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ABSTRACT
Task-oriented dialog systems enable users to accomplish tasks us-
ing natural language. State-of-the-art systems respond to users in
the same way regardless of their personalities, although person-
alizing dialogues can lead to higher levels of adoption and better
user experiences. Building personalized dialog systems is an impor-
tant, yet challenging endeavor and only a handful of works took
on the challenge. Most existing works rely on supervised learning
approaches and require laborious and expensive labeled training
data for each user profile. Additionally, collecting and labeling data
for each user profile is virtually impossible. In this work, we pro-
pose a novel framework, P-ToD, to personalize task-oriented dialog
systems capable of adapting to a wide range of user profiles in
an unsupervised fashion using a zero-shot generalizable reward
function. P-ToD uses a pre-trained GPT-2 as a backbone model and
works in three phases. Phase one performs task-specific training.
Phase two kicks off unsupervised personalization by leveraging the
proximal policy optimization algorithm that performs policy gra-
dients guided by the zero-shot generalizable reward function. Our
novel reward function can quantify the quality of the generated re-
sponses even for unseen profiles. The optional final phase fine-tunes
the personalized model using a few labeled training examples. We
conduct extensive experimental analysis using the personalized
bAbI dialogue benchmark for five tasks and up to 180 diverse user
profiles. The experimental results demonstrate that P-ToD, even
when it had access to zero labeled examples, outperforms state-of-
the-art supervised personalization models and achieves competitive
performance on BLEU and ROUGE metrics when compared to a
strong fully-supervised GPT-2 baseline.
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• Computing methodologies→ Information extraction;Nat-
ural language generation; Reinforcement learning.
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1 INTRODUCTION
Task-oriented dialog systems provide users with the ability to carry
out tasks, such as reserving a table at a restaurant, using natural
language [56]. Contrary to the pipeline approach [7], researchers
have increasingly focused on training end-to-end task-oriented
dialog systems recently [3, 16]. Such models generate responses
exclusively based on the task-specific context of the dialog. Conse-
quently, these models fail to adapt their responses to the diverse
user personalities [18]. Specifically, state-of-the-art task-oriented
dialog systems struggle to (i) adapt their conversation flows ac-
cording to the active user’s personality, (ii) adjust their linguistic
style, and (iii) handle ambiguities [15]. In addition to presenting
the choices to the user in an arbitrary or sequential order with-
out taking the personality of the active user into account, task-
oriented dialog systems use only task-specific, dull language. It
has been shown that adapting to the interlocutor improves com-
munication efficiency [4, 5, 20]. Personalized task-oriented dialog
systems can leverage profile information to expedite the interac-
tion by understanding user’s actual information needs promptly,
generate tailored responses by adapting linguistic variations, and
properly address ambiguities by contextualizing nuanced queries
– a step towards delivering more human-like interactions [34, 59].
Personalizing task-oriented dialog systems without compromising
the task completion accuracy is the focus of this work.

Earlier works use pre-training user profiles for intermediate su-
pervision, as well as memory networks with copy mechanisms [15,
38]. The authors in [18, 28] encode user information and conver-
sation history using memory networks in an end-to-end fashion.
To synthesize personalized responses, [63] utilized dynamic and
static attention mechanisms in the end-to-end memory network.
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Figure 1: Overview of P-ToD. The unsupervised personalization phase is at the core of the proposed framework.

For each user profile, these works require enormous amounts of la-
beled training data, which is time-consuming, expensive, and nearly
impossible to acquire. Recently, pre-trained language models have
shown zero-shot capabilities in the natural language understanding
and natural language generation tasks [6, 10], which suggests the
possibility of developing personalized task-oriented dialog systems
without requiring labeled training data for each target user profile.
However, successfully exploiting the users’ profiles and synthe-
sizing personalized responses with no (or few) labeled training
examples is a demanding task.

We introduce a novel framework for building Personalized Task-
oriented Dialog Systems, P-ToD, that leverages the pre-trained
language models (LMs), zero-shot (as well as few-shot) learning,
and deep reinforcement learning. Guided by the proximal policy
optimization (PPO) algorithm [9, 46] and a zero-shot generalizable
reward function, the proposed framework can personalize task-
oriented dialog systems to diverse user profiles in an unsupervised
fashion. Figure 1 presents an overview of the framework that works
in three phases and uses a pre-trained GPT-2 [39] as a backbone
model. A task-specific training (e.g., reserving a table) is performed
in the first phase. Task-specific training datasets are generally avail-
able for a wide range of tasks in many domains [25, 62], whereas
personalized counterparts are practically impossible to obtain. To
overcome this challenge, we employ the unsupervised personaliza-
tion phase. The deep reinforcement learning-based phase initializes
a personalized GPT model from the task-specific GPT model (i.e.,
trained in phase one). Then, it trains personalized GPT model based
on (i) the appropriateness of the generated response for the given
user profile, quantified by the zero-shot generalizable reward func-
tion; and (ii) fidelity of the response to the task, measured by the KL
divergence between the responses generated by the task-specific
and personalized models. Using the above signals, the PPO algo-
rithm is employed to perform policy gradients.

We also propose a new reward function that allows quantify-
ing the quality of the generated personalized responses not only
for previously seen user profiles, but also for newly emerging un-
seen profiles. The zero-shot generalizable reward function uses

pre-trained sentence transformers and contrastive representation
learning to score the suitability of the response for the active user
profile. To the best of our knowledge, this is the first work that
can adapt the responses of task-oriented dialog systems to diverse
user profiles in an unsupervised fashion. To further improve the
performance of the personalized task-oriented dialog systems, an
optional few-shot fine-tuning phase is introduced. This phase uses
a few labeled training examples to adjust the responses for the
given user profile, that can be employed or skipped depending on
the availability of the labeled training data. Moreover, the number
of shots can also be adjusted depending on the quantity of the
available training examples.

We perform thorough experimental evaluations on the only pub-
licly available benchmark, personalized bAbI dialogue bench-
mark, for five tasks and up to 180 distinct user profiles in the restau-
rant domain. The experimental results show that our proposed
framework outperforms state-of-the-art supervised personalization
models, even when given access to zero labeled training instances
(i.e., few-shot fine-tuning phase is skipped). We also demonstrate
that the proposed personalization approach achieves a competitive
performance when compared to a strong supervised GPT-2 baseline
model on the BLEU-4 and ROUGE-2 measures. Furthermore, the
human study confirms the competitiveness of our unsupervised
personalization framework to the other supervised approaches.

This work’s contributions are summarized below:
• We propose an end-to-end framework for personalizing task-
oriented dialog systems in an unsupervised way. To the best of
our knowledge, this is the first work that has the unsupervised
personalization capabilities.

• We introduce a zero-shot generalizable reward function that
can guide the policy of the personalized task-oriented dialog
systems to generate rich and personalized responses even for
the unseen user profiles.

• Weperform extensive experimental analysis using personalized
bAbI dialogue dataset and show that our framework consis-
tently outperforms state-of-the-art supervised personalization
models for up to 180 unique user profiles on five tasks.
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2 PRELIMINARIES
2.1 Problem Formulation
In a multi-turn task-oriented dialogue,U𝑡 is an input from the user
and S𝑡 is a system’s response at a turn t. To generate a response
S𝑡 , all previous turns are concatenated to prepare dialog context
C𝑡 = [U0,S0, · · · ,U𝑡−1,S𝑡−1] and passed to the system as input
along with the user’s current input U𝑡 . In a personalized task-
oriented dialog system, at turn t, the goal is to synthesize a response
Si
𝑡 adapted for a user profile P i ∈ P = {P0,P1, · · · }. The system’s

response Si
𝑡 is generated by conditioning on dialog context C𝑡 ,

user’s current utteranceU𝑡 , and profile information Pi for user i ,
concatenated as a single sequence.

Si
𝑡 = P-ToD( [P i ;C𝑡 ;U𝑡 ])

In traditional (i.e., supervised) personalized task-oriented dialog
systems, at turn t, we are given𝑚 variants of the system response
adapted for each user as: {(U𝑡 ,Si

𝑡 )}𝑚𝑖=1 for all𝑚 user profiles to
train the models. The major disadvantage of such an approach is
the unscalable requirement of having a large number of labeled
training examples for each user profile; such data acquisition is
expensive and time-consuming. To overcome this challenge, we
assume that, at turn 𝑡 , profile-specific response Si

𝑡 ∀i is not avail-
able for model’s supervision (i.e., unsupervised personalization). To
allow for handling up to∞ user profiles, we assume that the user
profile is described via natural language text, in contrast to previ-
ous works that encode the features of the user profile via one-hot
encoding and limits the model’s expansion to new profile features.
Naturally, describing user profiles using natural language takes care
of the case where only partial information about a user profile is
available. Moreover, some tasks require interaction with knowledge
base, we define the knowledge base tuples as 𝐾 = [𝑘1, 𝑘2, · · · , 𝑘𝑙 ],
where each tuple 𝑘𝑏 is defined using natural language and passed
as additional input to the model where needed.

2.2 Pre-trained Language Models
The Language models (e.g., GPT-2 [39], BERT [8]) are trained uti-
lizing massive amounts of text data in the unsupervised way. Since
these models have millions of parameters, they have the capability
to effectively capture both general semantic and syntactic informa-
tion. In this work, we utilize the pre-trained GPT-2 and MPNet [52]
models. We use GPT-2 as a base model, perform task-specific train-
ing, and then further train the model to synthesize personalized
responses in an supervised way, guided by the novel reward func-
tion. The GPT-2 model has achieved state-of-the-art performance
on many natural language generation benchmarks including con-
versation question answering [42], text summarization [35], and
machine translation [22], among others.

We train a zero-shot generalizable reward function to score the
acceptability of the generated responses for the given user pro-
file using a contrastive loss function. The novel reward function
uses pre-trained MPNet [52] as a basic building block to acquire
semantically accurate embeddings. The MPNet model has produced
cutting-edge results on several natural language processing tasks
including GLUE [55], SQuAD [40, 41], RACE [21], and sentiment
prediction [29] benchmarks. In the following, we provide a brief
overview of the GPT-2 and MPNet models.

GPT-2. The GPT-2 model is pre-trained for autoregressive genera-
tion (i.e., predicting the next word) on the WebText dataset (i.e., 40
GB of text) and adapts a transformer-based neural architecture [54].
Suppose we have a natural language sequence (𝑠1, · · · , 𝑠𝑛) where
symbol 𝑠i is drawn from a fixed set of symbols. The sequential
ordering of language leads to factorizing the joint probabilities
over symbols as a product of conditional probabilities [2], as given
below.

𝑝 (𝑠) =
𝑛∏
𝑖=1

𝑝 (𝑠i |𝑠1, · · · , 𝑠i−1)

Using this approach, it is possible to estimate 𝑝 (𝑠) and any con-
ditionals of the form 𝑝 (𝑠i−𝑘 , · · · , 𝑠i |𝑠1, · · · , 𝑠i−𝑘−1), and perform
tractable sampling.
MPNet. BERT does not account for interdependence among pre-
dicted tokens, whereas complete position information is not used by
XLNet [61], though dependency among tokens is considered. The
MPNet model exploits the benefits of masked language modeling
(MLM) (i.e., employed by BERT) and permuted language modeling
(PLM) (i.e., used by XLNet) and eliminates their shortcomings. It
brings out the best of both worlds: by using PLM, it exploits the
predicted token’s dependencies, and, at the same time, uses the full
position information of a sentence from MLM to enable a full view
of the sentence. It has been pre-trained on BooksCorpus [67], Open-
WebText, CC-News, Stories [53], and Wikipedia (i.e., over 160GB
data). For a given sequence (𝑠1, · · · , 𝑠𝑛), where permutations of set
{1, · · · , 𝑛} is represented by Z𝑛 , the 𝑡-th element of 𝑧 by 𝑧𝑡 , the
first 𝑡 − 1 element of 𝑧 by 𝑧<𝑡 , the number of non-predicted tokens
by 𝑐 , and the mask tokens [M] in position 𝑧>𝑐 by𝑀𝑧>𝑐 . The MPNet
is trained for the following objective:

E𝑧∈Z𝑛

𝑛∑︁
𝑡=𝑐+1

log𝑝 (𝑠𝑧𝑡 |𝑠𝑧<𝑡 , 𝑀𝑧>𝑐 ;\ )

2.3 Reinforcement Learning Paradigm
The reinforcement learning paradigm has been extensively studied
for unsupervised learning. Methods that use policy gradients com-
pute an estimator of the gradient and then plug it into a stochastic
gradient ascent algorithm. It is common to optimize the policy 𝜋
by maximizing the expected reward 𝑟 ∈ R for the generated se-
quence Y = (𝑦1, · · · , 𝑦𝑛) with length 𝑛, given the input sequence
X = (𝑥1, · · · , 𝑥𝑚) with length𝑚, that is sampled from data distri-
bution D. We can optimize the expected reward as follows:

E𝜋 [𝑟 ] = E𝑥∼D,𝑦∼𝜋 ( · |𝑥) [𝑟 (𝑥,𝑦)]

The PPO algorithm introduced clipped surrogate objective, in
addition to, the penalty on the KL divergence. The objective func-
tion is modified using the KL divergence penalty, instead of making
it a hard constraint like in the trust region policy optimization
algorithms [45]. The PPO updates its policy, at step 𝑘 via:

\𝑘+1 = argmax
\
E𝑠,𝑎∼𝜋\𝑘 [L(𝑠, 𝑎, \𝑘 , \ )]

where 𝑠 and 𝑎 represent the state and action, respectively. In this
work, we employ PPO algorithm [9] to perform policy gradients,
that has been shown to be scalable (e.g., for large language models),
data-efficient, and robust (i.e., without excessive hyperparameter
tuning) [1].
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Figure 2: Overview of the training and inference process for the zero-shot generalizable reward function.

3 PERSONALIZATION FRAMEWORK: P-ToD
This work presents a new framework for developing personalized
dialog systems that works in three phases. A pre-trained GPT-2
model serves as the backbone model for the framework. In the
first phase, the base GPT-2 model is optimized via task-specific
training. The phase two, referred to as unsupervised personalization
phase, employs deep reinforcement learning to adapt the system
responses to a wide range of user profiles guided by the zero-shot
generalizable reward function (i.e., presented in Figure 2) and the
trained task-specific GPT model. The optional phase three fine-
tunes the personalized GPT model using a few supervised training
examples to further improve the performance. Figure 1 summarizes
the proposed unsupervised personalization framework.

3.1 Phase One: Task-specific Training
We leverage the power of the pre-trained language models by in-
tializing the phase one of our framework with a pre-trained GPT-2
model. The details of the pre-trained model are as follows. The
model [39] was pre-trained on the WebText dataset and has 774
million parameters. Using byte pair encoding, the vocabulary size is
50,257 tokens; capitalization and punctuation were preserved [47].
The model is built on the transformer’s decoder stack [54], and it
has 36 layers, 20 heads, and an embedding size of 1280. The task-
specific training of the model is performed using causal language
modeling (see Section 2.2 for details). Figure 3 presents the task-
specific training of the model. Given a dialog context C𝑡 , user’s
current utterance U𝑡 , and (optional) knowledge base search result
tuples 𝐾 at turn 𝑡 , the probability of system’s response S𝑡 with
length 𝑛 can be defined as:

𝑝 (S𝑡 |C𝑡 ,U𝑡 , 𝐾) =
𝑛∏
𝑖=1

𝑝 (𝑠i |𝑠<i , C𝑡 ,U𝑡 , 𝐾)

We train the model by calculating the cross-entropy loss by
maximizing the log-likelihood of the system response conditioned
on the dialog context, user’s input, and knowledge base tuples. If
the task does not require interaction with the knowledge base, the
search query is not performed nor the generation is conditioned
on the resultant tuples. The output of phase one is the trained
task-specific GPT model.

System	Response

Task-specific	GPT

Context User	Input KB	Results

Cross	Entropy	Loss

Figure 3: The task-specific training of the GPT-2 model.

3.2 Phase Two: Unsupervised Personalization
This phase initializes the personalized GPT model with the trained
task-specific GPTmodel (i.e., output of phase one). The personalized
GPT model is trained for personalization in the unsupervised way.
The two critical training signals are provided by (i) the zero-shot
generalizable reward function that quantifies whether the output of
the personalized model is apprpriate for the given user profile; and
(ii) the KL divergence between the personalized and task-specific
model’s distributions to ensure that the output of the personalized
model does not deviate too much from the task-specific model (i.e.,
it still accomplishes the task with high accuracy).

In the following, we describe the details of the novel reward
function and KL divergence. Then, we detail the training process
for the unsupervised personalization phase.
Zero-shot Generalizable Reward Function. The zero-shot gen-
eralization is enabled by the unsupervised representations provided
by the powerful pre-trained language model MPNet and the con-
trastive loss function [14]. The training and inference process of the
reward function is shown in Figure 2. At a dialog turn 𝑡 , we concate-
nate the dialog context C𝑡 , user’s current inputU𝑡 , the (optional)
knowledge base search result tuples 𝐾 , and the system’s response
Si
𝑡 for the user i and acquire their representationH i

𝑡 . Similarly, we
encode the user profile information P𝑗 for the user 𝑗 to get a corre-
sponding representationU 𝑗 . If a pair of encodings had a positive
corresponding label (i.e., the system response is appropriate for the
given user profile), then the contrastive loss function would reduce
their distance, and if a negative label were given, it would increase
their distance. We generate positive training examples by setting
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Figure 4: Phase two of the framework: Unsupervised Personalization.

i == 𝑗 and negative examples are generated by setting i ≠ 𝑗 . The
training loss can be defined as:

Li, 𝑗 = − log
exp

(
H i
𝑡

• U 𝑗/𝜏
)

∑
𝑞∈Q

exp
(
H i
𝑡

• U𝑞/𝜏
)

where the • represents the scoring function, 𝜏 ∈ R+ is a scalar
parameter for temperature, andQ is the set of negative pairs, i.e., i ≠
𝑗 . To train a classifier that works in the zero-shot setting, we select
a subset of user profiles (i.e., seen profiles) and use them to train
the classifier. The pre-trained MPNet has the capability to generate
rich, accurate, and high-quality embeddings even for the unseen
user profiles or unseen knowledge base entries, since both the
user profile and knowledge base tuples are described using natural
language. For example, the model can produce precise embeddings
for an unseen user profile who prefers “kosher” food, because it
has already learned the contextual usage of a large number of
words (e.g., MPNet has a vocabulary size of 30,527) in the pre-
training process. The scoring function learns to score close to one,
the matching pairs (i.e., the system response is appropriate for the
given profile), and zero otherwise.

Our zero-shot generalizable reward function follows the Sentence-
BERT [43] that employs siamese and triplet network structures [44],
leverages contrastive loss, and dot product is used as the scor-
ing function. To generate input encoding, we use the pre-trained
all-mpnet-base-v2 that has been trained on over one billion train-
ing pairs and produces 768 dimensional normalized embeddings for
the input by mean pooling. For every positive training pair, two
negative training examples are generated. At inference time, the
trained zero-shot generalizable reward function provides a scalar
reward, 𝑟 ∈ [0,1] that quantifies the suitability of the system’s re-
sponses for both previously seen and newly emerging unseen user
profiles.
KL Divergence. To ensure that the personalized policy does not
diverge too much from the trained task-specific model, we use an
additional reward signal by calculating the KL divergence between
the personalized policy and the task-specific policy (i.e., the model

trained in phase one). That is, keeping close to the task-specific
model is rewarded, whereas big KL divergences are penalized. We
denote the distributions of the task-specific and personalized mod-
els by 𝑝1 and 𝑝2 , respectively. At dialog turn 𝑡 , the KL divergence
can be calculated as:

𝐾𝐿 = ESi
𝑡∼𝑝2

[log 𝑝2 (Si
𝑡 |P i , C𝑡 ,U𝑡 , 𝐾) − log𝑝1 (S𝑡 |C𝑡 ,U𝑡 , 𝐾)]

where S𝑡 is the task-specific response and Si
𝑡 is the system’s re-

sponse adapted for the user i . The final 𝑟𝑒𝑤𝑎𝑟𝑑 can be combined
as given below:

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑟 + 𝛽 × 𝐾𝐿

where 𝛽 ∈ [0,−1] is the penalty coefficient and decides the weight
of the KL divergence. We use adaptive KL Penalty coefficient and
initialize 𝛽 = −0.2 in our experiments .
Training Details. To start with the unsupervised personalization
phase, we initialize our personalized model 𝑝2 = 𝑝1 and then adapt
𝑝2 to synthesize the personalized responses for a wide range of user
profiles using deep reinforcement learning. The personalized model
is fine-tuned via PPO algortihm from [9] with the final 𝑟𝑒𝑤𝑎𝑟𝑑
(i.e., a combination of KL divergence and a score from zero-shot
generalizable reward function). The expected reward for a response
Si
𝑡 for the user i at a dialog turn 𝑡 can be written as:

E𝑝2 [𝑟𝑒𝑤𝑎𝑟𝑑] = EU𝑡∼𝜔,Si
𝑡∼𝑝2 ( · |P i ,C𝑡 ,U𝑡 ,𝐾) [𝑟𝑒𝑤𝑎𝑟𝑑 (P

i ,Si
𝑡 )]

where 𝜔 represents a given task, the model 𝑝2 is being trained for.
The personalized model is trained for up to 600,000 episodes using
Adam optimizer [19] with a learning rate of 1.41 × 10−5.

The output of this phase is a personalized model that can gen-
erate responses that are not only specific to the task, but are also
adapted for the given user profile. It is important to recall that the
unsupervised personalization phase does not use any personalized
variants of the responses for training the model. It is exclusively
trained in the unsupervised setting, guided by the zero-shot general-
izable reward function and KL divergence between the distributions
of the task-specific and personalized models.
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Table 1: Datasets statistics.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5

bAbI dialogue Number of dialogs 4000 4000 4000 4000 4000
Avg. dialog turns 6.0 9.5 9.9 3.5 18.4

Personalized
bAbI dialogue

Number of dialogs 24000 24000 48000 24000 48000
Avg. dialog turns 6.0 9.5 11.8 3.5 20.3
Number of user profiles 6 6 180 6 180
Avg. dialogs per profile 4000 4000 267 4000 267

3.3 Phase Three: Few-shot Fine-tuning
The optional phase three uses a few labeled training examples to
calibrate the personalized model (i.e., trained in phase two in the
unsupervised setting) for the given user profile in the supervised
setting. The probability for system’s response S 𝑗𝑡 with length 𝑛, for
a given user 𝑗 , at dialog turn 𝑡 can be defined as:

𝑝 (S 𝑗𝑡 |P
𝑗 , C𝑡 ,U𝑡 , 𝐾) =

𝑛∏
𝑖=1

𝑝 (𝑠i |𝑠<i ,P 𝑗 , C𝑡 ,U𝑡 , 𝐾)

We call this phase optional, since it can be employed or skipped
based on the availability of the labeled variants for the given user
profile. Moreover, the number of shots can also be adjusted de-
pending on the quantity of the available training examples. In our
experiments, we present results with the following number of shots:
0 (i.e., we skip this phase), 1, 5, 10, and 20.

4 EXPERIMENTAL SETUP
In this section, we describe the task-specific and personalization
datasets, methodology of evaluation, competing methods, and the
implementation details of our framework P-ToD.

4.1 Datasets
We used one task-specific task dataset bAbI dialogue [3] that
trains our model in phase one. The personalized counterpart, called
personalized bAbI dialogue [18], is used to train all the su-
pervised competing models. Our proposed framework adapts to
diverse user profiles in the unsupervised setting. To the best of our
knowledge, personalized bAbI dialogue is the only publicly
available personalization benchmark for task-oriented dialog sys-
tems. Table 1 presents important statistics for both datasets. Both
datasets are in the restaurant domain and consist of five tasks.
Task 1: Issue API calls. This task involves extracting values of all
the required slots (a.k.a. values for query parameters, e.g., cuisine
= spanish) from natural language utterances and successfully mak-
ing an API call. In this task, the personalization involves under-
standing and adapting the linguistic variations for a given user
profile (e.g., male vs female).
Task 2: Update API calls. This task includes updating the val-
ues for certain slots, if the user wishes to do so. For example,
a user’s request in natural language, “Instead could it be in a
cheap price range in Madrid?”, should update the current API call:
api_call(cuisine=french, city=paris, party_size=four,
price_range=expensive) to the call: api_call(cuisine=french,
city=madrid, party_size=four, price_range=cheap). Simi-
larly to task one, personalization task two mainly deals with the
style adaptations.

Task 3: Display Options. This task requires displaying relevant
options from the knowledge base using the search results from API
call. The personalization task involves adapting certain linguistic
style as well as understanding user’s taste and restaurant’s speciali-
ties, among others, and making appropriate suggestions based on
the active user’s profile. Unsupervised personalization for this task
is the most challenging part of this work.
Task 4: Provide extra information. The user’s acceptance of an
option entails asking for extra information (e.g., phone_number)
from the system. The personalization for task four calls for resolving
ambiguities efficiently along with the style adaptation. For exam-
ple, asking for contact information could refer to phone_number
or social_media depending on the active user (e.g., elederly vs
young).
Task 5: Conduct Full dialogs. This task is about conducting the
full dialogue that covers tasks 1-4 successfully. Similarly, personal-
ization task includes, but not limited to: (i) adjusting the conversa-
tion flow to the active user’s personality, (ii) adapting the linguistic
style, and (iii) dealing with nuances effectively.

The personalized bAbI dialogue dataset contains two test
sets: a standard test set and a test set - OOV (Out Of Vocabulary).
We conduct extensive experiments on both test sets for all the five
tasks for up to 180 diverse user profiles.

4.2 Evaluation Methodology
To demonstrate the effectiveness of P-ToD, we evaluate our frame-
work and all the competing methods for (i) task completion and
(ii) personalization of the dialog for the given user profile.
Task Completion. To quantify the performance for the task com-
pletion, we compute the F1 scores and present evaluation results
for all the models for all five tasks.
Personalization. The main task for the proposed framework is to
personalize the task-oriented dialog systems in the unsupervised
way. To evaluate the efficacy of the framework and how it compares
to the other supervised approaches, we use BLEU-4 and ROUGE-2
scores. The BLEU [36] and ROUGE [17] metrics have been exten-
sively used for natural language generation tasks. Human judgment
and BLEU scores show a very strong correlation. The BLEU-n (n
∈ {1, 2, 3, 4}) score ∈ [0, 100] measures the proportion of n-grams
in the generation that also occurs in the reference. ROUGE, on
the other hand, is a recall-based measure that quantifies n-gram
overlap between the generation and the reference. Moreover, we
also conduct a user study on a randomly selected 300 responses gen-
erated by the top performing supervised models and our proposed
unsupervised personalization framework.
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Table 2: F1 scores for task completion.

Approach Models Task 1 Task 2 Task 3 Task 4 Task 5

Supervised

MemNN-org 99.63 99.81 98.87 98.87 85.10
MemNN-split 85.66 85.83 84.89 84.89 87.28
PMemN2N 99.70 99.93 98.91 98.97 95.33
Mem2Seq-org 99.68 99.68 98.28 99.68 80.41
Mem2Seq-split 99.62 99.62 98.52 99.62 82.19
Mem2Seq-att 99.66 99.66 98.46 99.66 82.38
GLMP 99.45 99.45 98.48 99.45 86.20
CoMemNN 99.65 99.65 98.61 99.65 98.13
Supervised-GPT 99.72 99.96 99.02 99.96 98.21

Unsupervised Personalization PToD-0 (This work) 99.69 99.86 98.92 99.88 98.14

Few-shot Personalization Few-shot GPT 98.12 99.08 97.71 97.32 91.23
P-ToD (This work) 99.74 99.94 99.03 99.94 98.17

4.3 Competing Methods
We compare against the following state-of-the-art (SOTA) person-
alization models and GPT-2-based strong baselines:

MemNN [18]: The response selection-based approach proposes
to use the memory network to encode dialog content and user
profile information using a concatenation of the profile infor-
mation and dialog memory (i.e., MemNN-org) and using split
memory for the profile information and concatenating hidden
states (i.e., MemNN-split).

PMemN2N [28]: The memory network-based method facilitates
the model’s personalization by combining the style information
of the user attributes in the encoder.

Mem2Seq [31]:An end-to-end approach that proposes to usemem-
ory network in the encoder and employs RNN-based decoder
for query generation and memory network for personalized
response generation. This work proposes three variants of the
models, called Mem2Seq-org, Mem2Seq-split, and Mem2Seqatt.

GLMP [57]: Based on Mem2Seq, this model includes local and
global encoders to share external knowledge efficiently.

CoMemNN [37]: This work proposes cooperative memory net-
work and assumes that only partial user profile information is
available. This approach does not generate response, instead
relies on the response selection. In our experiments, we pro-
vided the model with 100% user profile information for a fair
comparison.

Supervised GPT: Since none of the SOTA personalized models
follow SOTA transformers architecture, we also trained a super-
vised GPT-2 model. This model was trained in the same fashion
as our phase three except it was trained on all the training exam-
ples of the dataset, thus serves as a strong supervised baseline.

Few-shot GPT: Due to the unavailability of any unsupervised
approach for comparison and coming up with a reward function
is non-trivial, we also trained a few-shot GPT-2 model. This
model follows same training process, except phase two (i.e.,
unsupervised personalization) is skipped to demonstrate the
effectiveness of the phase two of the proposed framework.

4.4 Implementation Details
We use the pre-trained GPT-2 model as a backbone model that is
trained in all the three phases of the framework. The phase one

trains the task-specific model for 3 epochs using cross-entropy loss
and Adam optimizer, with a batch size of 8, and a learning rate
of 5 × 10−5. Other parameters are as follows: warmup_steps=100,
weight_decay=0.01, max_length=1024. The zero-shot generaliz-
able reward function uses a pre-trained MPNet for input encoding.
It is trained for 3 epochs using contrastive loss on 50% of the user
profiles on every task and the remaining 50% profiles are consid-
ered unseen. The phase two uses the same parameters as phase
one, except batch size of 4 was used because of the GPU memory
limitations (and a learning rate of 1.41×10−5). Similarly, phase three
uses same parameters, except a smaller learning rate of 5 × 10−7
was used and up to 20 training examples were made available for
training. We present two variants of our model: (i) PToD-0 does
not use phase three (i.e., personalized model is only trained in the
unsupervised setting) and (ii) P-ToD that uses 20 training examples
in the phase three.

5 RESULTS
In this section, we present quantitative as well as qualitative analy-
sis. We first present results on the task completion and then demon-
strate that our proposed framework consistently outperforms SOTA
supervised personalization models for the personalization task.

5.1 Quantitative Analysis
Task Completion. Despite the fact that the core task in this work
is personalization, the personalized models should not compromise
the accuracy of task completion for adapting their behaviors for the
profiles of the users. Keeping it in mind, we report the results for
task completion in Tables 2 that presents F1 scores for all five tasks
for all the competing models. In terms of task completion, all the
models show competitive performance except MemNN-split. The
main reason for all the models showing great performance for task
completion is that the user never drops out of the conversation,
even if the system keeps providing the user with unwanted recom-
mendations or never adapts the linguistic style according to the
user. Since, the system eventually completes the task (i.e., the user
is too patient which is not the case in the real-world), the F1 score
is high for all the competing models. Though, the margin is not big,
the best models are supervised-GPT and P-ToD (i.e., this work). For
example, on tasks one and three, the proposed P-ToD performs the
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Table 3: BLEU scores and ROUGE scores for personalization for all five tasks.

Approach Models Task 1 Task 2 Task 3 Task 4 Task 5
BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE

Supervised

Mem2Seq-org 60.12 64.82 65.54 69.83 57.74 62.73 59.07 63.32 64.23 59.39
Mem2Seq-split 60.30 63.82 64.92 68.60 58.07 62.43 59.20 63.03 64.11 58.73
Mem2Seq-att 62.26 71.17 67.15 75.84 59.84 69.59 61.29 69.74 66.02 66.17
GLMP 61.25 70.81 66.40 75.46 59.07 68.93 59.66 70.13 64.91 65.74
CoMemNN 68.67 77.71 73.83 82.67 65.77 75.72 67.58 76.85 72.23 72.53
Supervised-GPT 75.71 78.42 80.61 83.38 73.21 76.46 74.64 77.11 80.01 73.61

Unsupervised PToD-0 (This work) 70.84 75.02 75.75 79.85 68.44 72.93 69.72 73.69 75.12 70.21

Few-shot Few-shot GPT 40.21 46.71 33.17 39.32 27.17 22.78 39.20 33.25 24.12 29.31
P-ToD (This work) 75.64 78.46 80.55 83.29 73.24 76.37 74.52 77.13 79.92 73.65
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Figure 5: Performance of the P-ToD for different number of
shots for all five tasks.

best, and on the remaining three tasks, supervised-GPT shows the
best performance.

It is critical to emphasize that the proposed P-ToD was trained
using only 20 labeled training examples in phase three, whereas the
supervised-GPTwas trained on the complete training set. Moreover,
we observe that PToD-0 variant (i.e., that was not trained in phase
three) has comparable performance when compared to the SOTA
personalization models. Last but not least, the few-shot GPT (that
skipped phase two training and used only 20 training examples in
phase three) baseline does not show good performance for task five
as compared to other models.
Personalization. Table 3 presents BLEU-4 and ROUGE-2 scores
for all the competing models on all five tasks. For all the tasks,
the proposed P-ToD achieves the best performance or insignificant
performance difference from supervised-GPT baseline. Excluding
supervised-GPT model, the proposed P-ToD outperforms all other
SOTA response generation methods by at least 19.95% on BLEU-4
and 9.74% on ROUGE-2 metrics. Similarly, the other variant PToD-0
that was not trained on any labeled training examples, still out-
performs all the competing models including CoMemNN (which
is a response selection model) for BLEU score. Since CoMemNN
does not generate responses, it has advantage to get better BLEU
and ROUGE scores as compared to the response generation ap-
proaches. Moreover, the few-shot GPT baseline shows the worst
performance, since it was trained with only 20 labeled examples in
the phase three and phase two (i.e., unsupervised personalization)
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Figure 6: Mean reward across unsupervised personalization
phase for all five tasks.

was skipped. The poor performance of the few-shot GPT baseline
highlights the critical role of the phase two.

Figure 5 presents the performance of the proposed personaliza-
tion framework, when provided with different number of training
examples in phase three. Generally, we notice that as the number of
training examples are increased, the performance improves, which
highlights the importance of the supervision. However, we noticed
that the performance does not get much better beyond 20 examples.
That is almost the point, when P-ToD is as good as supervised-GPT
model (i.e., trained on full training set).

The unsupervised personalization phase is at the core of the
proposed framework, we provide more details about it in Figure 6.
Since all five tasks vary in terms of difficulty, we present the mean
reward of the models for each task, as the training progresses in
phase two. The general trend is that the mean reward starts at 0 (e.g.,
at episode 0), which is obvious because the responses at the begin-
ning of this phase were not tailored for the given user profile. Then,
depending on the difficulty of the task, we notice that the respective
models start approaching to 1.0 (e.g., after 100,000 episodes). We
know that the task five (i.e., conduct full personalized dialog) is
the most challenging task and the mean reward throughout the
training process also signifies that. Similarly, we also notice that
the tasks that involve adapting only linguistic styles (e.g., task two),
the respective models start to achieve higher mean reward quickly
as compared to the tasks that require meaningful recommendations
or need to resolve nuances (e.g., task three).
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Table 4: Average scores of the user study.

Method Fluent Appropriate Rank
Reference Response 4.92 4.87 2.41
Supervised GPT 4.93 4.85 2.52
PToD-0 (This work) 4.91 4.86 2.62
P-ToD (This work) 4.92 4.85 2.45

5.2 Qualitative Analysis
In this experiment, we randomly selected 300 responses generated
by supervised-GPT (i.e., the best model among the supervised com-
petitors), PToD-0 (i.e., used zero labeled training examples), and
P-ToD (i.e., used 20 labeled training examples) along with the refer-
ence responses and asked human annotators to rate them (i.e., 1 to
5, 5 being the best) for fluency and appropriateness of the response
for the given user profile. Moreover, we also asked the annotators
to rank the responses for personalization to the given user pro-
file. Each response was rated by three annotators. Table 4 presents
average scores for fluency, appropriateness of the response, and
average rank among the responses. All the models (including ref-
erence) achieve high scores on the fluency and appropriateness of
the response for the given user profile. Moreover, there is not a sig-
nificant difference among the average scores. Similarly, almost all
were ranked similar as reference responses. For example, responses
generated from every model are ranked at all the places, i.e., 1𝑠𝑡
to 4𝑡ℎ place. In summary, results from human study show that the
responses of all the models are as a good as reference responses. It
is important to remind that the supervised-GPT was trained on the
full training set, whereas our proposed PToD-0 and P-ToD were
trained using zero and 20 labeled training examples, respectively.

We also observe that the PToD-0 model had slightly lower BLEU
and ROUGE scores as compared to P-ToD and supervised-GPT,
whereas in the human study it showed equally outstanding perfor-
mance. Upon further investigation, we noticed that the responses
generated by the PToD-0 are identical to that of supervised-GPT
and P-ToD. The PToD-0 model did not use the “words” (or n-grams)
in the reference responses. For example, a perfectly acceptable re-
sponse generated by PToD-0, “What should the price be, madam?”
did not get good BLEU or ROUGE scores, because the reference re-
sponse happened to be, “Madam! which price range are you looking
for?”.

6 RELATEDWORK
The two broad categories of dialog systems are open-ended and
task-oriented dialog systems. In the following, we summarize the
personalization aspect of related work for both categories.
Personalized Open-ended Dialogue Systems. Among the ear-
lier attempts to personalize open-ended dialog systems, [26] pro-
poses learning interlocutor persona embeddings and adapting the
conversation style accordingly. Researchers have since proposed a
variety of methods, including persona information fusion [33, 64],
multi-task learning [27], transfer learning [60, 65], meta learn-
ing [30], persona incorporation into the sequence-to-sequence
framework [13, 26], persona-conditioned RNN-based model [12],

persona memory-conditioned variational autoencoders [51], re-
sponse selection using memory networks [64], topical information
usage [58], persona pre-training [15, 66], and extra training pro-
cedures for personalization [15, 38]. While many of these works
have proven useful for assigning personalities or language styles to
open-ended dialog systems, they are ineffective for task-oriented
dialog systems.We propose that, rather than assigning personalities
to agents (i.e., dialog systems), make them more adaptive to their
different kinds of interlocutors in task-oriented dialog settings.
Personalized Task-oriented Dialogue Systems. Comparatively
to open-domain dialog systems, personalized task-oriented dialog
systems are under-explored. In fact, to the best of our knowledge,
personalized bAbI dialogue [18] is the only publicly available
benchmark for the evaluation of task-oriented dialog systems. Most
of the existing work [18, 28, 31, 37, 57] use memory networks by
concatenating profile information and dialog memory [18], com-
bining style information [28], query generation via RNN-based
decoder [31], local and global encoders [57]. Similarly, coopera-
tive memory network have been proposed [37] to handle the case,
where only partial profile information is available. All of these
works follow supervised learning approaches and require a large
amount of labeled training data for each user profile. In contrast
to previous work, we employ deep reinforcement learning to per-
sonalize task-oriented dialog systems in the unsupervised setting
without requiring any labeled training data. This work leverages
pre-trained language models and zero-shot learning for natural
language understanding and generation, and adapts its responses
to a wide range of user profiles in unsupervised way. Nonetheless,
it is noteworthy to mention that several key ideas leveraged in this
work have been used for task-oriented dialog systems such as deep
reinforcement learning for dialog policy generation [23, 24] and
paraphrasing [50], zero-shot learning for intent detection [49] and
slot filling [48], and language models for anaphora resolution [32]
and response generation [11]. However, none of these works have
proposed to personalizing dialog systems in the unsupervised set-
ting.

7 CONCLUSION
We have presented a novel personalization framework for task-
oriented dialog systems, P-ToD, that can seamlessly adapt to newly
emerging unseen user profiles in the unsupervised fashion. P-ToD
stands out as the first unsupervised framework for personalized
task-oriented dialog systems that can effectively adapt its conver-
sation flows and linguistic styles, disambiguate nuances, and make
meaningful recommendations according to the profile of the active
user. The key idea behind the proposed framework is using a novel
zero-shot generalizable reward function that guides the policy of
the personalized model to adapt its responses for the given user
without compromising the task completion accuracy. Our experi-
mental evaluation uses up to 180 diverse user profiles for five tasks
including conducting full personalized dialogs. Interestingly, our
proposed framework outperforms all the existing personalization
models using quantitative as well as qualitative analysis. Further-
more, we also trained a fully supervised-GPT model for comparison
and it turned out that P-ToD, trained using only 20 labeled training
examples, achieves better or competitive performance.
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