 2: Few-Shot Learning and Contrastive
Training

We leverage Few-shot learning (FSL) with contrastive training to
further train the pre-trained model (from Phase 1) by utilizing only
a few labeled samples per class. In our framework FS3, we randomly
select 𝑆 labeled samples (i.e., 𝑆-shot) for each of the 𝐶 classes. To
train the model, we employ contrastive training that focuses on
learning discriminative features for each class. Specifically, we use
triplet loss function [18, 41, 52] to train the encoder contrastively.
Unlike the traditional contrastive loss function, the triplet loss func-
tion incorporates triplets within each training sample (see Figure 2).
A triplet consists of an anchor data point, a positive data point (be-
longing to the same class as the anchor), and a negative data point
(belonging to a different class than the anchor). By utilizing triplets,
the objective is to minimize the distance between the anchor and
the positive point while simultaneously maximizing the distance
between the anchor and the negative point during each gradient
update. We can define the triplet loss as:

L𝑡𝑟𝑖 =
∑︁

𝑦𝑎=𝑦𝑝≠𝑦𝑛

[𝐷𝑎𝑝 − 𝐷𝑎𝑛 +𝑚] (1)

where 𝑦𝑎 is the label of anchor sample, 𝑦𝑝 is the label of positive
sample, and 𝑦𝑛 is the label of negative sample. 𝐷𝑎𝑝 is the distance
between the anchor and the positive samples in the embedding
space and 𝐷𝑎𝑛 is the distance between the anchor and the negative
sample, and margin (𝑚) is a hyperparameter that controls the mini-
mum distance between the anchor-positive and anchor-negative
pairs. In our experiments, we use the Euclidean distance to calculate
the distance.

Figure 2 illustrates how training data is prepared for contrastive
training of the model using FSL and provides an overview of the
contrastive training using triplet loss. Specifically, the total num-
ber of training samples to train the model is 𝑆 ∗𝐶 . 𝑆 takes values
between 5 and 10 in our experiments. We also use a miner func-
tion to identify hard pairs from the training samples [51]. We use
Multi-Similarity Miner (MSM) [33], which selects both the hardest
positive and hardest negative samples within each similarity mar-
gin for each anchor. The loss function is then computed based on
these selected samples. This approach effectively addresses the data
imbalance issue between the samples from majority and minority
classes, improving the overall discriminative power of the model.
We conduct the contrastive training procedure five times for both
5-Shot and 10-Shot scenarios. We report the average results of the
five runs in our experiments to show the robustness of the method.

3.4 Phase 3: Nearest Neighbor Classification
Phase 3 of FS3 does not involve any training or finetuning. We
employ the FAISS library to create an index for efficient and scalable
retrieval of similar network traffic data. This indexed data is then
utilized for making predictions. This phase only selects 20% of the
training data, instead of the entire dataset. We feed the samples
into the fine-tuned encoder (from Phase 2) to generate embedding

vectors of training samples. To further reduce the class imbalance
issue, we introduce a sub-sampled KNN algorithm. Specifically, we
define the weight of each class as follows:

𝑊𝑖 = max(1 −
√︁
𝑡/𝑝𝑖 , 𝑎) (2)

In Eq 2,𝑊𝑖 is the weight assigned to the 𝑖th class. 𝑡 represents a
hyperparameter that controls the sub-sampling process, 𝑝𝑖 denotes
the fraction of samples belonging to the 𝑖th class, and 𝑎 is a constant
that defines the minimum weight assigned to each class. In our
experiments, the value for 𝑎 is set to 0.1. Particularly, We use 𝑡 to
sub-sample only the majority classes and the weight for a class
𝑖 will only be reduced if 𝑝𝑖 > 𝑡 . That is, minority classes are not
affected by it, whereas the Eq 2 ensures that as the relative number
of samples increases for a class, the corresponding probability of
reducing its weight also increases. To illustrate, consider a dataset
where t = 10-5, the total number of samples in the training data is
860011, and the total number of samples for the ith class type is
152 (minority class). In this case, we can calculate pi as 152/860011,
resulting in Wi = 0.7621. If ith class type is majority class with
56379 samples, then calculated pi is 56379/860011 and resulting
Wi = 0.9876. This is the way minority class type can get weight
comparable to majority class to reduce the impact of imbalance in
the dataset. Our proposed sub-sampled KNN algorithm provides a
balanced weighting approach for each class, akin to Goldilocks, as
opposed to classical KNN which is biased toward majority classes
and the weighted-KNN variant by weighting it with the inverse of
class size that gives equal weight to each class. For our experiments
using the two datasetsWUSTL-IIoT and BoT-IoT, we set the value of
𝑡 to 10−5, while in the other experiment using the dataset WUSTL-
EHMS, we use 𝑡 = 10−4. To perform the final classification using
sub-sampled KNN, we repeat the experiment five times for each
shot, utilizing the five fine-tuned encoders from Phase 2. In all
experiments, we use the same 20% labeled data.

4 EXPERIMENTAL SET UP
4.1 Evaluation Criteria
We utilized the following quantitative metrics to assess the per-
formance of various ML classifiers: (i) Precision (Pre), (ii) Recall
(Rec), and (iii) 𝐹1-Score [22, 34]. In our experiments, we calculated
the macro average for all three metrics, which is the recommended
method for evaluating models on imbalanced datasets. Pre repre-
sents the algorithm’s ability to predict different types of intrusions
accurately. Rec indicates the proportion of actual intrusions cor-
rectly detected by the algorithm. The 𝐹1-Score is the reciprocal of
the arithmetic mean of Pre and Rec, representing the harmonic
mean of the two metrics.

4.2 Datasets used in the Experiments
WUSTL-EHMS. The WUSTL-EHMS dataset [17] originates from
a real-time Enhanced Healthcare Monitoring System (EHMS) that
captures network flow metrics and patients’ biometrics. It encom-
passes four components: medical sensors, gateways, networks, and
control with visualization. Patient data is collected by sensors and
transmitted through gateways, switches, and routers to the server.
However, there is a risk of data interception before it reaches the
server, particularly due to man-in-the-middle attacks involving
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Table 1: Statistics of WUSTL-EHMS dataset.

Class Train (%) Test (%)
Normal 10275 87.47 2855 87.44
Attack 1472 12.53 410 12.56

Table 2: Statistics of WUSTL-IIoT dataset.

Class Train (%) Test (%)
Normal 797261 92.71 221462 92.71
DoS 56379 6.56 15661 6.56
Reconnaissance 5932 0.69 1648 0.69
Command Injection 185 0.02 52 0.02
Backdoor 152 0.02 43 0.02

spoofing and data injection. The dataset comprises 43 features, in-
cluding 35 network flow features and 8 patients’ biometric features.
Samples are labeled as Normal or Attack, with attacker MAC ad-
dresses assigned a label of 1 and the rest labeled as 0 based on the
SourceMAC address feature. Similar to theWUSTL-IIoT dataset, the
WUSTL-EHMS dataset lacks separate training and testing datasets.
As a solution, the dataset is randomly split into training and testing
datasets since it lacks a timestamp feature. Table 1 presents the
distribution of the dataset after randomly splitting it into training
and testing splits (Train and Test). As observed, a large portion of
the samples belongs to the Normal class, indicating the prevalence
of normal instances in the dataset.
WUSTL-IIoT. The WUSTL-IIoT dataset [63] focuses on industrial
Internet of Things (IIoT) data, generated using a supervisory control
and data acquisition architecture in an IIoT testbed [62]. The testbed
is designed to closely mimic real-world industrial systems and en-
able realistic cyber-attacks. The dataset comprises approximately
2.7𝐺𝐵 of data collected over a period of around 53 hours. In accor-
dance with the authors’ recommendations, certain features are ex-
cluded from the dataset, namely ‘StartTime’, ‘LastTime’, ‘SrcAddr’,
‘DstAddr’, ‘sIpId’, and ‘dIpId’, as they uniquely identify attacks and
could potentially bias the model. The dataset underwent prepro-
cessing and cleansing, involving the removal of rows with missing
or corrupted values and extreme outliers. The resulting dataset
contains 39 attributes and covers four distinct attack types: De-
nial of Service (DoS), Command Injection, Reconnaissance, and
Backdoor. It is important to note that the WUSTL-IIoT dataset does
not have separate training and testing datasets. To overcome this,
the dataset is sorted based on the timestamp of the data items. The
first 80% of the samples are allocated for training, while the remain-
ing samples were used for testing. Table 2 provides an overview of
the distribution of data pertaining to different attack types in the
training and testing splits. From the table, it can be observed that
the Normal class comprises approximately 93% of the dataset. In
contrast, the dataset contains a much smaller percentage of sam-
ples related to DoS, Reconnaissance, Command Injection, and
Backdoor attacks, accounting for approximately 7%, 7%, 0.02%, and
0.01% respectively.
Bot-IoT. The Bot-IoT dataset [23], generated using simulated bot-
net scenarios, is structured into directories based on attack types,

Table 3: Statistics of Bot-IoT dataset.

Class Train (%) Test (%)
DDoS 1233052 52.52 385309 52.51
DoS 1056118 44.98 330112 44.99
Reconnaissance 58335 2.48 18163 2.48
Normal 296 0.01 107 0.015
Theft 52 0.002 14 0.002

with packet capture files collected. The data generation process
involved the use of simulated IoT sensors. Statistical analysis tech-
niques, including Correlation Coefficient and Joint Entropy, were
applied to analyze the dataset features. To enhance predictionmodel
performance, additional features were extracted and incorporated
into the dataset [42]. It is recommended to label these extracted
features, such as attack flow, categories, and sub-categories, to im-
prove the model’s effectiveness. The Bot-IoT dataset encompasses
four sub-components within the IoT testbed: simulation, network-
ing platform, feature extraction, and forensics analytics. Alongside
Normal traffic data, the dataset includes instances of various at-
tack types, including DoS, Distributed Denial of Service (DDoS),
Reconnaissance, and Theft. In total, the dataset comprises 15 fea-
tures. The Bot-IoT dataset comprises both a training dataset and
a testing dataset. The distribution of data items across different
classes in the training and testing datasets of Bot-IoT is illustrated
in Table 3. Notably, the Normal class has 296 training samples (0.01%
of the total), and the Theft class has 52 training samples (0.002%
of the total). On the other hand, the training dataset has a higher
percentage of DDoS and DoS samples, accounting for 53% and 45%
of the dataset, respectively.

4.3 Competing Methods
4.3.1 State-of-the-art Models. CNN-BiLSTM. The CNN-BiLSTM
architecture proposed by Sinha et al. [45] consists of multiple lay-
ers including a 1D-CNN layer, batch normalization, and Bi-LSTM
layers. The 1D-CNN layer in CNN-BiLSTM utilizes the ReLU acti-
vation function and employs a maximum pool size of five. Batch
normalization is applied to expedite the training process. Bi-LSTM
layers are incorporated throughout the model in a progressive man-
ner, doubling the kernel size at each iteration. Specifically, the first
Bi-LSTM layer comprises 64 units, followed by a second layer with
128 units, and a final Bi-LSTM layer with 128 units. The last layer,
which is a dense layer, is fully connected and employs the softmax
activation function. To evaluate the performance of CNN-BiLSTM,
we utilized the open-source code provided at the CNN-BiLSTM
repository [8].
PB-DID.To leverage the benefits of shared features between datasets,
we employ PB-DID [59] by utilizing an auxiliary dataset that shares
similarities with the main dataset. Our approach consist of two ex-
periments. In the first experiment, we train PB-DID on the Bot-IoT
and WUSTL-IIoT datasets, which have four common features. We
merge the samples of the Normal, DoS, and Reconnaissance class
types from the WUSTL-IIoT dataset into the Bot-IoT dataset. The
merged dataset is used for training the model, while the original
Bot-IoT testing set is used for evaluation. In the second experiment,
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we train PB-DID on the WUSTL-IIoT and WUSTL-EHMS datasets,
which share ten common features. Similar to the first experiment,
we merged the attack class samples from both datasets and the
normal class samples from both datasets. Performance evaluation
of PB-DID in this experiment is conducted using the provided open-
source code [9].
DBN-IDS.We also compare our work with recently published work
DBN-IDS [5]. In our work, we utilize the proposed architecture of
the DBN model for all three datasets. The model consists of five
RBMs stacked with (49, 128), (128, 256), (256, 128), (128, 128), and
(128, 64) visible/hidden nodes per RBM, respectively. The output
from the last RBM is connected to a fully connected layer with 5
nodes and 2 for both multi-class and binary classification using the
Softmax function. To address the data imbalance issue, we employ
a combination of SMOTE and undersampling techniques. For the
performance evaluation of BBN-IDS in this experiment, we utilize
the provided open-source code [10].
CTGANSamp: models were trained on the training datasets
balanced using synthetic samples. To address data imbalance
in the datasets, we also utilize synthetic instances generated using
CTGAN [12, 55]. CTGAN employs a GAN-based model to generate
synthetic tabular data based on the original tabular data. For the
Bot-IoT training dataset, we add synthetic data using CTGAN, re-
sulting in a total of 69215 samples for the Normal attack type and
71238 samples for the Theft attack type. However, we choose not
to introduce additional synthetic samples for the DDoS, DoS, and
Reconnaissance attack classes due to their already sufficiently large
sample sizes. In the WUSTL-IIoT dataset, synthetic samples are
added to the Reconnaissance, Command Injection, and Backdoor
attack classes, resulting in 54447, 70867, and 60231 training samples,
respectively. As Normal and DoS already have a sufficient number
of samples, therefore no new samples are added to them. In the case
of the WUSTL-EHMS training dataset, synthetic samples were only
added to the attack class, increasing the total number of samples in
that class to 9472. For our experiments, we trained the models on
these balanced datasets using the cross-entropy loss function. We
refer to these models as FNN-CTGANSamp and CNN-CTGANSamp.
Focal: models were trained using focal loss function. To evalu-
ate our method, we utilize the focal loss function [13, 26], originally
designed for object detection tasks. The focal loss is especially
beneficial when there is a substantial class imbalance between
foreground and background classes during training. In our imple-
mentation, we adopt the focal loss as a specialized loss function.
The focal loss has two hyperparameters: 𝛾 and 𝛼 . During training
on the Bot-IoT dataset, we set 𝛼 and 𝛾 as 2 and 1 for FNN, and 5 and
5 for CNN, respectively. When training on the WUSTL-IIoT dataset,
we set 𝛾 and 𝛼 as 2.5 and 0.15 for FNN, and 2.0 and 0.3 for CNN,
respectively. Finally, for training on the WUSTL-EHMS dataset, we
set 𝛾 and 𝛼 as 2 and 2 for FNN, and 2 and 0.2 for CNN, respectively.
In our experiments, we denote the models trained using the focal
loss function as FNN-Focal and CNN-Focal, representing the FNN
and CNN architectures, respectively.

4.3.2 Baseline Models. ORG: models were trained using origi-
nal datasets (i.e., without balancing the dataset). For training
the classifiers, we utilized the original training samples from the

datasets and employed a traditional loss function, specifically the
cross-entropy loss function.
RND: models were trained on the datasets, balanced using
randomoversampling. To address the class imbalance in the train-
ing datasets, we employed random oversampling. This technique
involves duplicating samples from the minority classes randomly,
thereby balancing the dataset. During the oversampling process, a
representative sample from each subject was selected independently
to maintain the integrity of the population [43]. After applying ran-
dom oversampling to balance the training datasets, the number
of training samples for each class type in Bot-IoT, WUSTL-IIoT,
and WUSTL-EHMS became approximately 1233052, 797261, and
10275, respectively. In our experiments, we denote these models as
FNN-RND and CNN-RND, respectively. Both models were trained
using the cross-entropy loss function.
Dice: models were trained using dice loss function. To tackle
data imbalance in image segmentation tasks, the widely used dice
loss [44, 48] is employed. This loss is based on the dice coefficient,
which measures the similarity between predicted and ground truth
segmentation masks. The dice coefficient is computed by dividing
the sum of the ground truth and predicted values by twice the
intersection of the ground truth and predicted values. This coef-
ficient serves as the foundation for calculating the dice loss. In
our study, we applied the dice loss function to all three original
training datasets for training deep learning (DL) models in both
multi-class and binary-class classification tasks. The dice loss is
used as one of the methods for performance comparison, with a
smoothing parameter of 1×10−7 incorporated in the calculation. In
our experiments, we refer to the models trained using the dice loss
function as FNN-Dice and CNN-Dice, corresponding to the FNN
and CNN architectures, respectively.

While all the baseline and state-of-the-art models are trained in a
fully supervised manner, our proposed FS3 takes a different approach
by utilizing only 20% of the labeled data for the final classification
task. This reduction in labeled data usage distinguishes our method
from the others and highlights its potential for achieving comparable
or even superior performance with a significantly smaller labeled
dataset.

5 RESULTS OF PERFORMANCE EVALUATION
5.1 Quantitative Analysis
Table 4 provides a comparison of the performance of all competing
methods, including our proposed FS3, with respect to precision,
recall, and 𝐹1 score across all three datasets. For FS3, we present
two types of few-shot learning: 5-Shot and 10-Shot. We conduct
the Phase 2 experiment five times by randomly selecting 5 or 10
samples from the training sets. In Phase 3, we use the same 20% of
labeled data to perform sub-sampled KNN classification five times
and we report the average of the results obtained from these five
iterations.
WUSTL-EHMS. FS3 shows significant improvement in perfor-
mance over all the baseline and state-of-the-art models on the
WUSTL-EHMS dataset with respect to all metrics. Specifically, in
the AVG 5-Shot configuration, we observe substantial increases of
4% in precision, 33% in the recall, and 22% in 𝐹1 score compared to
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Table 4: Performance comparison of all methods on WUSTL-EHMS, WUSTL-IIoT, and BoT-IoT datasets.

DL Models Classifier’s WuSTl-EHMS WuStl-IIoT BoT-IoT

Name Pre Rec F1 Pre Rec F1 Pre Rec F1

State-of-the-art Models

CNN-BiLSTM [45] 0.9010 0.7305 0.7851 0.7222 0.4349 0.5086 0.2477 0.2563 0.0778

PB-DID [59] 0.4372 0.4998 0.4664 0.2105 0.1110 0.0214 0.1717 0.2037 0.1448

DBN-IDS [5] 0.7362 0.7105 0.7222 0.4631 0.6339 0.3851 0.1185 0.5582 0.1652

FNN-CTGANSamp [12] 0.9294 0.7364 0.7962 0.6628 0.3437 0.4050 0.4991 0.8652 0.5540

CNN-CTGANSamp [12] 0.9107 0.7360 0.7921 0.7025 0.5122 0.5533 0.4298 0.7988 0.4536

FNN-Focal [13] 0.9524 0.7369 0.8011 0.3854 0.293 0.3194 0.5559 0.6380 0.5784

CNN-Focal [13] 0.9423 0.7338 0.7963 0.8198 0.6617 0.6974 0.6165 0.6325 0.5853

Baseline Models

FNN-ORG 0.9382 0.7359 0.7975 0.5254 0.4151 0.4578 0.5073 0.6345 0.5436

FNN-RND 0.9339 0.7367 0.7974 0.5834 0.7630 0.5850 0.4990 0.4990 0.5275

FNN-Dice 0.9336 0.5000 0.4665 0.1854 0.2000 0.1924 0.0900 0.2000 0.1241

CNN-ORG 0.9284 0.7327 0.7927 0.7486 0.6142 0.6558 0.4434 0.5347 0.4211

CNN-RND 0.9272 0.7362 0.7956 0.5894 0.7720 0.5942 0.5349 0.7843 0.5680

CNN-Dice 0.0628 0.5000 0.1116 0.1854 0.2000 0.1924 0.0900 0.2000 0.1241

FS3 (This work)
AVG 5-Shot 0.9794 0.9812 0.9801 0.8897 0.6804 0.7017 0.6198 0.6030 0.5960

AVG 10-Shot 0.9698 0.9941 0.9809 0.7847 0.7050 0.7144 0.6314 0.6297 0.6046

FNN-ORG. AVG 10-Shot exhibits significant superiority over CNN-
ORG with respect to precision, recall, and 𝐹1 score. Furthermore,
when compared to specialized loss functions such as Dice and Focal
loss, both AVG 5-Shot and AVG 10-Shot outperform with respect
to all metrics. For instance, AVG 10-Shot achieves improvements
of 1% in precision, 33% in the recall, and 22% in 𝐹1 score compared
to FNN-Focal. Similarly, AVG 5-Shot shows improvements of 3% in
precision, 33% in the recall, and 23% in 𝐹1 score when compared
to CNN-Focal. Our FS3, under both AVG 5-Shot and AVG 10-Shot,
outperforms all state-of-the-art models with respect to all metrics.
When compared to CNN-BiLSTM, AVG 5-Shot exhibits a remark-
able improvement of 8% in precision, 36% in the recall, and 24% in
𝐹1 score. Furthermore, our FS3 consistently outperforms PB-DID
(i.e., 𝐹1 score of 0.4664), DBN-IDS (i.e., 𝐹1 score of 0.7222), and DBN-
IDS (i.e., 𝐹1 score of 0.7222) by a substantial margin. FS3 leverages
self-supervised learning in Phase 1, allowing the encoder to gain a
deep understanding of the network traffic data without relying on
class labels. In Phase 2, the encoder is trained contrastively using
a small number of instances, enabling it to learn discriminative
representations for the samples. Ultimately, FS3 achieves a better
balance between precision and recall using the hyperparameter 𝑡 ,
resulting in an improved overall performance of the model, leading
to a notable improvement over other competing models.
WUSTL-IIoT. Our proposed approach exhibits substantial improve-
ments over all the baseline and state-of-the-art models on the
WUSTL-IIoT dataset, particularly with respect to precision and
𝐹1 score. Specifically, in the AVG 5-Shot configuration, we observe
a significant increase of 69% in precision, 63% in the recall, and 53%
in the 𝐹1 score compared to FNN-ORG. We observe a similar trend
with both FNN-CTGANSamp and CNN-CTGANSamp. Similarly,
AVG 10-Shot demonstrates significant superiority over CNN-ORG

in terms of precision, recall, and 𝐹1 score. Additionally, when com-
pared to specialized loss functions such as Dice and Focal loss, both
AVG 5-Shot and AVG 10-Shot outperformwith respect to all metrics.
For instance, AVG 10-Shot has improved 93% in precision, 140% in
the recall, and 123% in 𝐹1 score, compared to FNN-Focal. Similarly,
AVG 5-Shot has improved 8% in precision, 2% in the recall, and
0.61% in 𝐹1 score, compared to CNN-Focal. Both AVG 5-Shot and
AVG 10-Shot outperform all state-of-the-art models with respect to
all metrics. When compared to CNN-BiLSTM, AVG 5-Shot exhibits
a notable improvement of 23% in precision, 56% in the recall, and
37% in 𝐹1 score. Moreover, our proposed FS3 outperforms both
PB-DID (𝐹1 of 0.0214) and DBN-IDS (𝐹1 of 0.3851) by a significant
margin. Although our proposed approach may not achieve the
same level of recall as CNN-RND and FNN-RND (i.e., 0.7720 and
0.7630, respectively), it outperforms them with respect to preci-
sion and 𝐹1 score. The reason for the improved precision lies in
Phase 2 of our approach, where we train the encoder contrastively
using a small number of instances. Furthermore, by adjusting the
hyperparameter 𝑡 , we can achieve an optimal trade-off between pre-
cision and recall, leading to an overall enhancement in the model’s
performance. In contrast, random oversampling or undersampling
approaches such as CNN-RND, FNN-RND, and DBN-IDS involve
duplicating or removing existing samples, which can result in over-
fitting or underfitting of the model and ultimately lead to a lower
𝐹1 score. Specialized loss functions like Dice and focal loss can have
a potential drawback where they tend to prioritize the minority
class, which may result in decreased performance on the majority
class. The reason for the poor performance of other models could
be their architecture is not robust and use traditional methods to
overcome the data imbalance issue. Based on the performance us-
ing the WUSTL-IIOT dataset, we conclude that FS3 consistently
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Figure 3: Qualitative analysis of CNN-RND, CNN-Focal, and FS3 (5-shot) on WUSTL-IIoT dataset.

outperforms all competing models with respect to robust metrics
such as precision and 𝐹1 score. Additionally, it successfully finds a
better balance between precision and recall.
BoT-IoT. In terms of precision and 𝐹1 score, FS3 demonstrates sig-
nificant improvement over all baseline and state-of-the-art models
on the BoT-IoT dataset. Specifically, in the AVG 10-Shot setting, we
observe a precision improvement of 24% and an 𝐹1 score improve-
ment of 11% compared to FNN-ORG. Similarly, FS3 AVG 10-Shot
achieves a precision, recall, and 𝐹1 score that are 42%, 17%, and
43% higher, respectively than CNN-ORG. Notably, the AVG 10-
Shot and AVG 5-Shot, consistently outperform the FNN-Dice and
CNN-Dice with respect to all metrics. In a similar fashion, our pro-
posed approach FS3 AVG 10-Shot performs better than FNN-Focal
with respect to precision and 𝐹1 score by 13% and 4%, respectively.
The improvement in precision can be attributed to the contrastive
training of the encoder in FS3, which utilizes a small number of
instances. This training approach allows the model to focus on
extracting relevant and discriminative features. Additionally, by
tuning the hyperparameter 𝑡 , we can find an optimal balance be-
tween precision and recall, resulting in an overall enhancement in
the model’s performance. The same trend can be observed for CNN-
Focal. Furthermore, our approach consistently outperforms the
state-of-the-art models (CNN-BiLSTM, PB-DID, DBN-IDS) across
all metrics. Although our proposed approach may not attain the
same level of recall as FNN-CTGANSamp (i.e., 0.8652), it is worth
noting that FNN-CTGANSamp exhibits poor precision and 𝐹1 score.
The reason for this discrepancy could be CTGANSamp, which adds
a significant number of synthetic samples to the original training
set, resulting in an increased overhead for the model and potential
overfitting issues.

5.2 Qualitative Analysis
We draw 200 samples from theWUSTL-IIoT testing set and perform
t-SNE projection to analyze how different methods performed on
this sample. For qualitative analysis, we specifically chose CNN-
RND, CNN-Focal, and FS3 (5-Shot), which achieved 𝐹1 scores of
59.42%, 69.74%, and 74.45%, respectively, on theWUSTL-IIoT dataset.
In Figure 3(a), the ground truth is visualized, where each data sam-
ple in the five attack classes is correctly marked using the colors

red, green, blue, yellow, and black. To aid visual interpretation, we
grouped the selected samples into four distinct groups, regardless of
their attack class types. These groups are represented by encircled
regions in four different colors: (i) blue, (ii) black, (iii) red, and (iv)
green. Within the blue circle of the ground truth, the majority of
samples belong to the DoS attack type, while a few of them are of
the Command Injection type. When applying CNN-RND, all the
samples within the blue circle are incorrectly classified as Backdoor.
However, both CNN-Focal and FS3 correctly classify the DoS, and
CNN-Focal missed a command injection. The black circle in the
ground truth contains a large number of samples belonging to the
Backdoor attack type, along with some samples of the Command
Injection and Reconnaissance types. When using CNN-RND, all
the Backdoor samples within the black circle are misclassified as
Command Injection or DoS. Similarly, CNN-Focal classifies all of
them as either normal or DoS. On the other hand, FS3 predicts the
samples similar to the ground truth, correctly identifying most of
them as Backdoor. However, it does misclassify some samples as
Normal and DoS instead of Command Injection and Reconnais-
sance, respectively. The majority of samples within the red circle
in the ground truth (Figure 3(a)) correspond to the Reconnaissance
attack type, with some samples being DoS. However, in Figure 3(b)
and (c), CNN-RND and CNN-Focal fail to correctly classify the sam-
ples within the green circle. On the other hand, FS3 demonstrates
more accurate classification for most of these samples, except for a
few cases where Reconnaissance attacks are misclassified as DoS
attacks, as depicted in Figure 3(d). The samples enclosed within the
green circle in the ground truth (Figure 3(a)) consist of attack types
such as DoS, Reconnaissance, Normal, and Backdoor. In Figure 3(b),
CNN-RND misclassifies all the Reconnaissance samples as Normal.
Similarly, in Figure 3(c), CNN-Focal also misclassifies these sam-
ples as Reconnaissance. In contrast, FS3 (Figure 3(d)) appears to
correctly classify all the samples within the green circle.

5.3 Ablation Study
In our implementation, we incorporate various components within
our model, each of which plays a distinct role in determining the
overall performance. Consequently, it becomes crucial to estab-
lish methods for quantifying the individual contributions of these
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Table 5: Ablation study of proposed framework: FS3.

Components Phase Different Strategy WUSTL-EHMS WUSTL-IIoT BoT-IoT

Name of FS3 of KNN Pre Rec F1 Pre Rec F1 Pre Rec F1

Self-Supervised Encoder Phase 1
Classical 0.8434 0.7703 0.8007 0.7249 0.6488 0.6769 0.5248 0.5388 0.5043

Inverse of Class Size 0.8567 0.8179 0.8357 0.6460 0.6829 0.6569 0.4790 0.6381 0.4891

Fine-tuned Encoder
Phase 2

Classical 0.9294 0.9708 0.9488 0.7095 0.7023 0.6925 0.5581 0.7952 0.5645

Inverse of class Size 0.7965 0.9477 0.8458 0.6276 0.7457 0.6713 0.5518 0.7995 0.5531

Phase 3 Sub-Sampled KNN 0.9571 0.9533 0.9552 0.9774 0.6734 0.7154 0.5904 0.7176 0.5871

components toward the overall model performance. This allows
us to gain a deeper understanding of how each part influences the
model’s effectiveness and aids in the evaluation and optimization
of our approach. Table 5 presents the ablation study of our pro-
posed approach FS3 . We employ different strategies for applying
the KNN algorithm after each phase of our proposed method. We
conduct a comparison between our proposed sub-sampled KNN
with classical KNN (without considering weights), and the Inverse
of class size approach (weighting class types based on their inverse
frequency). The results obtained in Phase 2, where the encoder
is trained contrastively with either a 5-shot or 10-shot approach,
show a significant improvement over the results obtained in Phase
1 across all metrics for all the KNN strategies employed in the fi-
nal classification. This improvement highlights the effectiveness of
training the encoder using a few instances with triplet loss function
and the impact it has on the overall performance of the model. For
instance, in Phase 3, utilizing our Sub-Sampled KNN on WuStl-
EHMS, we observe significant improvements in terms of precision,
recall, and 𝐹1 score compared to classical KNN in Phase 1. Specifi-
cally, our proposed approach achieves approximately 13% higher
precision, 23% higher recall, and 19% higher 𝐹1 score on the WuStl-
EHMS dataset. In Phase 3, when utilizing our proposed sub-sampled
KNN, we observe significant improvements over classical KNN in
terms of precision and 𝐹1 score. Specifically, our approach achieves
approximately 38% improvement in precision and 3% improvement
in 𝐹1 score compared to classical KNN. Although the recall score in
Phase 3 using our approach is not as high as that of classical KNN
or the inverse of class size strategy in Phase 2, it is still comparable
to them. The notable advantage of our approach is the improved
𝐹1 score achieved using the proposed Sub-Sampled KNN. These
results highlight the effectiveness of our method in enhancing the
overall performance of intrusion detection.

6 RELATEDWORKS
6.1 Machine Learning Frameworks
Several ML frameworks have been proposed by researchers to ad-
dress security issues in IoT [2, 4, 27, 30, 56]. Yang et al.[56] developed
an intelligent IoT network ML framework using Software Defined
Network (SDN) andNetwork Function Virtualization. Bagaa et al.[4]
developed an ML framework using SDN and Network Function
Virtualization to handle various IoT threats. Arachchige et al.[2]
proposed PriModChain, a framework for ensuring the privacy of
Industrial Internet of Things (IIoT) data. Liu et al.[27] presented a

malicious node detection framework for handling a specific type
of insider attack in IoT, called a conditional packet manipulation
attack. Makkar et al.[30] proposed an ML framework for detecting
spam in IoT networks. In addition, Dina et al.[12] utilized a DL
model to balance data by incorporating synthetic data.

6.2 Using ML for Solving Miscellaneous
Problems in IoT

Roy et al. [38] propose a two-layer hierarchical intrusion detec-
tion mechanism for IoT networks that uses machine learning. This
model can effectively detect intrusions while satisfying the resource
constraints of the IoT. By deploying multi-layered feedforward neu-
ral networks in the fog-cloud infrastructure, this model can utilize
the resources in the fog layer to detect network attacks. Liang et
al. [25] discuss the vulnerabilities of ML algorithms in detecting
intrusions and how these algorithms can be used in launching cyber-
attacks. Sun et al. [49] model botnet attacks using ML. Amouri et
al. [1] present an intrusion detection system for mobile IoT, while
Sivananthan et al. [46] combine SDN and ML techniques to man-
age IoT devices. Finally, Zheng et al. [60] discuss the challenges
in applying privacy-preserving ML methods developed for cloud
computing systems in the context of IoT.

Jha et al. [39] propose a technique for detecting unknown system
vulnerabilities in IoT. Guerra et al. [16] observe that network traffic
becomes obsolete over time, as attackers change their types and be-
havior. Wahab et al. [50] employ the Principle Component Analysis
(PCA) method to study the change in the variance of the features
across the intrusion detection data streams in IoT and present an
online deep neural network that dynamically adjusts the sizes of
the hidden layers to cope with these changes. Khan et al. [21] point
out that the existing ML models used in cyber-security follow the
black-box model and propose a method to solve this problem.

Ferrag et al. [14] conducted a study to compare the performance
of centralized and federated deep learning with three popular deep
learning approaches, using three different datasets. Zolanvari et
al. [62, 63] recognized the significance of machine learning (ML)
and big data analytics in securing both IoT and IIoT. They built a
real-world testbed to conduct cyber-attacks and develop an IDS
that uses ML algorithms to detect backdoors, command injection,
and SQL injection attacks. Moustafa [32] proposed a testbed ar-
chitecture that allows the creation of dynamic testbed networks
for IoT, enabling the interaction of edge, fog, and cloud tiers. They
tested the architecture by executing real-world scenarios, including
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normal and attack situations, and collected a labeled dataset named
ToN_IoT. Li et al. [24] present an ML framework for automated
decision-making in spectrum sharing for regulatory spectrum man-
agement. Rehm et al. [37] develop a clinical decision support system
for managing patients in intensive care units, whereas Meidan et
al. [40] present an ML-based method for detecting unauthorized
Internet of Things (IoT) device types and Salman et al. [40] propose
an ML framework for identifying device type and malicious traffic
in IoT. Liu et al. [28] conduct a survey of ML methods for identi-
fying and detecting compromised IoT devices, and Ma et al. [29]
propose an ML-based method for evaluating the trustworthiness of
IoT devices.

In a separate study, Zeeshan et al. [59] propose a Protocol-Based
Deep Intrusion Detection (PB-DID) architecture that compares fea-
tures from UNSW-NB15 and Bot-IoT datasets using flow and Trans-
mission Control Protocol (TCP). To address the imbalance issue
in the dataset, the authors combine both datasets by considering
features that fall into both flow and TCP categories. They classify
the combined dataset into three categories: normal, DoS attacks,
and DDoS attacks, using a deep neural network. Sinha et al. [45]
propose a hierarchical model that combines 1D-CNN and Bi-LSTM
layers. The LSTM is used to identify long-term temporal patterns
in a dataset, while CNN is used to identify spatial features. The
authors perform binary and multi-class classification on two state-
of-the-art datasets, NSL-KDD and UNSW-NB15. To balance the two
datasets, they use random oversampling. Belarbi et al. [5]propose
a Deep Belief Networks (DBNs) based multi-class classification
Network Intrusion Detection System (NIDS). DBN, a generative
graphical model composed of stacked Restricted Boltzmann Ma-
chines (RBMs), serves as the foundation for their approach. To
tackle the data imbalance problem, they employ both SMOTE and
undersampling techniques. In our experiments, we compare the
performance of FS3 with PB-DID, CNN-BiLSTM, and DBN-IDS.

Many of the works mentioned above ignore the issue of data imbal-
ance, while others address it by adding synthetic data or using random
oversampling or random undersampling to balance the datasets. In
this paper, we use three unbalanced datasets from three different IoT
domains and propose a novel framework to detect intrusions in IoT net-
work traffic data. Experimental evaluation shows that our approach
performs better than state-of-the-art approaches on all three datasets.

7 CONCLUSIONS
In the last decade, researchers have extensively utilized Machine
Learning (ML) techniques to develop and deploy intrusion detection
systems for computer networks. However, the focus on intrusion
detection for IoT has been comparatively limited. We propose FS3,
a novel framework for intrusion detection in IoT networks. FS3
comprises three phases: (i) self-supervised learning, which utilizes
SSL to extract latent patterns and robust representations from un-
labeled data, (ii) few-shot learning (FSL) and contrastive training,
which enables the model to learn from a small number of labeled
examples (i.e., 5-10 instances per class), and (iii) sub-sampled KNN-
based classification, which selectively sub-samples instances from
the majority class based on the distribution of the training data. Our
proposed framework FS3 leverages only 20% of the labeled training
samples for making predictions, reducing the reliance on a large

amount of labeled data as well as minimizing the startling effect of
extreme class imbalance. Through extensive experimental analysis
on three diverse IoT datasets, our framework consistently outper-
forms fully supervised baseline approaches and state-of-the-art
models in terms of precision and 𝐹1 score. The proposed framework
FS3, while utilizing only 20% of labeled data, achieves notable per-
formance improvements of up to 42.39% and 43.95%, with respect
to precision and 𝐹1 score respectively, compared to fully supervised
state-of-the-art models. These results highlight the effectiveness
and efficiency of FS3 in detecting intrusions in IoT networks.
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